Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.122
Filter
1.
Cancer Immunol Immunother ; 73(9): 169, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954024

ABSTRACT

Insofar as they play an important role in the pathogenesis of colorectal cancer (CRC), this study analyzes the serum profile of cytokines, chemokines, growth factors, and soluble receptors in patients with CRC and cancer-free controls as possible CRC signatures. Serum levels of 65 analytes were measured in patients with CRC and age- and sex-matched cancer-free controls using the ProcartaPlex Human Immune Monitoring 65-Plex Panel. Of the 65 tested analytes, 8 cytokines (CSF-3, IFN-γ, IL-12p70, IL-18, IL-20, MIF, TNF-α and TSLP), 8 chemokines (fractalkine, MIP-1ß, BLC, Eotaxin-1, Eotaxin-2, IP-10, MIP-1a, MIP-3a), 2 growth factors (FGF-2, MMP-1), and 4 soluble receptors (APRIL, CD30, TNFRII, and TWEAK), were differentially expressed in CRC. ROC analysis confirmed the high association of TNF-α, BLC, Eotaxin-1, APRIL, and Tweak with AUC > 0.70, suggesting theranostic application. The expression of IFN-γ, IL-18, MIF, BLC, Eotaxin-1, Eotaxin-2, IP-10, and MMP1 was lower in metastatic compared to non-metastatic CRC; only AUC of MIF and MIP-1ß were > 0.7. Moreover, MDC, IL-7, MIF, IL-21, and TNF-α are positively associated with tolerance to CRC chemotherapy (CT) (AUC > 0.7), whereas IL-31, Fractalkine, Eotaxin-1, and Eotaxin-2 were positively associated with resistance to CT. TNF-α, BLC, Eotaxin-1, APRIL, and Tweak may be used as first-line early detection of CRC. The variable levels of MIF and MIP-1ß between metastatic and non-metastatic cases assign prognostic nature to these factors in CRC progression. Regarding tolerance to CT, MDC, IL-7, MIF, IL-21, and TNF-α are key when down-regulated or resistant to treatment is observed.


Subject(s)
Colorectal Neoplasms , Cytokines , Humans , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/blood , Colorectal Neoplasms/pathology , Female , Male , Cytokines/blood , Cytokines/metabolism , Middle Aged , Aged , Intercellular Signaling Peptides and Proteins/blood , Intercellular Signaling Peptides and Proteins/metabolism , Chemokines/blood , Chemokines/metabolism , Treatment Outcome , Biomarkers, Tumor/blood , Biomarkers, Tumor/metabolism , Adult , Prognosis , Case-Control Studies
2.
FASEB J ; 38(13): e23757, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38965999

ABSTRACT

Hepatic stellate cells (HSCs) are responsible for liver fibrosis accompanied by its activation into myofibroblasts and the abundant production of extracellular matrix. However, the HSC contribution to progression of liver inflammation has been less known. We aimed to elucidate the mechanism in HSCs underlying the inflammatory response and the function of tumor necrosis factor α-related protein A20 (TNFAIP3). We established A20 conditional knockout (KO) mice crossing Twist2-Cre and A20 floxed mice. Using these mice, the effect of A20 was analyzed in mouse liver and HSCs. The human HSC line LX-2 was also used to examine the role and underlying molecular mechanism of A20. In this KO model, A20 was deficient in >80% of HSCs. Spontaneous inflammation with mild fibrosis was found in the liver of the mouse model without any exogenous agents, suggesting that A20 in HSCs suppresses chronic hepatitis. Comprehensive RNA sequence analysis revealed that A20-deficient HSCs exhibited an inflammatory phenotype and abnormally expressed chemokines. A20 suppressed JNK pathway activation in HSCs. Loss of A20 function in LX-2 cells also induced excessive chemokine expression, mimicking A20-deficient HSCs. A20 overexpression suppressed chemokine expression in LX-2. In addition, we identified DCLK1 in the genes regulated by A20. DCLK1 activated the JNK pathway and upregulates chemokine expression. DCLK1 inhibition significantly decreased chemokine induction by A20-silencing, suggesting that A20 controlled chemokine expression in HSCs via the DCLK1-JNK pathway. In conclusion, A20 suppresses chemokine induction dependent on the DCLK1-JNK signaling pathway. These findings demonstrate the therapeutic potential of A20 and the DCLK1-JNK pathway for the regulation of inflammation in chronic hepatitis.


Subject(s)
Chemokines , Hepatic Stellate Cells , MAP Kinase Signaling System , Mice, Knockout , Protein Serine-Threonine Kinases , Tumor Necrosis Factor alpha-Induced Protein 3 , Animals , Hepatic Stellate Cells/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Mice , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Chemokines/metabolism , Chemokines/genetics , Hepatitis, Chronic/metabolism , Hepatitis, Chronic/pathology , Hepatitis, Chronic/genetics , Doublecortin-Like Kinases , Mice, Inbred C57BL , Cell Line , Male
3.
Toxins (Basel) ; 16(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38922170

ABSTRACT

Snakebite envenoming is a neglected tropical disease that causes >100,000 deaths and >400,000 cases of morbidity annually. Despite the use of mouse models, severe local envenoming, defined by morbidity-causing local tissue necrosis, remains poorly understood, and human-tissue responses are ill-defined. Here, for the first time, an ex vivo, non-perfused human skin model was used to investigate temporal histopathological and immunological changes following subcutaneous injections of venoms from medically important African vipers (Echis ocellatus and Bitis arietans) and cobras (Naja nigricollis and N. haje). Histological analysis of venom-injected ex vivo human skin biopsies revealed morphological changes in the epidermis (ballooning degeneration, erosion, and ulceration) comparable to clinical signs of local envenoming. Immunostaining of these biopsies confirmed cell apoptosis consistent with the onset of necrosis. RNA sequencing, multiplex bead arrays, and ELISAs demonstrated that venom-injected human skin biopsies exhibited higher rates of transcription and expression of chemokines (CXCL5, MIP1-ALPHA, RANTES, MCP-1, and MIG), cytokines (IL-1ß, IL-1RA, G-CSF/CSF-3, and GM-CSF), and growth factors (VEGF-A, FGF, and HGF) in comparison to non-injected biopsies. To investigate the efficacy of antivenom, SAIMR Echis monovalent or SAIMR polyvalent antivenom was injected one hour following E. ocellatus or N. nigricollis venom treatment, respectively, and although antivenom did not prevent venom-induced dermal tissue damage, it did reduce all pro-inflammatory chemokines, cytokines, and growth factors to normal levels after 48 h. This ex vivo skin model could be useful for studies evaluating the progression of local envenoming and the efficacy of snakebite treatments.


Subject(s)
Cytokines , Necrosis , Skin , Humans , Skin/pathology , Skin/drug effects , Animals , Cytokines/metabolism , Cytokines/genetics , Snake Bites/pathology , Elapid Venoms/toxicity , Viper Venoms/toxicity , Inflammation/pathology , Inflammation/chemically induced , Viperidae , Chemokines/metabolism , Chemokines/genetics
4.
Biochem Soc Trans ; 52(3): 1011-1024, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38856028

ABSTRACT

Chemokine receptors are integral to the immune system and prime targets in drug discovery that have undergone extensive structural elucidation in recent years. We outline a timeline of these structural achievements, discuss the intracellular negative allosteric modulation of chemokine receptors, analyze the mechanisms of orthosteric receptor activation, and report on the emerging concept of biased signaling. Additionally, we highlight differences of G-protein binding among chemokine receptors. Intracellular allosteric modulators in chemokine receptors interact with a conserved motif within transmembrane helix 7 and helix 8 and exhibit a two-fold inactivation mechanism that can be harnessed for drug-discovery efforts. Chemokine recognition is a multi-step process traditionally explained by a two-site model within chemokine recognition site 1 (CRS1) and CRS2. Recent structural studies have extended our understanding of this complex mechanism with the identification of CRS1.5 and CRS3. CRS3 is implicated in determining ligand specificity and surrounds the chemokine by almost 180°. Within CRS3 we identified the extracellular loop 2 residue 45.51 as a key interaction mediator for chemokine binding. Y2917.43 on the other hand was shown in CCR1 to be a key determinant of signaling bias which, along with specific chemokine-dependent phosphorylation ensembles at the G-protein coupled receptors (GPCR's) C-terminus, seems to play a pivotal role in determining the direction of signal bias in GPCRs.


Subject(s)
Receptors, Chemokine , Signal Transduction , Receptors, Chemokine/metabolism , Receptors, Chemokine/chemistry , Humans , Chemokines/metabolism , Chemokines/chemistry , Protein Binding , Allosteric Regulation , Models, Molecular , Animals , Binding Sites , Protein Conformation , Ligands
5.
J Am Soc Mass Spectrom ; 35(7): 1550-1555, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38836362

ABSTRACT

Heparin, a widely used clinical anticoagulant, is generally well-tolerated; however, approximately 1% of patients develop heparin-induced thrombocytopenia (HIT), a serious side effect. While efforts to understand the role of chemokines in HIT development are ongoing, certain aspects remain less studied, such as the stabilization of chemokine oligomers by heparin. Here, we conducted a combined ion mobility-native mass spectrometry study to investigate the stability of chemokine oligomers and their complexes with fondaparinux, a synthetic heparin analog. Collision-induced dissociation and unfolding experiments provided clarity on the specificity and relevance of chemokine oligomers and their fondaparinux complexes with varying stoichiometries, as well as the stabilizing effects of fondaparinux binding.


Subject(s)
Anticoagulants , Fondaparinux , Polysaccharides , Fondaparinux/chemistry , Fondaparinux/pharmacology , Polysaccharides/chemistry , Polysaccharides/metabolism , Anticoagulants/chemistry , Anticoagulants/pharmacology , Chemokines/chemistry , Chemokines/metabolism , Humans , Heparin/chemistry , Heparin/metabolism , Protein Binding , Ion Mobility Spectrometry/methods , Mass Spectrometry/methods
6.
PLoS Pathog ; 20(6): e1012267, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38857290

ABSTRACT

HSV infects keratinocytes in the epidermis of skin via nectin-1. We established a human foreskin explant infection model to investigate HSV entry and spread. HSV1 entry could only be achieved by the topical application of virus via high density microarray projections (HD-MAPs) to the epidermis, which penetrated beyond one third of its thickness, simulating in vivo microtrauma. Rapid lateral spread of HSV1 to a mean of 13 keratinocytes wide occurred after 24 hours and free virus particles were observed between keratinocytes, consistent with an intercellular route of spread. Nectin-1 staining was markedly decreased in foci of infection in the epidermis and in the human keratinocyte HaCaT cell line. Nectin-1 was redistributed, at the protein level, in adjacent uninfected cells surrounding infection, inducible by CCL3, IL-8 (or CXCL8), and possibly CXCL10 and IL-6, thus facilitating spread. These findings provide the first insights into HSV1 entry and spread in human inner foreskin in situ.


Subject(s)
Chemokines , Foreskin , Herpes Simplex , Herpesvirus 1, Human , Keratinocytes , Nectins , Humans , Male , Keratinocytes/virology , Keratinocytes/metabolism , Foreskin/virology , Foreskin/cytology , Nectins/metabolism , Herpes Simplex/virology , Herpes Simplex/metabolism , Chemokines/metabolism , Herpesvirus 1, Human/physiology , Cell Adhesion Molecules/metabolism , Virus Internalization
7.
J Neuroinflammation ; 21(1): 149, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840141

ABSTRACT

Uncontrolled neuroinflammation mediates traumatic brain injury (TBI) pathology and impairs recovery. Interleukin-6 (IL-6), a pleiotropic inflammatory regulator, is associated with poor clinical TBI outcomes. IL-6 operates via classical-signaling through membrane-bound IL-6 receptor (IL-6R) and trans-signaling through soluble IL-6 receptor (s)IL-6R. IL-6 trans-signaling specifically contributes to neuropathology, making it a potential precision therapeutic TBI target. Soluble glycoprotein 130 (sgp130) prevents IL-6 trans-signaling, sparing classical signaling, thus is a possible treatment. Mice received either controlled cortical impact (CCI) (6.0 ± 0.2 m/s; 2 mm; 50-60ms) or sham procedures. Vehicle (VEH) or sgp130-Fc was subcutaneously administered to sham (VEH or 1 µg) and CCI (VEH, 0.25 µg or 1 µg) mice on days 1, 4, 7, 10 and 13 post-surgery to assess effects on cognition [Morris Water Maze (MWM)] and ipsilateral hemisphere IL-6 related biomarkers (day 21 post-surgery). CCI + sgp130-Fc groups (0.25 µg and 1 µg) were combined for analysis given similar behavior/biomarker outcomes. CCI + VEH mice had longer latencies and path lengths to the platform and increased peripheral zone time versus Sham + VEH and Sham + sgp130-Fc mice, suggesting injury-induced impairments in learning and anxiety. CCI + sgp130-Fc mice had shorter platform latencies and path lengths and had decreased peripheral zone time, indicating a therapeutic benefit of sgp130-Fc after injury on learning and anxiety. Interestingly, Sham + sgp130-Fc mice had shorter platform latencies, path lengths and peripheral zone times than Sham + VEH mice, suggesting a beneficial effect of sgp130-Fc, independent of injury. CCI + VEH mice had increased brain IL-6 and decreased sgp130 levels versus Sham + VEH and Sham + sgp130-Fc mice. There was no treatment effect on IL-6, sIL6-R or sgp130 in Sham + VEH versus Sham + sgp130-Fc mice. There was also no treatment effect on IL-6 in CCI + VEH versus CCI + sgp130-Fc mice. However, CCI + sgp130-Fc mice had increased sIL-6R and sgp130 versus CCI + VEH mice, demonstrating sgp130-Fc treatment effects on brain biomarkers. Inflammatory chemokines (MIP-1ß, IP-10, MIG) were increased in CCI + VEH mice versus Sham + VEH and Sham + sgp130-Fc mice. However, CCI + sgp130-Fc mice had decreased chemokine levels versus CCI + VEH mice. IL-6 positively correlated, while sgp130 negatively correlated, with chemokine levels. Overall, we found that systemic sgp130-Fc treatment after CCI improved learning, decreased anxiety and reduced CCI-induced brain chemokines. Future studies will explore sex-specific dosing and treatment mechanisms for sgp130-Fc therapy.


Subject(s)
Brain Injuries, Traumatic , Cytokine Receptor gp130 , Disease Models, Animal , Maze Learning , Mice, Inbred C57BL , Animals , Brain Injuries, Traumatic/drug therapy , Mice , Male , Cytokine Receptor gp130/metabolism , Maze Learning/drug effects , Maze Learning/physiology , Chemokines/metabolism , Interleukin-6/metabolism , Cognition/drug effects , Cognition/physiology
8.
FASEB J ; 38(13): e23745, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38923065

ABSTRACT

Idiopathic granulomatous mastitis (IGM), a recurrent inflammation disease of the non-lactating breast, has had an increasing clinical morbidity rate in recent years, and its complicated symptoms and unclear etiology make it challenging to treat. This rare benign inflammatory breast disease, centered on the lobules, represents the most challenging type of non-puerperal mastitis (NPM), also known as non-lactating mastitis. In this study, patients diagnosed with IGM (M, n = 23) were recruited as cases, and patients with benign control breast disease (C, n = 17) were enrolled as controls. Cytokine microarray detection measured and analyzed the differentially expressed cytokine factors between IGM and control patients. Then, we verified the mRNA and protein expression levels of the significantly changed cytokine factors using Q-RT-PCR, ELISA, western blot, and IHC experiments. The cytokine factor expression levels significantly changed compared to the control group. We observed a significant increase between IGM and control patients in cytokine factors expression, such as interleukin-1ß (IL-1ß), monokine induced by gamma interferon (MIG), macrophage inflammatory protein (MIP)-1α, MIP-1ß, tumor necrosis factor receptor 2 (TNF RII). Then, we verified the expression of these top five dysregulated factors in both mRNA and protein levels. Our results demonstrated the cytokine map in IGM and indicated that several cytokines, especially chemokines, were associated with and significantly dysregulated in IGM tissues compared to the control group. The chemokine factors involved might be essential in developing and treating IGM. These findings would be helpful for a better understanding of IGM and offer valuable insights for devising novel diagnostic and therapeutic strategies.


Subject(s)
Chemokines , Granulomatous Mastitis , Humans , Female , Granulomatous Mastitis/metabolism , Granulomatous Mastitis/genetics , Adult , Chemokines/metabolism , Chemokines/genetics , Middle Aged , Cytokines/metabolism , Cytokines/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Case-Control Studies , Chemokine CXCL9/metabolism , Chemokine CXCL9/genetics
9.
Cell Death Dis ; 15(6): 425, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890311

ABSTRACT

Neutrophil reverse migration (rM) is a recently identified phenomenon in which neutrophils migrate away from the inflammatory site back into the vasculature following initial infiltration, which involved in the resolution of loci inflammatory response or dissemination of inflammation. Present study was aimed to explore the mechanisms in neutrophil rM. By scRNA-seq on the white blood cells in acute lung injury model, we found rM-ed neutrophils exhibited increased gene expression of C-C motif chemokine receptor-like 2 (Ccrl2), an atypical chemokine receptor. Furthermore, an air pouch model was established to directly track rM-ed neutrophils in vivo. Air pouches were generated by 3 ml filtered sterile air injected subcutaneously for 3 days, and then LPS (2 mg/kg) was injected into the pouches to mimic the inflammatory state. For the rM-ed neutrophil tracking system, cell tracker CMFDA were injected into the air pouch to stain the inflammatory loci cells, and after 6 h, stained cells in blood were regarded as the rM-ed neutrophil. Based on this tracking system, we confirmed that rM-ed neutrophils showed increased CCRL2. We also found that the concentrations of the CCRL2 ligand chemerin in plasma was increased in the late stage. Neutralizing chemerin decreased the rM-ed neutrophil ratio in the blood. These results suggest that circulating chemerin attracts neutrophils to leave inflammatory sites by interacting with CCRL2, which might involve in the dissemination of inflammation.


Subject(s)
Cell Movement , Chemokines , Intercellular Signaling Peptides and Proteins , Neutrophils , Neutrophils/metabolism , Chemokines/metabolism , Animals , Mice , Intercellular Signaling Peptides and Proteins/metabolism , Mice, Inbred C57BL , Male , Humans , Receptors, CCR/metabolism , Inflammation/pathology , Inflammation/metabolism , Acute Lung Injury/metabolism , Acute Lung Injury/pathology
10.
Int J Mol Sci ; 25(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928238

ABSTRACT

Chemokines and cytokines represent an emerging field of immunotherapy research. They are responsible for the crosstalk and chemoattraction of immune cells and tumor cells. For instance, CXCL9/10/11 chemoattract effector CD8+ T cells to the tumor microenvironment, making an argument for their promising role as biomarkers for a favorable outcome. The cytokine Interleukin-15 (IL-15) can promote the chemokine expression of CXCR3 ligands but also XCL1, contributing to an important DC-T cell interaction. Recruited cytotoxic T cells can be clonally expanded by IL-2. Delivering or inducing these chemokines and cytokines can result in tumor shrinkage and might synergize with immune checkpoint inhibition. In addition, blocking specific chemokine and cytokine receptors such as CCR2, CCR4 or Il-6R can reduce the recruitment of tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs) or regulatory T cells (Tregs). Efforts to target these chemokines and cytokines have the potential to personalize cancer immunotherapy further and address patients that are not yet responsive because of immune cell exclusion. Targeting cytokines such as IL-6 and IL-15 is currently being evaluated in clinical trials in combination with immune checkpoint-blocking antibodies for the treatment of metastatic melanoma. The improved overall survival of melanoma patients might outweigh potential risks such as autoimmunity. However, off-target toxicity needs to be elucidated.


Subject(s)
Chemokines , Cytokines , Immunotherapy , Melanoma , Humans , Immunotherapy/methods , Melanoma/therapy , Melanoma/immunology , Melanoma/metabolism , Chemokines/metabolism , Cytokines/metabolism , Biomarkers, Tumor/metabolism , Tumor Microenvironment/immunology , Animals , Neoplasms/therapy , Neoplasms/immunology , Molecular Targeted Therapy
11.
Sheng Li Xue Bao ; 76(3): 429-437, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38939937

ABSTRACT

As a multifunctional adipokine, chemerin plays a crucial role in various pathophysiological processes through endocrine and paracrine manner. It can bind to three known receptors (ChemR23, GPR1 and CCRL2) and participate in energy metabolism, glucose and lipid metabolism, and inflammation, especially in metabolic diseases. Polycystic ovary syndrome (PCOS) is one of the most common endocrine diseases, which seriously affects the normal life of women of childbearing age. Patients with PCOS have significantly increased serum levels of chemerin and high expression of chemerin in their ovaries. More and more studies have shown that chemerin is involved in the occurrence and development of PCOS by affecting obesity, insulin resistance, hyperandrogenism, oxidative stress and inflammatory response. This article mainly reviews the production, subtypes, function and receptors of chemerin protein, summarizes and discusses the research status of chemerin protein in PCOS from the perspectives of metabolism, reproduction and inflammation, and provides theoretical basis and reference for the clinical diagnosis and treatment of PCOS.


Subject(s)
Chemokines , Intercellular Signaling Peptides and Proteins , Polycystic Ovary Syndrome , Polycystic Ovary Syndrome/metabolism , Humans , Chemokines/metabolism , Female , Intercellular Signaling Peptides and Proteins/metabolism , Receptors, Chemokine/metabolism , Insulin Resistance , Animals , Receptors, G-Protein-Coupled/metabolism , Chemotactic Factors/metabolism
12.
Cell ; 187(13): 3390-3408.e19, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38754421

ABSTRACT

Clinical trials have identified ARID1A mutations as enriched among patients who respond favorably to immune checkpoint blockade (ICB) in several solid tumor types independent of microsatellite instability. We show that ARID1A loss in murine models is sufficient to induce anti-tumor immune phenotypes observed in ARID1A mutant human cancers, including increased CD8+ T cell infiltration and cytolytic activity. ARID1A-deficient cancers upregulated an interferon (IFN) gene expression signature, the ARID1A-IFN signature, associated with increased R-loops and cytosolic single-stranded DNA (ssDNA). Overexpression of the R-loop resolving enzyme, RNASEH2B, or cytosolic DNase, TREX1, in ARID1A-deficient cells prevented cytosolic ssDNA accumulation and ARID1A-IFN gene upregulation. Further, the ARID1A-IFN signature and anti-tumor immunity were driven by STING-dependent type I IFN signaling, which was required for improved responsiveness of ARID1A mutant tumors to ICB treatment. These findings define a molecular mechanism underlying anti-tumor immunity in ARID1A mutant cancers.


Subject(s)
CD8-Positive T-Lymphocytes , DNA-Binding Proteins , Interferon Type I , Membrane Proteins , Neoplasms , Signal Transduction , Transcription Factors , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Exodeoxyribonucleases/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Interferon Type I/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Inbred C57BL , Mutation , Neoplasms/immunology , Neoplasms/genetics , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Transcription Factors/metabolism , Male , Chemokines/genetics , Chemokines/metabolism
13.
Comput Biol Med ; 177: 108666, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820773

ABSTRACT

BACKGROUND: α-1,3-mannosyltransferase (ALG3) holds significance as a key member within the mannosyltransferase family. Nevertheless, the exact function of ALG3 in cancer remains ambiguous. Consequently, the current research aimed to examine the function and potential mechanisms of ALG3 in various types of cancer. METHODS: Deep pan-cancer analyses were conducted to investigate the expression patterns, prognostic value, genetic variations, single-cell omics, immunology, and drug responses associated with ALG3. Subsequently, in vitro experiments were executed to ascertain the biological role of ALG3 in breast cancer. Moreover, the link between ALG3 and CD8+ T cells was verified using immunofluorescence. Lastly, the association between ALG3 and chemokines was assessed using qRT-PCR and ELISA. RESULTS: Deep pan-cancer analysis demonstrated a heightened expression of ALG3 in the majority of tumors based on multi-omics evidence. ALG3 emerges as a diagnostic and prognostic biomarker across diverse cancer types. In addition, ALG3 participates in regulating the tumor immune microenvironment. Elevated levels of ALG3 were closely linked to the infiltration of bone marrow-derived suppressor cells (MDSC) and CD8+ T cells. According to in vitro experiments, ALG3 promotes proliferation and migration of breast cancer cells. Moreover, ALG3 inhibited CD8+ T cell infiltration by suppressing chemokine secretion. Finally, the inhibition of ALG3 enhanced the responsiveness of breast cancer cells to 5-fluorouracil treatment. CONCLUSION: ALG3 shows potential as both a prognostic indicator and immune infiltration biomarker across various types of cancer. Inhibition of ALG3 may represent a promising therapeutic strategy for tumor treatment.


Subject(s)
CD8-Positive T-Lymphocytes , Fluorouracil , Humans , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Fluorouracil/pharmacology , Chemokines/metabolism , Chemokines/genetics , Female , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Multiomics
14.
J Chem Inf Model ; 64(11): 4587-4600, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38809680

ABSTRACT

AlphaFold and AlphaFold-Multimer have become two essential tools for the modeling of unknown structures of proteins and protein complexes. In this work, we extensively benchmarked the quality of chemokine-chemokine receptor structures generated by AlphaFold-Multimer against experimentally determined structures. Our analysis considered both the global quality of the model, as well as key structural features for chemokine recognition. To study the effects of template and multiple sequence alignment parameters on the results, a new prediction pipeline called LIT-AlphaFold (https://github.com/LIT-CCM-lab/LIT-AlphaFold) was developed, allowing extensive input customization. AlphaFold-Multimer correctly predicted differences in chemokine binding orientation and accurately reproduced the unique binding orientation of the CXCL12-ACKR3 complex. Further, the predictions of the full receptor N-terminus provided insights into a putative chemokine recognition site 0.5. The accuracy of chemokine N-terminus binding mode prediction varied between complexes, but the confidence score permitted the distinguishing of residues that were very likely well positioned. Finally, we generated a high-confidence model of the unsolved CXCL12-CXCR4 complex, which agreed with experimental mutagenesis and cross-linking data.


Subject(s)
Benchmarking , Chemokines , Models, Molecular , Protein Conformation , Chemokines/metabolism , Chemokines/chemistry , Receptors, Chemokine/metabolism , Receptors, Chemokine/chemistry , Protein Binding , Humans , Amino Acid Sequence
15.
Am J Physiol Endocrinol Metab ; 326(6): E869-E887, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38775724

ABSTRACT

The adipokine chemerin contributes to exercise-induced improvements in glucose and lipid metabolism; however, the underlying mechanism remains unclear. We aimed to confirm the impact of reduced chemerin expression on exercise-induced improvement in glycolipid metabolism in male diabetic (DM) mice through exogenous chemerin administration. Furthermore, the underlying mechanism of chemerin involved in changes in muscle mitochondria function mediated by androgen/androgen receptor (AR) was explored by generating adipose-specific and global chemerin knockout (adipo-chemerin-/- and chemerin-/-) mice. DM mice were categorized into the DM, exercised DM (EDM), and EDM + chemerin supplementation groups. Adipo-chemerin-/- and chemerin-/- mice were classified in the sedentary or exercised groups and fed either a normal or high-fat diet. Exercise mice underwent a 6-wk aerobic exercise regimen. The serum testosterone and chemerin levels, glycolipid metabolism indices, mitochondrial function, and protein levels involved in mitochondrial biogenesis and dynamics were measured. Notably, exogenous chemerin reversed exercise-induced improvements in glycolipid metabolism, AR protein levels, mitochondrial biogenesis, and mitochondrial fusion in DM mice. Moreover, adipose-specific chemerin knockout improved glycolipid metabolism, enhanced exercise-induced increases in testosterone and AR levels in exercised mice, and alleviated the detrimental effects of a high-fat diet on mitochondrial morphology, biogenesis, and dynamics. Finally, similar improvements in glucose metabolism (but not lipid metabolism), mitochondrial function, and mitochondrial dynamics were observed in chemerin-/- mice. In conclusion, decreased chemerin levels affect exercise-induced improvements in glycolipid metabolism in male mice by increasing mitochondrial number and function, likely through changes in androgen/AR signaling.NEW & NOTEWORTHY Decreased chemerin levels affect exercise-induced improvements in glycolipid metabolism in male mice by increasing mitochondrial number and function, which is likely mediated by androgen/androgen receptor expression. This study is the first to report the regulatory mechanism of chemerin in muscle mitochondria.


Subject(s)
Chemokines , Glucose , Lipid Metabolism , Mice, Knockout , Receptors, Androgen , Animals , Chemokines/metabolism , Male , Mice , Lipid Metabolism/physiology , Lipid Metabolism/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Glucose/metabolism , Diet, High-Fat , Diabetes Mellitus, Experimental/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Physical Conditioning, Animal/physiology , Mice, Inbred C57BL , Mitochondria, Muscle/metabolism , Mitochondria/metabolism , Androgens/metabolism , Androgens/pharmacology , Muscle, Skeletal/metabolism
16.
Protein Sci ; 33(6): e4999, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723106

ABSTRACT

Ticks produce chemokine-binding proteins, known as evasins, in their saliva to subvert the host's immune response. Evasins bind to chemokines and thereby inhibit the activation of their cognate chemokine receptors, thus suppressing leukocyte recruitment and inflammation. We recently described subclass A3 evasins, which, like other class A evasins, exclusively target CC chemokines but appear to use a different binding site architecture to control target selectivity among CC chemokines. We now describe the structural basis of chemokine recognition by the class A3 evasin EVA-ACA1001. EVA-ACA1001 binds to almost all human CC chemokines and inhibits receptor activation. Truncation mutants of EVA-ACA1001 showed that, unlike class A1 evasins, both the N- and C-termini of EVA-ACA1001 play minimal roles in chemokine binding. To understand the structural basis of its broad chemokine recognition, we determined the crystal structure of EVA-ACA1001 in complex with the human chemokine CCL16. EVA-ACA1001 forms backbone-backbone interactions with the CC motif of CCL16, a conserved feature of all class A evasin-chemokine complexes. A hydrophobic pocket in EVA-ACA1001, formed by several aromatic side chains and the unique disulfide bond of class A3 evasins, accommodates the residue immediately following the CC motif (the "CC + 1 residue") of CCL16. This interaction is shared with EVA-AAM1001, the only other class A3 evasins characterized to date, suggesting it may represent a common mechanism that accounts for the broad recognition of CC chemokines by class A3 evasins.


Subject(s)
Models, Molecular , Humans , Animals , Ticks/chemistry , Ticks/metabolism , Crystallography, X-Ray , Binding Sites , Arthropod Proteins/chemistry , Arthropod Proteins/metabolism , Arthropod Proteins/genetics , Protein Binding , Chemokines/chemistry , Chemokines/metabolism , Salivary Proteins and Peptides/chemistry , Salivary Proteins and Peptides/metabolism
17.
Sci Rep ; 14(1): 10610, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38719857

ABSTRACT

Histone lysine methylation is thought to play a role in the pathogenesis of rheumatoid arthritis (RA). We previously reported aberrant expression of the gene encoding mixed-lineage leukemia 1 (MLL1), which catalyzes methylation of histone H3 lysine 4 (H3K4), in RA synovial fibroblasts (SFs). The aim of this study was to elucidate the involvement of MLL1 in the activated phenotype of RASFs. SFs were isolated from synovial tissues obtained from patients with RA or osteoarthritis (OA) during total knee joint replacement. MLL1 mRNA and protein levels were determined after stimulation with tumor necrosis factor α (TNFα). We also examined changes in trimethylation of H3K4 (H3K4me3) levels in the promoters of RA-associated genes (matrix-degrading enzymes, cytokines, and chemokines) and the mRNA levels upon small interfering RNA-mediated depletion of MLL1 in RASFs. We then determined the levels of H3K4me3 and mRNAs following treatment with the WD repeat domain 5 (WDR5)/MLL1 inhibitor MM-102. H3K4me3 levels in the gene promoters were also compared between RASFs and OASFs. After TNFα stimulation, MLL1 mRNA and protein levels were higher in RASFs than OASFs. Silencing of MLL1 significantly reduced H3K4me3 levels in the promoters of several cytokine (interleukin-6 [IL-6], IL-15) and chemokine (C-C motif chemokine ligand 2 [CCL2], CCL5, C-X-C motif chemokine ligand 9 [CXCL9], CXCL10, CXCL11, and C-X3-C motif chemokine ligand 1 [CX3CL1]) genes in RASFs. Correspondingly, the mRNA levels of these genes were significantly decreased. MM-102 significantly reduced the promoter H3K4me3 and mRNA levels of the CCL5, CXCL9, CXCL10, and CXCL11 genes in RASFs. In addition, H3K4me3 levels in the promoters of the IL-6, IL-15, CCL2, CCL5, CXCL9, CXCL10, CXCL11, and CX3CL1 genes were significantly higher in RASFs than OASFs. Our findings suggest that MLL1 regulates the expression of particular cytokines and chemokines in RASFs and is associated with the pathogenesis of RA. These results could lead to new therapies for RA.


Subject(s)
Arthritis, Rheumatoid , Histone-Lysine N-Methyltransferase , Myeloid-Lymphoid Leukemia Protein , Synovial Membrane , Aged , Female , Humans , Male , Middle Aged , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/genetics , Cells, Cultured , Chemokines/metabolism , Chemokines/genetics , Cytokines/metabolism , Fibroblasts/metabolism , Gene Expression Regulation , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histones/metabolism , Myeloid-Lymphoid Leukemia Protein/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/genetics , Promoter Regions, Genetic , RNA, Messenger/metabolism , RNA, Messenger/genetics , Synovial Membrane/metabolism , Synovial Membrane/pathology , Tumor Necrosis Factor-alpha/metabolism
19.
Nat Immunol ; 25(6): 1110-1122, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38698086

ABSTRACT

Lung-resident macrophages, which include alveolar macrophages and interstitial macrophages (IMs), exhibit a high degree of diversity, generally attributed to different activation states, and often complicated by the influx of monocytes into the pool of tissue-resident macrophages. To gain a deeper insight into the functional diversity of IMs, here we perform comprehensive transcriptional profiling of resident IMs and reveal ten distinct chemokine-expressing IM subsets at steady state and during inflammation. Similar IM subsets that exhibited coordinated chemokine signatures and differentially expressed genes were observed across various tissues and species, indicating conserved specialized functional roles. Other macrophage types shared specific IM chemokine profiles, while also presenting their own unique chemokine signatures. Depletion of CD206hi IMs in Pf4creR26EYFP+DTR and Pf4creR26EYFPCx3cr1DTR mice led to diminished inflammatory cell recruitment, reduced tertiary lymphoid structure formation and fewer germinal center B cells in models of allergen- and infection-driven inflammation. These observations highlight the specialized roles of IMs, defined by their coordinated chemokine production, in regulating immune cell influx and organizing tertiary lymphoid tissue architecture.


Subject(s)
Chemokines , Macrophages , Animals , Mice , Chemokines/metabolism , Macrophages/immunology , Macrophages/metabolism , Lung/immunology , Mice, Inbred C57BL , Inflammation/immunology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Organ Specificity/immunology , Gene Expression Profiling , Mice, Transgenic , Tertiary Lymphoid Structures/immunology , Transcriptome
20.
Phytomedicine ; 129: 155679, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38701542

ABSTRACT

BACKGROUND: As the largest organ of the body, the skin is constantly subjected to ultraviolet radiation (UVR), leading to inflammations and changes that mirror those seen in chronological aging. Although various small molecule drugs have been explored for treating skin photoaging, they typically suffer from low stability and a high incidence of adverse reactions. Consequently, the continued investigation of photoaging treatments, particularly those utilizing herbal products, remains a critical clinical endeavor. One such herbal product, Lapagyl, is derived from the bark of the lapacho tree and possesses antioxidant efficacies that could be beneficial in combating skin photoaging. PURPOSE: This research aimed to evaluate the efficacy of the herbal product Lapagyl in combating UVR-induced skin photoaging. Additionally, it sought to unravel the mechanisms by which Lapagyl promotes the regeneration of the skin extracellular matrix. METHODS: To investigate whether Lapagyl can alleviate skin aging and damage, a UVR radiation model was established using SKH-1 hairless mice. The dorsal skins of these mice were evaluated for wrinkle formation, texture, moisture, transepidermal water loss (TEWL), and elasticity. Pathological assessments were conducted to determine Lapagyl's efficacy. Additionally, single-cell sequencing and spectrum analysis were employed to elucidate the working mechanisms and primary components of Lapagyl in addressing UVR-induced skin aging and injury. RESULTS: Lapagyl markedly reduced UVR-induced wrinkles, moisture loss, and elasticity decrease in SKH-1 mice. Single-cell sequencing demonstrated that Lapagyl corrected the imbalance in cell proportions caused by UVR, decreased UVR-induced ROS expression, and protected basal and spinous cells from skin damage. Additionally, Lapagyl effectively prevented the entry of inflammatory cells into the skin by reducing CCL8 expression and curtailed the UVR-induced formation of Foxp3+ regulatory T cells (Tregs) in the skin. Both pathological assessments and ex vivo skin model results demonstrated that Lapagyl effectively reduced UVR-induced damage to collagen and elastin. Spectrum analysis identified Salidroside as the primary compound remaining in the skin following Lapagyl treatment. Taken together, our study elucidated the skin protection mechanism of the herbal product Lapagyl against UVR damage at the cellular level, revealing its immunomodulatory effects, with salidroside identified as the primary active compound for skin. CONCLUSION: Our study provided a thorough evaluation of Lapagyl's protective effects on skin against UVR damage, delving into the mechanisms at the cellular level. We discovered that Lapagyl mitigates skin inflammation and immunosuppression by regulating Foxp3+ Tregs and the CCL pathway. These insights indicate that Lapagyl has potential as a novel therapeutic option for addressing skin photoaging.


Subject(s)
Forkhead Transcription Factors , Mice, Hairless , Skin Aging , Skin , T-Lymphocytes, Regulatory , Ultraviolet Rays , Animals , Female , Mice , Antioxidants/pharmacology , Chemokines/metabolism , Forkhead Transcription Factors/metabolism , Inflammation , Skin/drug effects , Skin/radiation effects , Skin Aging/drug effects , Skin Aging/radiation effects , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/radiation effects , Transcriptome/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...