Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.928
Filter
1.
Genes (Basel) ; 15(9)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39336754

ABSTRACT

Chloride channels (ClCs) have received global interest due to their significant role in the regulation of ion homeostasis, fluid transport, and electrical excitability of tissues and organs in different mammals and contributing to various functions, such as neuronal signaling, muscle contraction, and regulating the electrolytes' balance in kidneys and other organs. In order to define the chloride voltage-gated channel (CLCN) gene family in buffalo, this study used in silico analyses to examine physicochemical properties, evolutionary patterns, and genome-wide identification. We identified eight CLCN genes in buffalo. The ProtParam tool analysis identified a number of important physicochemical properties of these proteins, including hydrophilicity, thermostability, in vitro instability, and basic nature. Based on their evolutionary relationships, a phylogenetic analysis divided the eight discovered genes into three subfamilies. Furthermore, a gene structure analysis, motif patterns, and conserved domains using TBtool demonstrated the significant conservation of this gene family among selected species over the course of evolution. A comparative amino acid analysis using ClustalW revealed similarities and differences between buffalo and cattle CLCN proteins. Three duplicated gene pairs were identified, all of which were segmental duplications except for CLCN4-CLCN5, which was a tandem duplication in buffalo. For each gene pair, the Ka/Ks test ratio findings showed that none of the ratios was more than one, indicating that these proteins were likely subject to positive selection. A synteny analysis confirmed a conserved pattern of genomic blocks between buffalo and cattle. Transcriptional control in cells relies on the binding of transcription factors to specific sites in the genome. The number of transcription factor binding sites (TFBSs) was higher in cattle compared to buffalo. Five main recombination breakpoints were identified at various places in the recombination analysis. The outcomes of our study provide new knowledge about the CLCN gene family in buffalo and open the door for further research on candidate genes in vertebrates through genome-wide studies.


Subject(s)
Buffaloes , Chloride Channels , Evolution, Molecular , Phylogeny , Animals , Buffaloes/genetics , Chloride Channels/genetics , Chloride Channels/chemistry , Chloride Channels/metabolism , Multigene Family , Computer Simulation , Cattle/genetics , Amino Acid Sequence
2.
Genes (Basel) ; 15(9)2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39336766

ABSTRACT

Dent disease type 1 is a rare X-linked recessive inherited renal disorder affecting mainly young males, generally leading to end-stage renal failure and for which there is no cure. It is caused by inactivating mutations in the gene encoding ClC-5, a 2Cl-/H+ exchanger found on endosomes in the renal proximal tubule. This transporter participates in reabsorbing all filtered plasma proteins, which justifies why proteinuria is commonly observed when ClC-5 is defective. In the context of Dent disease type 1, a proximal tubule dedifferentiation was shown to be accompanied by a dysfunctional cell metabolism. However, the exact mechanisms linking such alterations to chronic kidney disease are still unclear. In this review, we gather knowledge from several Dent disease type 1 models to summarize the current hypotheses generated to understand the progression of this disorder. We also highlight some urinary biomarkers for Dent disease type 1 suggested in different studies.


Subject(s)
Chloride Channels , Kidney Tubules, Proximal , Humans , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Kidney Tubules, Proximal/physiopathology , Chloride Channels/genetics , Chloride Channels/metabolism , Animals , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/pathology , Genetic Diseases, X-Linked/physiopathology , Mutation , Biomarkers/urine , Nephrolithiasis
3.
Pharmacol Res Perspect ; 12(5): e70005, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39320019

ABSTRACT

The epsilon toxin (Etx) from Clostridium perfringens has been identified as a potential trigger of multiple sclerosis, functioning as a pore-forming toxin that selectively targets cells expressing the plasma membrane (PM) myelin and lymphocyte protein (MAL). Previously, we observed that Etx induces the release of intracellular ATP in sensitive cell lines. Here, we aimed to re-examine the mechanism of action of the toxin and investigate the connection between pore formation and ATP release. We examined the impact of Etx on Xenopus laevis oocytes expressing human MAL. Extracellular ATP was assessed using the luciferin-luciferase reaction. Activation of calcium-activated chloride channels (CaCCs) and a decrease in the PM surface were recorded using the two-electrode voltage-clamp technique. To evaluate intracellular Ca2+ levels and scramblase activity, fluorescent dyes were employed. Extracellular vesicles were imaged using light and electron microscopy, while toxin oligomers were identified through western blots. Etx triggered intracellular Ca2+ mobilization in the Xenopus oocytes expressing hMAL, leading to the activation of CaCCs, ATP release, and a reduction in PM capacitance. The toxin induced the activation of scramblase and, thus, translocated phospholipids from the inner to the outer leaflet of the PM, exposing phosphatidylserine outside in Xenopus oocytes and in an Etx-sensitive cell line. Moreover, Etx caused the formation of extracellular vesicles, not derived from apoptotic bodies, through PM fission. These vesicles carried toxin heptamers and doughnut-like structures in the nanometer size range. In conclusion, ATP release was not directly attributed to the formation of pores in the PM, but to scramblase activity and the formation of extracellular vesicles.


Subject(s)
Adenosine Triphosphate , Bacterial Toxins , Calcium , Chloride Channels , Extracellular Vesicles , Oocytes , Xenopus laevis , Animals , Oocytes/metabolism , Oocytes/drug effects , Adenosine Triphosphate/metabolism , Calcium/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/drug effects , Bacterial Toxins/metabolism , Bacterial Toxins/toxicity , Chloride Channels/metabolism , Humans , Cell Membrane/metabolism , Cell Membrane/drug effects , Myelin and Lymphocyte-Associated Proteolipid Proteins/metabolism , Phospholipid Transfer Proteins/metabolism , Female , Clostridium perfringens/metabolism
4.
Sci Adv ; 10(36): eadi9101, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39231215

ABSTRACT

A-to-I RNA editing is a cellular mechanism that generates transcriptomic and proteomic diversity, which is essential for neuronal and immune functions. It involves the conversion of specific adenosines in RNA molecules to inosines, which are recognized as guanosines by cellular machinery. Despite the vast number of editing sites observed across the animal kingdom, pinpointing critical sites and understanding their in vivo functions remains challenging. Here, we study the function of an evolutionary conserved editing site in Drosophila, located in glutamate-gated chloride channel (GluClα). Our findings reveal that flies lacking editing at this site exhibit reduced olfactory responses to odors and impaired pheromone-dependent social interactions. Moreover, we demonstrate that editing of this site is crucial for the proper processing of olfactory information in projection neurons. Our results highlight the value of using evolutionary conservation as a criterion for identifying editing events with potential functional significance and paves the way for elucidating the intricate link between RNA modification, neuronal physiology, and behavior.


Subject(s)
Chloride Channels , RNA Editing , Animals , Chloride Channels/metabolism , Chloride Channels/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Smell/physiology , Smell/genetics , Behavior, Animal , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Inosine/metabolism , Inosine/genetics , Odorants , Adenosine/metabolism , Drosophila/genetics
5.
Int J Mol Med ; 54(4)2024 10.
Article in English | MEDLINE | ID: mdl-39092585

ABSTRACT

TMEM16 proteins, which function as Ca2+­activated Cl­ channels are involved in regulating a wide variety of cellular pathways and functions. The modulators of Cl­ channels can be used for the molecule­based treatment of respiratory diseases, cystic fibrosis, tumors, cancer, osteoporosis and coronavirus disease 2019. The TMEM16 proteins link Ca2+ signaling, cellular electrical activity and lipid transport. Thus, deciphering these complex regulatory mechanisms may enable a more comprehensive understanding of the physiological functions of the TMEM16 proteins and assist in ascertaining the applicability of these proteins as potential pharmacological targets for the treatment of a range of diseases. The present review examined the structures, functions and characteristics of the different types of TMEM16 proteins, their association with the pathogenesis of various diseases and the applicability of TMEM16 modulator­based treatment methods.


Subject(s)
Anoctamins , Phospholipid Transfer Proteins , Humans , Phospholipid Transfer Proteins/metabolism , Anoctamins/metabolism , Anoctamins/genetics , Animals , Calcium/metabolism , Chloride Channels/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , COVID-19/metabolism , SARS-CoV-2/metabolism , Molecular Targeted Therapy , Calcium Signaling/drug effects
6.
J Physiol ; 602(17): 4291-4307, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39106251

ABSTRACT

ClC-K/barttin channels are involved in the transepithelial transport of chloride in the kidney and inner ear. Their physiological role is crucial in humans because mutations in CLCNKB or BSND, encoding ClC-Kb and barttin, cause Bartter's syndrome types III and IV, respectively. In vitro experiments have shown that an amino acid change in a proline-tyrosine motif in the C-terminus of barttin stimulates ClC-K currents. The molecular mechanism of this enhancement and whether this potentiation has any in vivo relevance remains unknown. We performed electrophysiological and biochemical experiments in Xenopus oocytes and kidney cells co-expressing ClC-K and barttin constructs. We demonstrated that barttin possesses a YxxØ motif and, when mutated, increases ClC-K plasma membrane stability, resulting in larger currents. To address the impact of mutating this motif in kidney physiology, we generated a knock-in mouse. Comparing wild-type (WT) and knock-in mice under a standard diet, we could not observe any difference in ClC-K and barttin protein levels or localization, either in urinary or plasma parameters. However, under a high-sodium low-potassium diet, known to induce hyperplasia of distal convoluted tubules, knock-in mice exhibit reduced hyperplasia compared to WT mice. In summary, our in vitro and in vivo studies demonstrate that the previously identified PY motif is indeed an endocytic YxxØ motif in which mutations cause a gain of function of the channel. KEY POINTS: It is revealed by mutagenesis and functional experiments that a previously identified proline-tyrosine motif regulating ClC-K plasma membrane levels is indeed an endocytic YxxØ motif. Biochemical characterization of mutants in the YxxØ motif in Xenopus oocytes and human embryonic kidney cells indicates that mutants showed increased plasma membrane levels as a result of an increased stability, resulting in higher function of ClC-K channels. Mutation of this motif does not affect barttin protein expression and subcellular localization in vivo. Knock-in mice with a mutation in this motif, under conditions of a high-sodium low-potassium diet, exhibit less hyperplasia in the distal convoluted tubule than wild-type animals, indicating a gain of function of the channel in vivo.


Subject(s)
Chloride Channels , Endocytosis , Xenopus laevis , Animals , Chloride Channels/genetics , Chloride Channels/metabolism , Endocytosis/physiology , Mice , Kidney Tubules, Distal/metabolism , Hyperplasia , Humans , Female , Sulfate Transporters/genetics , Sulfate Transporters/metabolism , Mice, Inbred C57BL , HEK293 Cells , Oocytes/metabolism , Anion Transport Proteins
7.
Int J Biol Macromol ; 278(Pt 4): 134972, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39181373

ABSTRACT

Numerous academic literature suggests that amyloid-ß (Aß) deposition, tau protein phosphorylation, and irreversible neuronal death are the three major causes of AD. The chloride intracellular channel (CLIC) protein family not only regulates the polarisation of neurons, but also has important implications for neuronal survival. Chloride intracellular channel 4 (CLIC4) can be pathologically activated by cyclin-dependent kinase 5 (Cdk5), which causes a significant increase in the expression of CLIC4 and mediates neuronal apoptosis. CLIC4 knockdown inhibits H2O2-induced neuronal apoptosis; however, the relationship between CLIC4 and AD remains unknown. In the present study, we showed that CLIC4 expression was elevated in the hippocampus of AD mice; knockdown of hippocampal CLIC4 alleviated Aß25-35-induced cognitive impairment in mice; overexpression of hippocampal CLIC4 accelerated Aß deposition and tau protein hyperphosphorylation in young AD mice (APP/PS1 mice at three months of age). CLIC4 overexpressing mice had a longer escape latency compared to controls in behavioural testing (Morris water maze and T-maze tests). By Co-immunoprecipitation/mass spectrometry (Co-IP/MS) of HT22 cells to identify proteins that specifically bind to CLIC4, we found interactions with CCAAT enhancer binding protein (C/EBPß); a critical pathway involved in the development of various neurodegenerative diseases. In addition, the knockdown of hippocampal CLIC4 alleviated AD-like pathology by inhibiting the C/EBPß/AEP signaling pathway. These data suggest an essential role for high CLIC4 expression in the pathophysiology of AD and reveal that inhibition of CLIC4 expression may provide an opportunity for treatment.


Subject(s)
Alzheimer Disease , Chloride Channels , Cognition , Hippocampus , tau Proteins , Animals , Chloride Channels/metabolism , Chloride Channels/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Phosphorylation , tau Proteins/metabolism , tau Proteins/genetics , Mice , Cognition/drug effects , Hippocampus/metabolism , Amyloid beta-Peptides/metabolism , Male , Disease Models, Animal , Mice, Transgenic , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/genetics , Mitochondrial Proteins
9.
Arch Insect Biochem Physiol ; 116(4): e22144, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39166339

ABSTRACT

Tenvermectin B (TVM-B) and five TVM-B analogs were produced by fermentation of a genetically engineered strain Streptomyces avermitilis HU02, and TVM-B is being developed as a new insecticide. Through 11 generations of resistance selection against TVM-B in the diamondback moth, Plutella xylostella, the median lethal concentration (LC50) was increased from 14.84 to 1213.73 mg L-1. The resistance to TVM-B in P. xylostella developed fast and its realized heritability was high (h2 = 0.2901 (F7), h2 = 0.4070 (F11)). However, the relative fitness was 0.6916 suggesting a fitness cost in the resistant strains. The fitness cost was partially explained by the upregulation of the detoxification enzyme activity by 2.15 folds in carboxylate esterase (CarE) and the gene expressions of ATP-binding cassette transporter gene (ABCC2) and the alpha subunit of the glutamate-gated chloride channel (GluCl) by 1.70- and 2.32 folds, respectively. The resistance was also explained by two points of mutations at the alpha subunit of the glutamate-gated chloride channel in the P. xylostella (PxGluClα) subunit in F11. However, there was little change in the binding affinity. These results provided helpful information for the mechanism study of TVM-B resistance and will be conducive to designing rational resistance management strategies in P. xylostella.


Subject(s)
Insecticide Resistance , Insecticides , Ivermectin , Moths , Animals , Moths/genetics , Moths/growth & development , Moths/metabolism , Moths/drug effects , Moths/enzymology , Insecticide Resistance/genetics , Ivermectin/analogs & derivatives , Ivermectin/pharmacology , Insecticides/pharmacology , Genetic Fitness , Chloride Channels/genetics , Chloride Channels/metabolism , Larva/growth & development , Larva/genetics , Larva/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism
10.
Nat Commun ; 15(1): 6993, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143098

ABSTRACT

RNA interference (RNAi) is a gene-silencing mechanism triggered by the cytosolic entry of double-stranded RNAs (dsRNAs). Many animal cells internalize extracellular dsRNAs via endocytosis for RNAi induction. However, it is not clear how the endocytosed dsRNAs are translocated into the cytosol across the endo/lysosomal membrane. Herein, we show that in Drosophila S2 cells, endocytosed dsRNAs induce lysosomal membrane permeabilization (LMP) that allows cytosolic dsRNA translocation. LMP mediated by dsRNAs requires the lysosomal Cl-/H+ antiporter ClC-b/DmOstm1. In clc-b or dmostm1 knockout S2 cells, extracellular dsRNAs are endocytosed and reach the lysosomes normally but fail to enter the cytosol. Pharmacological induction of LMP restores extracellular dsRNA-directed RNAi in clc-b or dmostm1-knockout cells. Furthermore, clc-b or dmostm1 mutant flies are defective in extracellular dsRNA-directed RNAi and its associated antiviral immunity. Therefore, endocytosed dsRNAs have an intrinsic ability to induce ClC-b/DmOstm1-dependent LMP that allows cytosolic dsRNA translocation for RNAi responses in Drosophila cells.


Subject(s)
Cytosol , Drosophila Proteins , Endocytosis , Lysosomes , RNA Interference , RNA, Double-Stranded , Animals , RNA, Double-Stranded/metabolism , Lysosomes/metabolism , Cytosol/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Chloride Channels/metabolism , Chloride Channels/genetics , Cell Line , Intracellular Membranes/metabolism , Permeability , Drosophila/metabolism , Drosophila/genetics
11.
Nat Commun ; 15(1): 7008, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39143141

ABSTRACT

Proton-activated chloride (PAC) channels, ubiquitously expressed in tissues, regulate intracellular Cl- levels and cell death following acidosis. However, molecular mechanisms and signaling pathways involved in PAC channel modulation are largely unknown. Herein, we determine that phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] of the plasma membrane inner leaflet is essential for the proton activation of PAC channels. PI(4,5)P2 depletion by activating phosphatidylinositol 5-phosphatases or Gq protein-coupled muscarinic receptors substantially inhibits human PAC currents. In excised inside-out patches, PI(4,5)P2 application to the cytoplasmic side increases the currents. Structural simulation reveals that the putative PI(4,5)P2-binding site is localized within the cytosol in resting state but shifts to the cell membrane's inner surface in an activated state and interacts with inner leaflet PI(4,5)P2. Alanine neutralization of basic residues near the membrane-cytosol interface of the transmembrane helice 2 significantly attenuates PAC currents. Overall, our study uncovers a modulatory mechanism of PAC channel through inner membrane PI(4,5)P2.


Subject(s)
Cell Membrane , Phosphatidylinositol 4,5-Diphosphate , Phosphatidylinositol 4,5-Diphosphate/metabolism , Humans , Cell Membrane/metabolism , HEK293 Cells , Chloride Channels/metabolism , Chloride Channels/genetics , Protons , Binding Sites , Animals , Patch-Clamp Techniques , Anoctamins/metabolism , Anoctamins/genetics , Anoctamins/chemistry , Phospholipid Transfer Proteins
13.
Pol J Pathol ; 75(2): 138-152, 2024.
Article in English | MEDLINE | ID: mdl-39166522

ABSTRACT

The calcium-activated chloride channel (CLCA4) in colon adenocarcinoma (COAD) and immunological infiltration have not been extensively studied. This work thoroughly employed several datasets to assess the expression, prognosis, and association between immune infiltration and clinicopathological characteristics of CLCA4 in cancer, as well as look into potential signalling pathways. The human protein atlas (HPA), TIMER, UALCAN, TISIDB, GSCA, SangerBox, GeneMANIA, and LinkedOmics were among the datasets that were used. The findings demonstrated that, in comparison to normal tissues, COAD tissues had lower levels of CLCA4 expression. The prognosis was worse for those whose levels of CLCA4 expression were lower. For validation, immunohistochemistry (HPA) was used. Positive correlations between CLCA4 mRNA expression and its copy number variation (CNV) were observed, and CLCA4 CNV was linked to immunological infiltration. Subsequent investigation demonstrated the association between immune cell markers, immune checkpoint genes, and immunological infiltration with CLCA4. The overall survival and disease-free survival of M0 patients were considerably better than those of M1 patients, and the groups with tumour stages M0 and M1 had notably different levels of CLCA4 expression. Its substantial enrichment in ion channel activity, transmembrane transporter activity, digestion, and other biological processes was revealed by gene ontology analysis. Oxidative phosphorylation, pancreatic secretion, Parkinson's and Alzheimer's diseases, renin secretion, and other signalling pathways were the primary associations found for CLCA4. It is evident that the immunological microenvironment and functions like ion transport, metabolism, and intestinal digestion are all impacted by CLCA4 expression.


Subject(s)
Adenocarcinoma , Biomarkers, Tumor , Chloride Channels , Colonic Neoplasms , Humans , Chloride Channels/genetics , Chloride Channels/metabolism , Colonic Neoplasms/pathology , Colonic Neoplasms/immunology , Colonic Neoplasms/genetics , Adenocarcinoma/pathology , Adenocarcinoma/immunology , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/analysis , Male , Female , Middle Aged , Lymphocytes, Tumor-Infiltrating/immunology , Tumor Microenvironment/immunology , Aged , Immunohistochemistry , Gene Expression Regulation, Neoplastic , DNA Copy Number Variations
14.
Cell Rep ; 43(8): 114633, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39154343

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) features substantial matrix stiffening and reprogrammed glucose metabolism, particularly the Warburg effect. However, the complex interplay between these traits and their impact on tumor advancement remains inadequately explored. Here, we integrated clinical, cellular, and bioinformatics approaches to explore the connection between matrix stiffness and the Warburg effect in PDAC, identifying CLIC1 as a key mediator. Elevated CLIC1 expression, induced by matrix stiffness through Wnt/ß-catenin/TCF4 signaling, signifies poorer prognostic outcomes in PDAC. Functionally, CLIC1 serves as a catalyst for glycolytic metabolism, propelling tumor proliferation. Mechanistically, CLIC1 fortifies HIF1α stability by curbing hydroxylation via reactive oxygen species (ROS). Collectively, PDAC cells elevate CLIC1 levels in a matrix-stiffness-responsive manner, bolstering the Warburg effect to drive tumor growth via ROS/HIF1α signaling. Our insights highlight opportunities for targeted therapies that concurrently address matrix properties and metabolic rewiring, with CLIC1 emerging as a promising intervention point.


Subject(s)
Carcinoma, Pancreatic Ductal , Cell Proliferation , Chloride Channels , Hypoxia-Inducible Factor 1, alpha Subunit , Pancreatic Neoplasms , Warburg Effect, Oncologic , Humans , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Chloride Channels/metabolism , Chloride Channels/genetics , Cell Line, Tumor , Animals , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/genetics , Reactive Oxygen Species/metabolism , Glycolysis , Mice, Nude , Extracellular Matrix/metabolism , Gene Expression Regulation, Neoplastic
15.
Article in English | MEDLINE | ID: mdl-39111513

ABSTRACT

TMEM16A, a member of the Transmembrane protein 16 family, serves as the molecular basis for calcium activated chloride channels (CaCCs). We use RT-PCR to demonstrate the expression of TMEM16A in the neurons of Helicoverpa armigera, and record the CaCCs current of acute isolated neurons of H. armigera for the first time using patch clamp technology. In order to screen effective inhibitors of calcium-activated chloride channels, the inhibitory effects of four chloride channel inhibitors, CaCCinh-A01, NPPB, DIDS, and SITS, on CaCCs were compared. The inhibitory effects of the four inhibitors on the outward current of CaCCs were CaCCinh-A01 (10 µM, 56.31 %), NPPB (200 µM, 43.69 %), SITS (1 mM, 12.41 %) and DIDS (1 mM, 13.29 %). Among these inhibitors, CaCCinh-A01 demonstrated the highest efficacy as a blocker. To further explore whether calcium channel proteins can serve as potential targets of pyrethroids, we compared the effects of (type I) tefluthrin and (type II) deltamethrin on CaCCs. 10 µM and 100 µM tefluthrin can stimulate a large tail current in CaCCs, prolonging their deactivation time by 10.44 ms and 31.49 ms, and the V0.5 shifted in the hyperpolarization by 2-8 mV. Then, deltamethrin had no obvious effect on the deactivation and activation of CaCCs. Therefore, CaCCs of H. armigera can be used as a potential target of pyrethroids, but type I and type II pyrethroids have different effects on CaCCs.


Subject(s)
Chloride Channels , Insecticides , Moths , Neurons , Pyrethrins , Animals , Insecticides/toxicity , Insecticides/pharmacology , Pyrethrins/toxicity , Pyrethrins/pharmacology , Neurons/drug effects , Neurons/metabolism , Chloride Channels/metabolism , Chloride Channels/antagonists & inhibitors , Moths/drug effects , Anoctamin-1/metabolism , Anoctamin-1/antagonists & inhibitors , Insect Proteins/metabolism , Insect Proteins/antagonists & inhibitors , Insect Proteins/genetics , Membrane Potentials/drug effects , Patch-Clamp Techniques , Nitrobenzoates/pharmacology , Helicoverpa armigera , Cyclopropanes , Hydrocarbons, Fluorinated
16.
Int J Mol Sci ; 25(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39125679

ABSTRACT

Dent disease-1 (DD-1) is a rare X-linked tubular disorder characterized by low-molecular-weight proteinuria (LMWP), hypercalciuria, nephrolithiasis and nephrocalcinosis. This disease is caused by inactivating mutations in the CLCN5 gene which encodes the voltage-gated ClC-5 chloride/proton antiporter. Currently, the treatment of DD-1 is only supportive and focused on delaying the progression of the disease. Here, we generated and characterized a Clcn5 knock-in mouse model that carries a pathogenic CLCN5 variant, c. 1566_1568delTGT; p.Val523del, which has been previously detected in several DD-1 unrelated patients, and presents the main clinical manifestations of DD-1 such as high levels of urinary b2-microglobulin, phosphate and calcium. Mutation p.Val523del causes partial ClC-5 retention in the endoplasmic reticulum. Additionally, we assessed the ability of sodium 4-phenylbutyrate, a small chemical chaperone, to ameliorate DD-1 symptoms in this mouse model. The proposed model would be of significant value in the investigation of the fundamental pathological processes underlying DD-1 and in the development of effective therapeutic strategies for this rare condition.


Subject(s)
Chloride Channels , Disease Models, Animal , Gene Knock-In Techniques , Phenylbutyrates , Proteinuria , Animals , Chloride Channels/genetics , Chloride Channels/metabolism , Mice , Proteinuria/drug therapy , Phenylbutyrates/pharmacology , Phenylbutyrates/therapeutic use , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/drug therapy , Mutation , Male , Humans , Dent Disease/drug therapy , Dent Disease/genetics , Nephrolithiasis
17.
Nat Commun ; 15(1): 6654, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107281

ABSTRACT

The ClC-3 chloride/proton exchanger is both physiologically and pathologically critical, as it is potentiated by ATP to detect metabolic energy level and point mutations in ClC-3 lead to severe neurodegenerative diseases in human. However, why this exchanger is differentially modulated by ATP, ADP or AMP and how mutations caused gain-of-function remains largely unknow. Here we determine the high-resolution structures of dimeric wildtype ClC-3 in the apo state and in complex with ATP, ADP and AMP, and the disease-causing I607T mutant in the apo and ATP-bounded state by cryo-electron microscopy. In combination with patch-clamp recordings and molecular dynamic simulations, we reveal how the adenine nucleotides binds to ClC-3 and changes in ion occupancy between apo and ATP-bounded state. We further observe I607T mutation induced conformational changes and augments in current. Therefore, our study not only lays the structural basis of adenine nucleotides regulation in ClC-3, but also clearly indicates the target region for drug discovery against ClC-3 mediated neurodegenerative diseases.


Subject(s)
Adenosine Triphosphate , Chloride Channels , Cryoelectron Microscopy , Molecular Dynamics Simulation , Neurodegenerative Diseases , Chloride Channels/metabolism , Chloride Channels/genetics , Chloride Channels/chemistry , Humans , Adenosine Triphosphate/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Adenine Nucleotides/metabolism , Patch-Clamp Techniques , Mutation , Adenosine Diphosphate/metabolism , HEK293 Cells , Adenosine Monophosphate/metabolism , Animals , Protein Conformation
18.
J Physiol ; 602(16): 3975-3994, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39031529

ABSTRACT

The function of the chloride channel ClC-1 is crucial for the control of muscle excitability. Thus, reduction of ClC-1 functions by CLCN1 mutations leads to myotonia congenita. Many different animal models have contributed to understanding the myotonia pathophysiology. However, these models do not allow in vivo screening of potentially therapeutic drugs, as the zebrafish model does. In this work, we identified and characterized the two zebrafish orthologues (clc-1a and clc-1b) of the ClC-1 channel. Both channels are mostly expressed in the skeletal muscle as revealed by RT-PCR, western blot, and electrophysiological recordings of myotubes, and clc-1a is predominantly expressed in adult stages. Characterization in Xenopus oocytes shows that the zebrafish channels display similar anion selectivity and voltage dependence to their human counterparts. However, they show reduced sensitivity to the inhibitor 9-anthracenecarboxylic acid (9-AC), and acidic pH inverts the voltage dependence of activation. Reduction of clc-1a/b expression hampers spontaneous and mechanically stimulated movement, which could be reverted by expression of human ClC-1 but not by some ClC-1 containing myotonia mutations. Treatment of clc-1-depleted zebrafish with mexiletine, a typical drug used in human myotonia, improves the motor behaviour. Our work extends the repertoire of ClC channels to evolutionary structure-function studies and proposes the zebrafish clcn1 crispant model as a simple tool to find novel therapies for myotonia. KEY POINTS: We have identified two orthologues of ClC-1 in zebrafish (clc-1a and clc-1b) which are mostly expressed in skeletal muscle at different developmental stages. Functional characterization of the activity of these channels reveals many similitudes with their mammalian counterparts, although they are less sensitive to 9-AC and acidic pH inverts their voltage dependence of gating. Reduction of clc-1a/b expression hampers spontaneous and mechanically stimulated movement which could be reverted by expression of human ClC-1. Myotonia-like symptoms caused by clc-1a/b depletion can be reverted by mexiletine, suggesting that this model could be used to find novel therapies for myotonia.


Subject(s)
Chloride Channels , Zebrafish , Chloride Channels/genetics , Chloride Channels/metabolism , Chloride Channels/physiology , Animals , Humans , Disease Models, Animal , Myotonia/genetics , Muscle, Skeletal/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Xenopus laevis , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Myotonia Congenita/genetics , Anthracenes
19.
Respir Physiol Neurobiol ; 327: 104303, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39029565

ABSTRACT

The airway epithelium is located at the interactional boundary between the external and internal environments of the organism and is often exposed to harmful environmental stimuli. Inflammatory response that occurs after airway epithelial stress is the basis of many lung and systemic diseases. Chloride intracellular channel 4 (CLIC4) is abundantly expressed in epithelial cells. The purpose of this study was to investigate whether CLIC4 is involved in the regulation of lipopolysaccharide (LPS)-induced inflammatory response in airway epithelial cells and to clarify its potential mechanism. Our results showed that LPS induced inflammatory response and decreased CLIC4 levels in vivo and in vitro. CLIC4 silencing aggravated the inflammatory response in epithelial cells, while overexpression of CLIC4 combined with LPS exposure significantly decreased the inflammatory response compared with cells exposed to LPS without CLIC4 overexpression. By labeling intracellular chloride ions with chloride fluorescent probe MQAE, we showed that CLIC4 mediated intracellular chloride ion-regulated LPS-induced cellular inflammatory response.


Subject(s)
Bronchi , Chloride Channels , Epithelial Cells , Inflammation , Lipopolysaccharides , Animals , Humans , Male , Bronchi/metabolism , Bronchi/drug effects , Chloride Channels/metabolism , Chlorides/metabolism , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Inflammation/metabolism , Inflammation/chemically induced , Lipopolysaccharides/pharmacology
20.
Int J Mol Sci ; 25(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39063037

ABSTRACT

The opening of the Torpedo CLC-0 chloride (Cl-) channel is known to be regulated by two gating mechanisms: fast gating and slow (common) gating. The structural basis underlying the fast-gating mechanism is better understood than that of the slow-gating mechanism, which is still largely a mystery. Our previous study on the intracellular proton (H+i)-induced inhibition of the CLC-0 anionic current led to the conclusion that the inhibition results from the slow-gate closure (also called inactivation). The conclusion was made based on substantial evidence such as a large temperature dependence of the H+i inhibition similar to that of the channel inactivation, a resistance to the H+i inhibition in the inactivation-suppressed C212S mutant, and a similar voltage dependence between the current recovery from the H+i inhibition and the recovery from the channel inactivation. In this work, we further examine the mechanism of the H+i inhibition of wild-type CLC-0 and several mutants. We observe that an anion efflux through the pore of CLC-0 accelerates the recovery from the H+i-induced inhibition, a process corresponding to the slow-gate opening. Furthermore, various inactivation-suppressed mutants exhibit different current recovery kinetics, suggesting the existence of multiple inactivated states (namely, slow-gate closed states). We speculate that protonation of the pore of CLC-0 increases the binding affinity of permeant anions in the pore, thereby generating a pore blockage of ion flow as the first step of inactivation. Subsequent complex protein conformational changes further transition the CLC-0 channel to deeper inactivated states.


Subject(s)
Chloride Channels , Ion Channel Gating , Protons , Chloride Channels/metabolism , Chloride Channels/antagonists & inhibitors , Chloride Channels/chemistry , Chloride Channels/genetics , Ion Channel Gating/drug effects , Animals , Mutation , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL