Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.859
Filter
1.
Elife ; 132024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949655

ABSTRACT

Secreted chemokines form concentration gradients in target tissues to control migratory directions and patterns of immune cells in response to inflammatory stimulation; however, how the gradients are formed is much debated. Heparan sulfate (HS) binds to chemokines and modulates their activities. In this study, we investigated the roles of HS in the gradient formation and chemoattractant activity of CCL5 that is known to bind to HS. CCL5 and heparin underwent liquid-liquid phase separation and formed gradient, which was confirmed using CCL5 immobilized on heparin-beads. The biological implication of HS in CCL5 gradient formation was established in CHO-K1 (wild-type) and CHO-677 (lacking HS) cells by Transwell assay. The effect of HS on CCL5 chemoattractant activity was further proved by Transwell assay of human peripheral blood cells. Finally, peritoneal injection of the chemokines into mice showed reduced recruitment of inflammatory cells either by mutant CCL5 (lacking heparin-binding sequence) or by addition of heparin to wild-type CCL5. Our experimental data propose that co-phase separation of CCL5 with HS establishes a specific chemokine concentration gradient to trigger directional cell migration. The results warrant further investigation on other heparin-binding chemokines and allows for a more elaborate insight into disease process and new treatment strategies.


Subject(s)
Chemokine CCL5 , Chemotaxis , Cricetulus , Heparitin Sulfate , Chemokine CCL5/metabolism , Chemokine CCL5/genetics , Animals , Heparitin Sulfate/metabolism , Humans , CHO Cells , Mice , Heparin/metabolism , Heparin/pharmacology , Phase Separation
2.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928033

ABSTRACT

Bladder cancer (BC) is the 12th most commonly diagnosed cancer worldwide. Although there are several well-established molecular and immunological classifications, prognostic and predictive markers for tumor cells and immune cells are still needed. Using a tissue microarray, we analyzed the expression of the chemokine CC motif ligand 5 (CCL5) by immunohistochemistry (IHC) in 175 muscle-invasive BC samples. The application of a single cutoff for the staining status of tumor cells (TCs; positive vs. negative) and immune cells (ICs; positive vs. negative) revealed 75 patients (42.9%) and 123 patients (70.3%) with CCL5-positive TCs or ICs, respectively. IHC results were associated with prognostic and predictive data. Multivariate Cox regression analysis revealed that positive CCL5 staining in TCs was associated with significantly shorter disease-specific survival (DSS; RR = 1.51; p = 0.047), but CCL5-negative ICs were associated with significantly shorter overall survival (OS; RR = 1.66; p = 0.005), DSS (RR = 2.02; p = 0.001) and recurrence-free survival (RFS; RR = 1.94; p = 0.002). Adjuvant chemotherapy was favorable for patients with CCL5-negative ICs for OS (RR = 0.30; p = 0.006), DSS (RR = 0.36; p = 0.022) and RFS (RR = 0.41; p = 0.046) but not for patients with CCL5-positive ICs, except in the subgroup of N1 + N2 patients, where it was associated with better OS. We suggest that CCL5 expression can be a prognostic and predictive marker for muscle-invasive bladder cancer patients.


Subject(s)
Biomarkers, Tumor , Chemokine CCL5 , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/mortality , Chemokine CCL5/metabolism , Chemokine CCL5/genetics , Male , Female , Aged , Prognosis , Middle Aged , Biomarkers, Tumor/metabolism , Neoplasm Invasiveness , Aged, 80 and over , Adult , Immunohistochemistry
3.
Stem Cell Res Ther ; 15(1): 163, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853252

ABSTRACT

BACKGROUND: A rising population faces challenges with healing-impaired cutaneous wounds, often leading to physical disabilities. Adipose-derived stem cells (ASCs), specifically in the cell sheet format, have emerged as a promising remedy for impaired wound healing. Human platelet lysate (HPL) provides an attractive alternative to fetal bovine serum (FBS) for culturing clinical-grade ASCs. However, the potential of HPL sheets in promoting wound healing has not been fully investigated. This study aimed to explore the anti-fibrotic and pro-angiogenic capabilities of HPL-cultured ASC sheets and delve into the molecular mechanism. METHODS: A rat burn model was utilized to evaluate the efficacy of HPL-cultured ASC sheets in promoting wound healing. ASC sheets were fabricated with HPL, and those with FBS were included for comparison. Various analyses were conducted to assess the impact of HPL sheets on wound healing. Histological examination of wound tissues provided insights into aspects such as wound closure, collagen deposition, and overall tissue regeneration. Immunofluorescence was employed to assess the presence and distribution of transplanted ASCs after treatment. Further in vitro studies were conducted to decipher the specific factors in HPL sheets contributing to angiogenesis. RESULTS: HPL-cultured ASC sheets significantly accelerated wound closure, fostering ample and organized collagen deposition in the neo-dermis. Significantly more retained ASCs were observed in wound tissues treated with HPL sheets compared to the FBS counterparts. Moreover, HPL sheets mitigated macrophage recruitment and decreased subsequent wound tissue fibrosis in vivo. Immunohistochemistry also indicated enhanced angiogenesis in the HPL sheet group. The in vitro analyses showed upregulation of C-C motif chemokine ligand 5 (CCL5) and angiogenin in HPL sheets, including both gene expression and protein secretion. Culturing endothelial cells in the conditioned media compared to media supplemented with CCL5 or angiogenin suggested a correlation between CCL5 and the pro-angiogenic effect of HPL sheets. Additionally, through neutralizing antibody experiments, we further validated the crucial role of CCL5 in HPL sheet-mediated angiogenesis in vitro. CONCLUSIONS: The present study underscores CCL5 as an essential factor in the pro-angiogenic effect of HPL-cultured ASC sheets during the wound healing process. These findings highlight the potential of HPL-cultured ASC sheets as a promising therapeutic option for healing-impaired cutaneous wounds in clinical settings. Furthermore, the mechanism exploration yields valuable information for optimizing regenerative strategies with ASC products. BRIEF ACKNOWLEDGMENT: This research was supported by the National Science and Technology Council, Taiwan (NSTC112-2321-B-002-018), National Taiwan University Hospital (111C-007), and E-Da Hospital-National Taiwan University Hospital Joint Research Program (111-EDN0001, 112-EDN0002).


Subject(s)
Adipose Tissue , Blood Platelets , Chemokine CCL5 , Neovascularization, Physiologic , Wound Healing , Animals , Humans , Rats , Blood Platelets/metabolism , Chemokine CCL5/metabolism , Adipose Tissue/cytology , Adipose Tissue/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Rats, Sprague-Dawley , Cells, Cultured , Male , Stem Cell Transplantation/methods , Angiogenesis
4.
J Cell Mol Med ; 28(12): e18489, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38899522

ABSTRACT

This study explores the impact of senescence on autocrine C-C motif chemokine ligand 5 (CCL5) in human endothelial progenitor cell (EPCs), addressing the poorly understood decline in number and function of EPCs during ageing. We examined the effects of replication-induced senescence on CCL5/CCL5 receptor (CCR5) signalling and angiogenic activity of EPCs in vitro and in vivo. We also explored microRNAs controlling CCL5 secretion in senescent EPCs, its impact on EPC angiogenic activity, and validated our findings in humans. CCL5 secretion and CCR5 levels in senescent EPCs were reduced, leading to attenuated angiogenic activity. CCL5 enhanced EPC proliferation via the CCR5/AKT/P70S6K axis and increased vascular endothelial growth factor (VEGF) secretion. Up-regulation of miR-409 in senescent EPCs resulted in decreased CCL5 secretion, inhibiting the angiogenic activity, though these negative effects were counteracted by the addition of CCL5 and VEGF. In a mouse hind limb ischemia model, CCL5 improved the angiogenic activity of senescent EPCs. Analysis involving 62 healthy donors revealed a negative association between CCL5 levels, age and Framingham Risk Score. These findings propose CCL5 as a potential biomarker for detection of EPC senescence and cardiovascular risk assessment, suggesting its therapeutic potential for age-related cardiovascular disorders.


Subject(s)
Cellular Senescence , Chemokine CCL5 , Endothelial Progenitor Cells , MicroRNAs , Neovascularization, Physiologic , Chemokine CCL5/metabolism , Chemokine CCL5/genetics , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/cytology , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Neovascularization, Physiologic/genetics , Mice , Cell Proliferation , Male , Receptors, CCR5/metabolism , Receptors, CCR5/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Down-Regulation/genetics , Ischemia/metabolism , Ischemia/pathology , Ischemia/genetics , Signal Transduction , Angiogenesis
5.
Chin J Nat Med ; 22(6): 501-514, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38906598

ABSTRACT

Prostate cancer (PCa) is the second most common malignancy among men globally. The Fu-Zheng-Yi-Liu (FZYL) Formula has been widely utilized in the treatment of PCa. This study investigates whether the FZYL Formula can inhibit PCa by targeting the TAMs/CCL5 pathway. We conducted in vitro co-cultures and in vivo co-injections of PCa cells and TAMs to mimic their interaction. Results showed that the FZYL Formula significantly reduced the proliferation, colony formation, subpopulations of PCSCs, and sphere-formation efficacy of PCa cells, even in the presence of TAM co-culture. Additionally, the Formula markedly decreased the migration, invasion, and epithelial-mesenchymal transition (EMT) of PCa cells induced by TAMs. The FZYL Formula also reversed M2 phenotype polarization in TAMs and dose-dependently reduced their CCL5 expression and secretion, with minimal cytotoxicity observed. Mechanistic studies confirmed that the TAMs/CCL5 axis is a critical target of the FZYL Formula, as the addition of exogenous CCL5 partially reversed the formula's inhibitory effects on PCSCs self-renewal in the co-culture system. Importantly, the Formula also significantly inhibited the growth of PCa xenografts, bone metastasis, and PCSCs activity in vivo by targeting the TAMs/CCL5 pathway. Overall, this study not only elucidates the immunomodulatory mechanism of the FZYL Formula in PCa therapy but also highlights the TAMs/CCL5 axis as a promising therapeutic target.


Subject(s)
Chemokine CCL5 , Drugs, Chinese Herbal , Neoplastic Stem Cells , Prostatic Neoplasms , Tumor Microenvironment , Tumor-Associated Macrophages , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Male , Humans , Animals , Drugs, Chinese Herbal/pharmacology , Tumor Microenvironment/drug effects , Chemokine CCL5/metabolism , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/metabolism , Mice , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Cell Line, Tumor , Epithelial-Mesenchymal Transition/drug effects , Cell Proliferation/drug effects , Neoplasm Metastasis , Cell Movement/drug effects , Coculture Techniques , Mice, Nude
6.
BMC Immunol ; 25(1): 31, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734625

ABSTRACT

BACKGROUND: Thyroid eye disease (TED) is an inflammatory process involving lymphocyte-mediated immune response and orbital tissue damage. The anti-insulin-like growth factor-1 receptor (IGF-1R) antibodies produced by B lymphocytes are involved in the activation of orbital fibroblasts and the inflammatory process of orbital tissue damage in TED. The purpose of this study was to explore the role of IGF-1R in the mechanistic connection between orbital fibroblasts and B lymphocytes in TED. METHODS: Orbital fibroblasts sampled from orbital connective tissues and peripheral B lymphocytes isolated from peripheral blood, which were obtained from 15 patients with TED and 15 control patients, were co-cultured at a ratio of 1:20. The level of IGF-1R expression in orbital fibroblasts was evaluated by flow cytometry and confocal microscopy. Transient B lymphocyte depletion was induced with anti-CD20 monoclonal antibody rituximab, while the IGF-1R pathway was blocked by the IGF-1R binding protein. The expression levels of interleukin-6 (IL-6) and regulated upon activation, normal T cell expressed and secreted (RANTES) in the co-culture model were quantified via ELISA. RESULTS: IGF-1R expression was significantly elevated in TED orbital fibroblasts compared to that of controls. A 24-h co-culture of orbital fibroblasts with peripheral B lymphocytes induced elevated expression levels of IL-6 and RANTES in each group (TED patients and controls), with the highest levels occurring in TED patients (T + T group). Rituximab and IGF-1R binding protein significantly inhibited increased levels of IL-6 and RANTES in the co-culture model of TED patients. CONCLUSIONS: IGF-1R may mediate interaction between orbital fibroblasts and peripheral B lymphocytes; thus, blocking IGF-1R may reduce the local inflammatory response in TED. Rituximab-mediated B lymphocyte depletion played a role in inhibiting inflammatory responses in this in vitro co-culture model, providing a theoretical basis for the clinical application of anti-CD20 monoclonal antibodies in TED.


Subject(s)
B-Lymphocytes , Fibroblasts , Graves Ophthalmopathy , Receptor, IGF Type 1 , Female , Humans , Male , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Communication , Cells, Cultured , Chemokine CCL5/metabolism , Coculture Techniques , Fibroblasts/metabolism , Graves Ophthalmopathy/metabolism , Graves Ophthalmopathy/immunology , Interleukin-6/metabolism , Lymphocyte Depletion , Orbit/metabolism , Orbit/immunology , Receptor, IGF Type 1/metabolism , Rituximab/pharmacology , Rituximab/therapeutic use
7.
Oncogene ; 43(28): 2215-2227, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38802647

ABSTRACT

Approximately 40% of patients with lung adenocarcinoma (LUAD) often develop bone metastases during the course of their disease. However, scarcely any in vivo model of LUAD bone metastasis has been established, leading to a poor understanding of the mechanisms underlying LUAD bone metastasis. Here, we established a multiorgan metastasis model via the left ventricular injection of luciferase-labeled LUAD cells into nude mice and then screened out lung metastasis (LuM) and bone metastasis (BoM) cell subpopulations. BoM cells exhibited greater stemness and epithelial-mesenchymal transition (EMT) plasticity than LuM cells and initially colonized the bone and subsequently disseminated to distant organs after being reinjected into mice. Moreover, a CD74-ROS1 fusion mutation (C6; R34) was detected in BoM cells but not in LuM cells. Mechanistically, BoM cells bearing the CD74-ROS1 fusion highly secrete the C-C motif chemokine ligand 5 (CCL5) protein by activating STAT3 signaling, recruiting macrophages in tumor microenvironment and strongly inducing M2 polarization of macrophages. BoM cell-activated macrophages produce a high level of TGF-ß1, thereby facilitating EMT and invasion of LUAD cells via TGF-ß/SMAD2/3 signaling. Targeting the CD74-ROS1/CCL5 axis with Crizotinib (a ROS1 inhibitor) and Maraviroc (a CCL5 receptor inhibitor) in vivo strongly impeded bone metastasis and secondary metastasis of BoM cells. Our findings reveal the critical role of the CD74-ROS1/STAT3/CCL5 axis in the interaction between LUAD bone metastasis cells and macrophages for controlling LUAD cell dissemination, highlighting the significance of the bone microenvironment in LUAD bone metastasis and multiorgan secondary metastasis, and suggesting that targeting CD74-ROS1 and CCL5 is a promising therapeutic strategy for LUAD bone metastasis.


Subject(s)
Adenocarcinoma of Lung , Bone Neoplasms , Epithelial-Mesenchymal Transition , Lung Neoplasms , Macrophages , Protein-Tyrosine Kinases , Proto-Oncogene Proteins , Animals , Humans , Mice , Bone Neoplasms/secondary , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Macrophages/metabolism , Macrophages/pathology , Lung Neoplasms/secondary , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/secondary , Adenocarcinoma of Lung/metabolism , Epithelial-Mesenchymal Transition/genetics , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Antigens, Differentiation, B-Lymphocyte/metabolism , Antigens, Differentiation, B-Lymphocyte/genetics , Chemokine CCL5/metabolism , Chemokine CCL5/genetics , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , Mice, Nude , Cell Line, Tumor , Tumor Microenvironment , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Signal Transduction
8.
Toxicol Appl Pharmacol ; 486: 116950, 2024 May.
Article in English | MEDLINE | ID: mdl-38701902

ABSTRACT

Antidepressant duloxetine has been shown protective effect on indomethacin-induced gastric ulcer, which was escorted by inflammation in the gastric mucosa. Cytokines are the principal mediators of inflammation. Thus, by screening the differential expression of cytokines in the gastric mucosa using cytokine array at 3 h after indomethacin exposure, when the gastric ulcer began to format, we found that indomethacin increased cytokines which promoted inflammation responses, whereas duloxetine decreased pro-inflammatory cytokines increased by indomethacin and increased RANTES expression. RANTES was consistently increased by pretreated with both 5 mg/kg and 20 mg/kg duloxetine at 3 h and 6 h after indomethacin exposure in male rats. Selective blockade of RANTES-CCR5 axis by a functional antagonist Met-RANTES or a CCR5 antagonist maraviroc suppressed the protection of duloxetine. Considering the pharmacologic action of duloxetine on reuptake of monoamine neurotransmitters, we examined the serotonin (5-HT), norepinephrine and dopamine contents in the blood and discovered 20 mg/kg duloxetine increased 5-HT levels in platelet-poor plasma, while treatment with 5-HT promoted expression of RANTES in the gastric mucosa and alleviated the indomethacin-induced gastric injury. Furthermore, duloxetine activated PI3K-AKT-VEGF signaling pathway, which was regulated by RANTES-CCR5, and selective inhibitor of VEGF receptor axitinib blocked the prophylactic effect of duloxetine. Furthermore, duloxetine also protected gastric mucosa from indomethacin in female rats, and RANTES was increased by duloxetine after 6 h after indomethacin exposure too. Together, our results identified the role of cytokines, particularly RANTES, and the underlying mechanisms in gastroprotective effect of duloxetine against indomethacin, which advanced our understanding in inflammatory modulation by monoamine-based antidepressants.


Subject(s)
Chemokine CCL5 , Duloxetine Hydrochloride , Gastric Mucosa , Indomethacin , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Serotonin , Signal Transduction , Stomach Ulcer , Vascular Endothelial Growth Factor A , Animals , Duloxetine Hydrochloride/pharmacology , Gastric Mucosa/drug effects , Gastric Mucosa/pathology , Gastric Mucosa/metabolism , Male , Indomethacin/toxicity , Proto-Oncogene Proteins c-akt/metabolism , Chemokine CCL5/metabolism , Signal Transduction/drug effects , Rats , Vascular Endothelial Growth Factor A/metabolism , Stomach Ulcer/chemically induced , Stomach Ulcer/prevention & control , Stomach Ulcer/pathology , Stomach Ulcer/metabolism , Serotonin/metabolism , Phosphatidylinositol 3-Kinases/metabolism
9.
Molecules ; 29(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38792101

ABSTRACT

Chemokines, also known as chemotactic cytokines, stimulate the migration of immune cells. These molecules play a key role in the pathogenesis of inflammation leading to atherosclerosis, neurodegenerative disorders, rheumatoid arthritis, insulin-resistant diabetes, and cancer. Moreover, they take part in inflammatory bowel disease (IBD). The main objective of our research was to determine the activity of methyl-derivatives of flavanone, namely, 2'-methylflavanone (5B), 3'-methylflavanone (6B), 4'-methylflavanone (7B), and 6-methylflavanone (8B), on the releasing of selected cytokines by RAW264.7 macrophages activated by LPS. We determined the concentration of chemokines belonging to the CC chemokine family, namely, MCP-1, MIP-1ß, RANTES, and eotaxin, using the Bio-Plex Magnetic Luminex Assay and the Bio-PlexTM 200 System. Among the tested compounds, only 5B and 6B had the strongest effect on inhibiting the examined chemokines' release by macrophages. Therefore, 5B and 6B appear to be potentially useful in the prevention of diseases associated with the inflammatory process.


Subject(s)
Chemokine CCL11 , Chemokine CCL2 , Chemokine CCL5 , Flavanones , Macrophages , Animals , Mice , RAW 264.7 Cells , Macrophages/drug effects , Macrophages/metabolism , Flavanones/pharmacology , Flavanones/chemistry , Chemokine CCL11/metabolism , Chemokine CCL2/metabolism , Chemokine CCL5/metabolism , Chemokine CCL4/metabolism , Lipopolysaccharides/pharmacology , Macrophage Activation/drug effects
10.
J Transl Med ; 22(1): 502, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38797830

ABSTRACT

BACKGROUND: Inflammation and dysregulated immunity play vital roles in idiopathic pulmonary arterial hypertension (IPAH), while the mechanisms that initiate and promote these processes are unclear. METHODS: Transcriptomic data of lung tissues from IPAH patients and controls were obtained from the Gene Expression Omnibus database. Weighted gene co-expression network analysis (WGCNA), differential expression analysis, protein-protein interaction (PPI) and functional enrichment analysis were combined with a hemodynamically-related histopathological score to identify inflammation-associated hub genes in IPAH. The monocrotaline-induced rat model of pulmonary hypertension was utilized to confirm the expression pattern of these hub genes. Single-cell RNA-sequencing (scRNA-seq) data were used to identify the hub gene-expressing cell types and their intercellular interactions. RESULTS: Through an extensive bioinformatics analysis, CXCL9, CCL5, GZMA and GZMK were identified as hub genes that distinguished IPAH patients from controls. Among these genes, pulmonary expression levels of Cxcl9, Ccl5 and Gzma were elevated in monocrotaline-exposed rats. Further investigation revealed that only CCL5 and GZMA were highly expressed in T and NK cells, where CCL5 mediated T and NK cell interaction with endothelial cells, smooth muscle cells, and fibroblasts through multiple receptors. CONCLUSIONS: Our study identified a new inflammatory pathway in IPAH, where T and NK cells drove heightened inflammation predominantly via the upregulation of CCL5, providing groundwork for the development of targeted therapeutics.


Subject(s)
Chemokine CCL5 , Familial Primary Pulmonary Hypertension , Killer Cells, Natural , RNA-Seq , Single-Cell Analysis , T-Lymphocytes , Animals , Humans , Chemokine CCL5/metabolism , Chemokine CCL5/genetics , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology , Familial Primary Pulmonary Hypertension/genetics , Familial Primary Pulmonary Hypertension/pathology , Familial Primary Pulmonary Hypertension/metabolism , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Male , Cell Communication/genetics , Rats, Sprague-Dawley , Lung/pathology , Rats , Gene Regulatory Networks , Monocrotaline , Protein Interaction Maps/genetics , Computational Biology
11.
J Immunother Cancer ; 12(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38719543

ABSTRACT

The CCR/L5 axis is known for its role in immune regulation in a variety of settings and has been shown to have dichotomous functions in cancer, influencing both tumor progression and immune responses. Battaglin et al investigated its role using genomic and transcriptomic data from several datasets of patients with advanced colorectal cancer (CRC), including patients treated on CALGB/SWOG 80405, a trial of chemotherapy plus cetuximab versus bevacizumab, as well as a larger population of patients whose CRCs underwent commercially available Caris NGS and CODEai assays. These authors showed that CCR/L5 expression was both prognostic and predictive. They reported that low expression of the CCR/L5 axis was correlated with improved survival broadly, with particular benefit in patients treated with chemotherapy plus cetuximab. They demonstrated that high expression of CCR/L5 was associated with infiltration by negatively prognostic Tregs, M1 and M2 macrophages, myeloid-derived suppressor cells, and cancer-associated fibroblasts. They also showed that increased expression was correlated a wide variety of immune suppressive proteins, including PD-1, PD-L1, PD-L2, CTLA4, CD80, CD86, TIM3, IDO1, LAG3, and IFN-γ. This suggests mechanisms by which CRC resists anti-cancer immune responses. This study enhances our understanding of the role of the CCR/L5 axis in advanced CRC.


Subject(s)
Chemokine CCL5 , Colorectal Neoplasms , Receptors, CCR5 , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Receptors, CCR5/metabolism , Receptors, CCR5/genetics , Chemokine CCL5/metabolism , Chemokine CCL5/genetics , Neoplasm Metastasis
12.
Cancer Cell ; 42(5): 885-903.e4, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38608702

ABSTRACT

With limited treatment options, cachexia remains a major challenge for patients with cancer. Characterizing the interplay between tumor cells and the immune microenvironment may help identify potential therapeutic targets for cancer cachexia. Herein, we investigate the critical role of macrophages in potentiating pancreatic cancer induced muscle wasting via promoting TWEAK (TNF-like weak inducer of apoptosis) secretion from the tumor. Specifically, depletion of macrophages reverses muscle degradation induced by tumor cells. Macrophages induce non-autonomous secretion of TWEAK through CCL5/TRAF6/NF-κB pathway. TWEAK promotes muscle atrophy by activating MuRF1 initiated muscle remodeling. Notably, tumor cells recruit and reprogram macrophages via the CCL2/CCR2 axis and disrupting the interplay between macrophages and tumor cells attenuates muscle wasting. Collectively, this study identifies a feedforward loop between pancreatic cancer cells and macrophages, underlying the non-autonomous activation of TWEAK secretion from tumor cells thereby providing promising therapeutic targets for pancreatic cancer cachexia.


Subject(s)
Cachexia , Cytokine TWEAK , Macrophages , Pancreatic Neoplasms , Cachexia/metabolism , Cachexia/etiology , Cachexia/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/complications , Cytokine TWEAK/metabolism , Animals , Humans , Macrophages/metabolism , Mice , NF-kappa B/metabolism , Cell Line, Tumor , Tumor Microenvironment , Muscular Atrophy/metabolism , Muscular Atrophy/etiology , Muscular Atrophy/pathology , Chemokine CCL5/metabolism , Signal Transduction , TNF Receptor-Associated Factor 6/metabolism , Tumor Necrosis Factors/metabolism , Receptors, CCR2/metabolism , Chemokine CCL2/metabolism , Mice, Inbred C57BL
13.
J Immunother ; 47(6): 195-204, 2024.
Article in English | MEDLINE | ID: mdl-38654631

ABSTRACT

SUMMARY: Immunocytokines are a promising immunotherapeutic approach in cancer therapy. Anti-VEGFR2-interferon α (IFNα) suppressed colorectal cancer (CRC) growth and enhanced CD8 + T-cell infiltration in the tumor microenvironment, exhibiting great clinical translational potential. However, the mechanism of how the anti-VEGFR2-IFNα recruits T cells has not been elucidated. Here, we demonstrated that anti-VEGFR2-IFNα suppressed CRC metastasis and enhanced CD8 + T-cell infiltration. RNA sequencing revealed a transcriptional activation of CCL5 in metastatic CRC cells, which was correlated with T-cell infiltration. IFNα but not anti-VEGFR2 could further upregulate CCL5 in tumors. In immunocompetent mice, both IFNα and anti-VEGFR2-IFNα increased the subset of tumor-infiltrating CD8 + T cells through upregulation of CCL5. Knocking down CCL5 in tumor cells attenuated the infiltration of CD8 + T cells and dampened the antitumor efficacy of anti-VEGFR2-IFNα treatment. We, therefore, propose upregulation of CCL5 is a key to enhance infiltration of CD8 + T cells in metastatic CRC with IFNα and IFNα-based immunocytokine treatments. These findings may help the development of IFNα related immune cytokines for the treatment of less infiltrated tumors.


Subject(s)
CD8-Positive T-Lymphocytes , Chemokine CCL5 , Colorectal Neoplasms , Interferon-alpha , Lymphocytes, Tumor-Infiltrating , Tumor Microenvironment , Up-Regulation , Vascular Endothelial Growth Factor Receptor-2 , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Animals , Chemokine CCL5/metabolism , Chemokine CCL5/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice , Humans , Cell Line, Tumor , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Tumor Microenvironment/immunology , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Gene Expression Regulation, Neoplastic/drug effects , Female
14.
J Virol ; 98(5): e0036324, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38661384

ABSTRACT

HIV-1 has a broad range of nuanced interactions with the immune system, and the incorporation of cellular proteins by nascent virions continues to redefine our understanding of the virus-host relationship. Proteins located at the sites of viral egress can be selectively incorporated into the HIV-1 envelope, imparting new functions and phenotypes onto virions, and impacting viral spread and disease. Using virion capture assays and western blot, we show that HIV-1 can incorporate the myeloid antigen CD14 into its viral envelope. Virion-incorporated CD14 remained biologically active and able to bind its natural ligand, bacterial lipopolysaccharide (LPS), as demonstrated by flow virometry and immunoprecipitation assays. Using a Toll-like receptor 4 (TLR4) reporter cell line, we also demonstrated that virions with bound LPS can trigger TLR4 signaling to activate transcription factors that regulate inflammatory gene expression. Complementary assays with THP-1 monocytes demonstrated enhanced secretion of inflammatory cytokines like tumor necrosis factor alpha (TNF-α) and the C-C chemokine ligand 5 (CCL5), when exposed to LPS-loaded virus. These data highlight a new type of interplay between HIV-1 and the myeloid cell compartment, a previously well-established cellular contributor to HIV-1 pathogenesis and inflammation. Persistent gut inflammation is a hallmark of chronic HIV-1 infection, and contributing to this effect is the translocation of microbes across the gut epithelium. Our data herein provide proof of principle that virion-incorporated CD14 could be a novel mechanism through which HIV-1 can drive chronic inflammation, facilitated by HIV-1 particles binding bacterial LPS and initiating inflammatory signaling in TLR4-expressing cells.IMPORTANCEHIV-1 establishes a lifelong infection accompanied by numerous immunological changes. Inflammation of the gut epithelia, exacerbated by the loss of mucosal T cells and cytokine dysregulation, persists during HIV-1 infection. Feeding back into this loop of inflammation is the translocation of intestinal microbes across the gut epithelia, resulting in the systemic dissemination of bacterial antigens, like lipopolysaccharide (LPS). Our group previously demonstrated that the LPS receptor, CD14, can be readily incorporated by HIV-1 particles, supporting previous clinical observations of viruses derived from patient plasma. We now show that CD14 can be incorporated by several primary HIV-1 isolates and that this virion-incorporated CD14 can remain functional, enabling HIV-1 to bind to LPS. This subsequently allowed CD14+ virions to transfer LPS to monocytic cells, eliciting pro-inflammatory signaling and cytokine secretion. We posit here that virion-incorporated CD14 is a potential contributor to the dysregulated immune responses present in the setting of HIV-1 infection.


Subject(s)
HIV Infections , HIV-1 , Lipopolysaccharide Receptors , Lipopolysaccharides , Virion , Humans , Chemokine CCL5/metabolism , HIV Infections/virology , HIV Infections/immunology , HIV Infections/metabolism , HIV-1/immunology , HIV-1/physiology , Lipopolysaccharide Receptors/metabolism , Lipopolysaccharides/metabolism , Monocytes/metabolism , Monocytes/immunology , Monocytes/virology , Signal Transduction , THP-1 Cells , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism , Virion/metabolism
15.
Cancer Lett ; 591: 216892, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38621459

ABSTRACT

Non-small cell lung cancer (NSCLC) is a leading cause of mortality worldwide and requires effective treatment strategies. Recently, the development of a novel multiple-target tyrosine kinase inhibitor, anlotinib, has drawn increasing attention, especially it shows advantages when combined with PD-1/PD-L1 blockade. However, the mechanism by which anlotinib improves immunotherapy and remodeling of the tumor microenvironment remains unclear. In this study, we found that anlotinib combined with PD-1 blockade significantly inhibited tumor growth and reduced tumor weight in a lung cancer xenograft model compared to any single treatment. Both immunofluorescence and flow cytometry analyses revealed that anlotinib induced a CD8+ T cell dominated tumor microenvironment, which might account for its improved role in immunotherapy. Further investigations showed that CCL5-mediated CD8+ T cell recruitment plays a critical role in anlotinib and PD-1 blockade strategies. The depletion of CD8+ T cells abrogated this process. In conclusion, our findings showed that the combination of anlotinib and PD-1 blockade produced promising effects in the treatment of lung cancer, and that the induction of CCL5-mediced CD8+ T cell recruitment by anlotinib provided a novel mechanism of action.


Subject(s)
B7-H1 Antigen , CD8-Positive T-Lymphocytes , Chemokine CCL5 , Indoles , Lung Neoplasms , Programmed Cell Death 1 Receptor , Quinolines , Tumor Microenvironment , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Animals , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Quinolines/pharmacology , Quinolines/administration & dosage , Indoles/pharmacology , Indoles/administration & dosage , Mice , Humans , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Chemokine CCL5/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays , Cell Line, Tumor , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/administration & dosage , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/metabolism , Female
16.
Adv Healthc Mater ; 13(14): e2303658, 2024 06.
Article in English | MEDLINE | ID: mdl-38358061

ABSTRACT

Evolving knowledge about the tumor-immune microenvironment (TIME) is driving innovation in designing novel therapies against hard-to-treat breast cancer. Targeting the immune components of TIME has emerged as a promising approach for cancer therapy. While recent immunotherapies aim at restoring antitumor immunity, counteracting tumor escape remains challenging. Hence there is a pressing need to better understand the complex tumor-immune crosstalk within TIME. Considering this imperative, this study aims at investigating the crosstalk between the two abundant immune cell populations within the breast TIME-macrophages and T cells, in driving tumor progression using an organotypic 3D in vitro tumor-on-a-chip (TOC) model. The TOC features distinct yet interconnected organotypic tumor and stromal entities. This triculture platform mimics the complex TIME, embedding the two immune populations in a suitable 3D matrix. Analysis of invasion, morphometric measurements, and flow cytometry results underscores the substantial contribution of macrophages to tumor progression, while the presence of T cells is associated with a deceleration in the migratory behavior of both cancer cells and macrophages. Furthermore, cytokine analyses reveal significant upregulation of leptin and RANTES (regulated on activation, normal T Cell expressed and secreted) in triculture. Overall, this study highlights the complexity of TIME and the critical role of immune cells in cancer progression.


Subject(s)
Breast Neoplasms , Macrophages , T-Lymphocytes , Tumor Microenvironment , Tumor Microenvironment/immunology , Humans , Breast Neoplasms/pathology , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Macrophages/metabolism , Macrophages/immunology , Female , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Cell Line, Tumor , Disease Progression , Lab-On-A-Chip Devices , Chemokine CCL5/metabolism , Cell Communication , Leptin/metabolism
17.
Sci China Life Sci ; 67(6): 1226-1241, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38300441

ABSTRACT

Ovarian cancer is the most lethal and aggressive gynecological cancer with a high recurrence rate and is often diagnosed late. In ovarian cancer, multiple metabolic enzymes of lipid metabolism are abnormally expressed, resulting in metabolism disorder. As a characteristic pathway in polyunsaturated fatty acid (PUFA) metabolism, arachidonic acid (AA) metabolism is disturbed in ovarian cancer. Therefore, we established a 10-gene signature model to evaluate the prognostic risk of PUFA-related genes. This 10-gene signature has strong robustness and can play a stable predictive role in datasets of various platforms (TCGA, ICGC, and GSE17260). The high association between the risk subgroups and clinical characteristics indicated a good performance of the model. Our data further indicated that the high expression of LTA4H was positively correlated with poor prognosis in ovarian cancer. Deficiency of LTA4H enhanced sensitivity to Cisplatin and modified the characteristics of immune cell infiltration in ovarian cancer. Additionally, our results indicate that CCL5 was involved in the aberrant metabolism of the AA/LTA4H axis, which contributes to the reduction of tumor-infiltrating CD8+ T cells and immune escape in ovarian cancer. These findings provide new insights into the prognosis and potential target of LTA4H/CCL5 in treating ovarian cancer.


Subject(s)
Chemokine CCL5 , Cisplatin , Epoxide Hydrolases , Ovarian Neoplasms , Tumor Microenvironment , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/immunology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Humans , Chemokine CCL5/metabolism , Chemokine CCL5/genetics , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects , Cisplatin/therapeutic use , Cisplatin/pharmacology , Epoxide Hydrolases/metabolism , Epoxide Hydrolases/genetics , Cell Line, Tumor , Prognosis , Gene Expression Regulation, Neoplastic , Arachidonic Acid/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Animals , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/drug effects , Mice
18.
Clin Cancer Res ; 30(9): 1934-1944, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38372707

ABSTRACT

PURPOSE: Neoadjuvant anti-PD1 (aPD1) therapies are being explored in surgically resectable head and neck squamous cell carcinoma (HNSCC). Encouraging responses have been observed, but further insights into the mechanisms underlying resistance and approaches to improve responses are needed. EXPERIMENTAL DESIGN: We integrated data from syngeneic mouse oral carcinoma (MOC) models and neoadjuvant pembrolizumab HNSCC patient tumor RNA-sequencing data to explore the mechanism of aPD1 resistance. Tumors and tumor-draining lymph nodes (DLN) from MOC models were analyzed for antigen-specific priming. CCL5 expression was enforced in an aPD1-resistant model. RESULTS: An aPD1-resistant mouse model showed poor priming in the tumor DLN due to type 1 conventional dendritic cell (cDC1) dysfunction, which correlated with exhausted and poorly responsive antigen-specific T cells. Tumor microenvironment analysis also showed decreased cDC1 in aPD1-resistant tumors compared with sensitive tumors. Following neoadjuvant aPD1 therapy, pathologic responses in patients also positively correlated with baseline transcriptomic cDC1 signatures. In an aPD1-resistant model, intratumoral cDC1 vaccine was sufficient to restore aPD1 response by enhancing T-cell infiltration and increasing antigen-specific responses with improved tumor control. Mechanistically, CCL5 expression significantly correlated with neoadjuvant aPD1 response and enforced expression of CCL5 in an aPD1-resistant model, enhanced cDC1 tumor infiltration, restored antigen-specific responses, and recovered sensitivity to aPD1 treatment. CONCLUSIONS: These data highlight the contribution of tumor-infiltrating cDC1 in HNSCC aPD1 response and approaches to enhance cDC1 infiltration and function that may circumvent aPD1 resistance in patients with HNSCC.


Subject(s)
Dendritic Cells , Drug Resistance, Neoplasm , Head and Neck Neoplasms , Squamous Cell Carcinoma of Head and Neck , Tumor Microenvironment , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Mice , Humans , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/metabolism , Tumor Microenvironment/immunology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Chemokine CCL5/genetics , Chemokine CCL5/metabolism , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Disease Models, Animal , Neoadjuvant Therapy/methods , Female , Cell Line, Tumor
19.
Hypertension ; 81(4): 776-786, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38240165

ABSTRACT

BACKGROUND: Aldosterone has been described to initiate cardiovascular diseases by triggering exacerbated sterile vascular inflammation. The functions of CCL5 (C-C motif chemokine ligand 5) and its receptor CCR5 (C-C motif chemokine receptor 5) are well known in infectious diseases, their contributions to aldosterone-induced vascular injury and hypertension remain unknown. METHODS: We analyzed the vascular profile, blood pressure, and renal damage in wild-type (CCR5+/+) and CCR5 knockout (CCR5-/-) mice treated with aldosterone (600 µg/kg per day for 14 days) while receiving 1% saline to drink. Vascular function was analyzed in aorta and mesenteric arteries, blood pressure was measured by telemetry and renal injury and inflammation were analyzed via histology and flow cytometry. Endothelial cells were used to study the molecular signaling whereby CCL5 induces endothelial dysfunction. RESULTS: Aldosterone treatment resulted in exaggerated CCL5 circulating levels and vascular CCR5 expression in CCR5+/+ mice accompanied by endothelial dysfunction, hypertension, and renal inflammation and damage. CCR5-/- mice were protected from these aldosterone-induced effects. Mechanistically, we demonstrated that CCL5 increased NOX1 (NADPH oxidase 1) expression, reactive oxygen species formation, NFκB (nuclear factor kappa B) activation, and inflammation and reduced NO production in isolated endothelial cells. These effects were abolished by antagonizing CCR5 with Maraviroc. Finally, aorta incubated with CCL5 displayed severe endothelial dysfunction, which is prevented by blocking NOX1, NFκB, or CCR5. CONCLUSIONS: Our data demonstrate that CCL5/CCR5, through activation of NFκB and NOX1, is critically involved in aldosterone-induced vascular and renal damage and hypertension placing CCL5 and CCR5 as potential therapeutic targets for conditions characterized by aldosterone excess.


Subject(s)
Aldosterone , Chemokine CCL5 , Hypertension , Receptors, CCR5 , Animals , Mice , Aldosterone/pharmacology , Endothelial Cells/metabolism , Hypertension/chemically induced , Hypertension/metabolism , Inflammation , Receptors, CCR5/genetics , Receptors, CCR5/metabolism , Chemokine CCL5/genetics , Chemokine CCL5/metabolism
20.
J Immunother Cancer ; 12(1)2024 01 11.
Article in English | MEDLINE | ID: mdl-38212126

ABSTRACT

BACKGROUND: The C-C motif chemokine receptor 5 (CCR5)/C-C motif chemokine ligand 5 (CCL5) axis plays a major role in colorectal cancer (CRC). We aimed to characterize the molecular features associated with CCR5/CCL5 expression in CRC and to determine whether CCR5/CCL5 levels could impact treatment outcomes. METHODS: 7604 CRCs tested with NextGen Sequencing on DNA and RNA were analyzed. Molecular features were evaluated according to CCR5 and CCL5 tumor gene expression quartiles. The impact on treatment outcomes was assessed in two cohorts, including 6341 real-world patients and 429 patients from the Cancer and Leukemia Group B (CALGB)/SWOG 80405 trial. RESULTS: CCR5/CCL5 expression was higher in right-sided versus left-sided tumors, and positively associated with consensus molecular subtypes 1 and 4. Higher CCR5/CCL5 expression was associated with higher tumor mutational burden, deficiency in mismatch repair and programmed cell death ligand 1 (PD-L1) levels. Additionally, high CCR5/CCL5 were associated with higher immune cell infiltration in the tumor microenvironment (TME) of MMR proficient tumors. Ingenuity pathway analysis revealed upregulation of the programmed cell death protein 1 (PD-1)/PD-L1 cancer immunotherapy pathway, phosphatase and tensin homolog (PTEN) and peroxisome proliferator-activated receptors (PPAR) signaling, and cytotoxic T-lymphocyte antigen 4 (CTLA-4) signaling in cytotoxic T lymphocytes, whereas several inflammation-related pathways were downregulated. Low CCR5/CCL5 expression was associated with increased benefit from cetuximab-FOLFOX treatment in the CALGB/SWOG 80405 trial, where significant treatment interaction was observed with biologic agents and chemotherapy backbone. CONCLUSIONS: Our data show a strong association between CCR5/CCL5 gene expression and distinct molecular features, gene expression profiles, TME cell infiltration, and treatment benefit in CRC. Targeting the CCR5/CCL5 axis may have clinical applications in selected CRC subgroups and may play a key role in developing and deploying strategies to modulate the immune TME for CRC treatment.


Subject(s)
Colorectal Neoplasms , Receptors, Chemokine , Humans , B7-H1 Antigen/genetics , Ligands , Chemokine CCL5/genetics , Chemokine CCL5/metabolism , Chemokines/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Gene Expression , Tumor Microenvironment , Receptors, CCR5/genetics , Receptors, CCR5/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...