Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.809
Filter
1.
J Photochem Photobiol B ; 257: 112965, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38955078

ABSTRACT

This research aimed to develop natural plant systems to serve as biological sentinels for the detection of organophosphate pesticides in the environment. The working hypothesis was that the presence of the pesticide in the environment caused changes in the content of pigments and in the photosynthetic functioning of the plant, which could be evaluated non-destructively through the analysis of reflected light and emitted fluorescence. The objective of the research was to furnish in vivo indicators derived from spectroscopic parameters, serving as early alert signals for the presence of organophosphates in the environment. In this context, the effects of two pesticides, Chlorpyrifos and Dimethoate, on the spectroscopic properties of aquatic plants (Vallisneria nana and Spathyfillum wallisii) were studied. Chlorophyll-a variable fluorescence allowed monitoring both pesticides' presence before any damage was observed at the naked eye, with the analysis of the fast transient (OJIP curve) proving more responsive than Kautsky kinetics, steady-state fluorescence, or reflectance measurements. Pesticides produced a decrease in the maximum quantum yield of PSII photochemistry, in the proportion of PSII photochemical deexcitation relative to PSII non photochemical decay and in the probability that trapped excitons moved electrons into the photosynthetic transport chain beyond QA-. Additionally, an increase in the proportion of absorbed energy being dissipated as heat rather than being utilized in the photosynthetic process, was notorious. The pesticides induced a higher deactivation of chlorophyll excited states by photophysical pathways (including fluorescence) with a decrease in the quantum yields of photosystem II and heat dissipation by non-photochemical quenching. The investigated aquatic plants served as sentinels for the presence of pesticides in the environment, with the alert signal starting within the first milliseconds of electronic transport in the photosynthetic chain. Organophosphates damage animals' central nervous systems similarly to certain compounds found in chemical weapons, thus raising the possibility that sentinel plants could potentially signal the presence of such weapons.


Subject(s)
Chlorophyll , Chlorpyrifos , Chlorophyll/metabolism , Chlorophyll/chemistry , Chlorpyrifos/metabolism , Chlorpyrifos/toxicity , Fluorescence , Pesticides/toxicity , Pesticides/metabolism , Photosynthesis/drug effects , Dimethoate/toxicity , Dimethoate/metabolism , Spectrometry, Fluorescence , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/chemistry , Environmental Monitoring/methods , Chlorophyll A/metabolism , Chlorophyll A/chemistry , Kinetics , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
2.
Pestic Biochem Physiol ; 203: 106013, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39084777

ABSTRACT

As an important class of detoxifying enzymes, glutathione S-transferases (GSTs) are pivotal in decreasing insecticide toxicity to insects. Periplaneta americana GSTd1 (PaGSTd1) has been verified as a key enzyme in detoxifying pyrethroid insecticides, but its detoxification capability against a broader spectrum of insecticides has never been investigated. It is revealed that PaGSTd1 expression showed a rapid and significant increase upon exposure to various insecticides (organophosphates, neonicotinoids, and fipronil). Subsequent in vitro metabolic assays indicated that organophosphates, particularly chlorpyrifos-methyl, can be effectively metabolized by PaGSTd1. Further knockdown of PaGSTd1 via RNA interference significantly heightened the susceptibility of P. americana to chlorpyrifos-methyl, underscoring the enzyme's key role in detoxifying chlorpyrifos-methyl. Additionally, this study confirmed that PaGSTd1 cannot mitigate insecticide toxicity through countering oxidative stress. Collectively, these findings elucidate the involvement of PaGSTd1 in the detoxification processes for organophosphates, offering a comprehensive insight into the metabolic mechanisms mediated by GSTs in P. americana. This research provides a foundational understanding for managing GSTs-mediated metabolic resistance in this species, which is crucial for effective pest control strategies.


Subject(s)
Glutathione Transferase , Insecticides , Periplaneta , Periplaneta/drug effects , Periplaneta/metabolism , Animals , Insecticides/toxicity , Insecticides/pharmacology , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Organophosphates/toxicity , Organophosphates/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Inactivation, Metabolic , Chlorpyrifos/toxicity , Chlorpyrifos/analogs & derivatives , Oxidative Stress/drug effects
3.
Indian J Pharmacol ; 56(3): 186-190, 2024 May 01.
Article in English | MEDLINE | ID: mdl-39078182

ABSTRACT

BACKGROUND: Chlorpyrifos belongs to a broad-spectrum organophosphate insecticide that has high toxicity, is metabolized in the liver by the oxidation reaction, and can inhibit acetylcholinesterase activity. Acetylcholinesterase inhibition generates the reactive oxygen species and induces oxidative stress, which ultimately results in cellular damage like in the kidney. Examining blood urea nitrogen (BUN) levels, creatinine, and kidney histopathology is an appropriate indicator to assess the toxicity of chlorpyrifos to the degree of damage to cells and kidney tissue. MATERIALS AND METHODS: This research used to determine the effect of duration of exposure to chlorpyrifos and dose-response relationships is important for early detection of the effects of chlorpyrifos toxicity on health. The research study was a true experimental (completely randomized design) consisting of 30 subjects divided into 5 groups. Controlled Group (K1) given 1 mg/kg BW Tween 20 and NaCl 0, 9% until the 56th day. The chlorpyrifos exposed group (P1, P2, P3, and P4) was given chlorpyrifos 5 mg/kg BW for 7, 14, 28, and 56 days. After the treatment, BUN and creatinine levels were measured, and microscopic changes in the kidney were analyzed. The results of BUN, creatinine, and kidney histopathologic were analyzed using the analysis of variance statistical test. RESULTS: The data result showed that compared to the control group, there were significant increases of BUN and creatinine (P = 0.013 and P = 0.003). Histopathological examinations of kidney glomerulus diameter were also smaller compared to the control group (P = 0.00). All the data measurement indicates significant differences compared to the control group. CONCLUSIONS: We concluded that sub-chronic oral exposure to chlorpyrifos at low doses can damage the kidneys and cause kidney failure.


Subject(s)
Chlorpyrifos , Creatinine , Insecticides , Kidney , Rats, Wistar , Chlorpyrifos/toxicity , Chlorpyrifos/administration & dosage , Animals , Kidney/drug effects , Kidney/pathology , Insecticides/toxicity , Administration, Oral , Creatinine/blood , Rats , Male , Blood Urea Nitrogen , Dose-Response Relationship, Drug , Kidney Function Tests , Cholinesterase Inhibitors/toxicity , Cholinesterase Inhibitors/administration & dosage
4.
Pestic Biochem Physiol ; 202: 105948, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879304

ABSTRACT

The insect cholinergic neuron system is the target for various pesticides, including organophosphate, carbamate and neonicotinoid pesticides. In this study, we conducted a de novo transcriptome analysis on the aquatic insect Protohermes xanthodes and identified for the first time presenting sixteen genes encoding cholinergic neuronal proteins (PxanChaT, PxanVAChT, PxanmAChR, PxannAChRs, and PxanAChEs), which are candidates for acetylcholine synthesis, transport, reception and degradation in cholinergic synapse. FPKM analysis revealed that these genes are primarily expressed in head and nerve cord of P. xanthodes larvae, and some of them are also abundant in hindgut, malpighian tubules and tracheae. After exposed to different concentrations of sublethal chlorpyrifos (CPF), expression of these cholinergic neuronal genes are generally increased and then decreased with the increase of CPF concentration, except PxannAChRα9 which is increased in both 4.2 and 8.4 µg/L CPF groups. Short-term (96 h) CPF exposure resulted in significant up-regulation of PxanAChE1 expression in P. xanthodes larvae exposed to 0.42 and 4.2 µg/L CPF concentrations, while PxanAChE2 was up-regulated only in 0.42 µg/L CPF group. After long-term (14 d) CPF exposure, PxanAChE1 expression was down-regulated in 0.168 and 0.42 µg/L CPF groups. PxanAChE2 expression was dramatically decreased in all CPF groups. Moreover, acetylcholinesterase (AChE) activity was significantly decreased across all long-term CPF exposure groups. These results suggested that sublethal exposure to CPF can disrupt the expression of cholinergic neuronal genes in P. xanthodes larvae, and implied that long-term sublethal CPF exposure may cause toxic effects on P. xanthodes larvae by inhibiting AChE activity. Furthermore, identification of cholinergic neuronal genes in P. xanthodes provided candidate molecular markers for study the toxic effects of environmental pollutants on the neuron system of an aquatic predatory insect with ecological importance.


Subject(s)
Chlorpyrifos , Insecticides , Animals , Chlorpyrifos/toxicity , Insecticides/toxicity , Cholinergic Neurons/drug effects , Cholinergic Neurons/metabolism , Gene Expression Profiling , Transcriptome/drug effects , Larva/drug effects , Larva/genetics , Larva/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism
5.
PLoS One ; 19(6): e0305173, 2024.
Article in English | MEDLINE | ID: mdl-38875300

ABSTRACT

Chlorpyrifos is an organophosphate pesticide associated with numerous health effects including motor performance decrements. While many studies have focused on the health effects following acute chlorpyrifos poisonings, almost no studies have examined the effects on motoneurons following occupational-like exposures. The main objective of this study was to examine the broad effects of repeated occupational-like chlorpyrifos exposures on spinal motoneuron soma size relative to motor activity. To execute our objective, adult rats were exposed to chlorpyrifos via oral gavage once a day, five days a week for two weeks. Chlorpyrifos exposure effects were assessed either three days or two months following the last exposure. Three days following the last repeated chlorpyrifos exposure, there were transient effects in open-field motor activity and plasma cholinesterase activity levels. Two months following the chlorpyrifos exposures, there were delayed effects in sensorimotor gating, pro-inflammatory cytokines and spinal lumbar motoneuron soma morphology. Overall, these results offer support that subacute repeated occupational-like chlorpyrifos exposures have both short-term and longer-term effects in motor activity, inflammation, and central nervous system mechanisms.


Subject(s)
Chlorpyrifos , Motor Activity , Motor Neurons , Animals , Chlorpyrifos/toxicity , Motor Neurons/drug effects , Motor Neurons/pathology , Rats , Male , Motor Activity/drug effects , Insecticides/toxicity , Spinal Cord/drug effects , Spinal Cord/pathology , Rats, Sprague-Dawley , Lumbosacral Region , Cholinesterases/metabolism , Cholinesterases/blood , Cholinesterase Inhibitors/toxicity
6.
Food Chem Toxicol ; 190: 114788, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38849050

ABSTRACT

Chlorpyrifos (CPF) is a broad-spectrum insecticide widely employed in agricultural field for pest control. Exposure to CPF is associated with serious effects to the main organs, including kidneys. Significant evidence denotes that oxidative stress (OS) and inflammation are implicated in CPF toxicity. This study aimed to evaluate the potential of farnesol (FAR) to modulate inflammatory mediators and farnesoid-X-receptor (FXR) and Nrf2 in a rat model of CPF nephrotoxicity. CPF and FAR were orally supplemented for 28 days and blood and kidney samples were collected for investigations. CPF administration elevated blood creatinine and urea, kidney MDA and NO, and upregulated NF-κB p65, IL-1ß, TNF-α, iNOS, and caspase-3. In addition, CPF upregulated kidney Keap1, and decreased GSH, antioxidant enzymes, and Nrf2, FXR, HO-1 and NQO-1. FAR ameliorated creatinine and urea, prevented histopathological alterations, decreased MDA and NO, and enhanced antioxidants in CPF-administered rats. FAR modulated NF-κB p65, iNOS, TNF-α, IL-1ß, caspase-3, Keap1, HO-1, NQO-1, Nrf2 and FXR. In silico investigations revealed the binding affinity of FAR towards Keap1 and FXR, as well as NF-κB, caspase-3, iNOS, and HO-1. In conclusion, FAR prevents CPF-induced kidney injury by attenuating OS, inflammation, and apoptosis, effects associated with modulation of FXR, Nrf2/HO-1 signaling and antioxidants.


Subject(s)
Chlorpyrifos , Farnesol , Kidney , NF-E2-Related Factor 2 , Oxidative Stress , Receptors, Cytoplasmic and Nuclear , Animals , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , Chlorpyrifos/toxicity , Male , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Rats , Farnesol/pharmacology , Receptors, Cytoplasmic and Nuclear/metabolism , Rats, Wistar , Inflammation Mediators/metabolism , Insecticides/toxicity , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Kidney Diseases/metabolism , Antioxidants/pharmacology
7.
Int J Mol Sci ; 25(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38928336

ABSTRACT

Chlorpyrifos (CPF) is a widely used organophosphate insecticide, though its excessive use causes environmental contamination, raising concerns about its adverse effects on human health. In this regard, Urtica dioica stands out as a promising candidate for counteracting chemical 'contaminant' toxicity thanks to its therapeutic properties. Therefore, our study aimed to investigate the potential of an Urtica dioica ethanolic extract (UDE) to mitigate chlorpyrifos-induced toxicity. Eight compounds in the Urtica dioica ethanolic extract have been identified, most of which present significant potential as antioxidant, anti-inflammatory, and neuroprotective agents. Chlorpyrifos exposure altered hatching rates, increased the incidence of teratogenic effects, and upregulated the expression of brain-derived neurotrophic factor (Bdnf) in zebrafish larvae telencephalon. On the other hand, UDE demonstrated a preventive effect against CPF-induced teratogenicity, which is expressed by a lower morphological deformity rate. Moreover, the UDE showed a rather protective effect, maintaining the physiological condition of the telencephalon. Additionally, CPF altered the locomotor behavior of larvae, which was characterized by irregular swimming and increased activity. This defective behavioral pattern was slightly attenuated by the UDE. Our findings suggest that the UDE possesses significant protective properties against CPF-induced toxicity, probably conferred by its natural antioxidant and anti-inflammatory contents. Still, further research is needed to elucidate the recruited mechanisms and implicated pathways on UDE's protective effects.


Subject(s)
Chlorpyrifos , Larva , Plant Extracts , Urtica dioica , Zebrafish , Animals , Chlorpyrifos/toxicity , Plant Extracts/pharmacology , Plant Extracts/chemistry , Larva/drug effects , Urtica dioica/chemistry , Antioxidants/pharmacology , Insecticides/toxicity , Telencephalon/drug effects , Telencephalon/metabolism
8.
Toxicology ; 506: 153871, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38925359

ABSTRACT

Fmr1 (fragile X messenger ribonucleoprotein 1)-knockout (KO) rats, modeling the human Fragile X Syndrome (FXS), are of particular interest for exploring the ASD-like phenotype in preclinical studies. Gestational exposure to chlorpyrifos (CPF) has been associated with ASD diagnosis in humans and ASD-like behaviors in rodents and linked to the microbiota-gut-brain axis. In this study, we have used both Fmr1-KO and wild-type male rats (F2 generation) at postnatal days (PND) 7 and 40 obtained after F1 pregnant females were randomly exposed to 1 mg/kg/mL/day of CPF or vehicle. A nuclear magnetic resonance (NMR) metabolomics approach together with gene expression profiles of these F2 generation rats were employed to analyze different brain regions (such as prefrontal cortex, hippocampus, and cerebellum), whole large intestine (at PND7) and gut content (PND40). The statistical comparison of each matrix spectral profile unveiled tissue-specific metabolic fingerprints. Significant variations in some biomarker levels were detected among brain tissues of different genotypes, including taurine, myo-inositol, and 3-hydroxybutyric acid, and exposure to CPF induced distinct metabolic alterations, particularly in serine and myo-inositol. Additionally, this study provides a set of metabolites associated with gastrointestinal dysfunction in ASD, encompassing several amino acids, choline-derived compounds, bile acids, and sterol molecules. In terms of gene expression, genotype and gestational exposure to CPF had only minimal effects on decarboxylase 2 (gad2) and cholinergic receptor muscarinic 2 (chrm2) genes.


Subject(s)
Autism Spectrum Disorder , Biomarkers , Brain-Gut Axis , Chlorpyrifos , Fragile X Mental Retardation Protein , Gastrointestinal Microbiome , Prenatal Exposure Delayed Effects , Animals , Chlorpyrifos/toxicity , Pregnancy , Female , Male , Fragile X Mental Retardation Protein/genetics , Gastrointestinal Microbiome/drug effects , Biomarkers/metabolism , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/metabolism , Brain-Gut Axis/drug effects , Rats , Brain/metabolism , Brain/drug effects
9.
Environ Sci Pollut Res Int ; 31(27): 39714-39734, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38831144

ABSTRACT

Bacillus genera, especially among rhizobacteria, are known for their ability to promote plant growth and their effectiveness in alleviating several stress conditions. This study aimed to utilize indigenous Bacillus cereus PM38 to degrade four organophosphate pesticides (OPs) such as chlorpyrifos (CP), profenofos (PF), monocrotophos (MCP), and dimethoate (DMT) to mitigate the adverse effects of these pesticides on cotton crop growth. Strain PM38 exhibited distinct characteristics that set it apart from other Bacillus species. These include the production of extracellular enzymes, hydrogen cyanide, exopolysaccharides, Indol-3-acetic acid (166.8 µg/mL), siderophores (47.3 µg/mL), 1-aminocyclopropane-1-carboxylate deaminase activity (32.4 µg/mL), and phosphorus solubilization (162.9 µg/mL), all observed at higher concentrations. This strain has also shown tolerance to salinity (1200 mM), drought (20% PEG-6000), and copper and cadmium (1200 mg/L). The amplification of multi-stress-responsive genes, such as acdS, ituC, czcD, nifH, sfp, and pqqE, further confirmed the plant growth regulation and abiotic stress tolerance capability in strain PM38. Following the high-performance liquid chromatography (HPLC) analysis, the results showed striking compatibility with the first kinetic model. Strain PM38 efficiently degraded CP (98.4%), PF (99.7%), MCP (100%), and DMT (95.5%) at a concentration of 300 ppm over 48 h at 35 °C under optimum pH conditions, showing high coefficients of determination (R2) of 0.974, 0.967, 0.992, and 0.972, respectively. The Fourier transform infrared spectroscopy (FTIR) analysis and the presence of opd, mpd, and opdA genes in the strain PM38 further supported the potential to degrade OPs. In addition, inoculating cotton seedlings with PM38 improved root length under stressful conditions. Inoculation of strain PM38 reduces stress by minimizing proline, thiobarbituric acid-reactive compounds, and electrolyte leakage. The strain PM38 has the potential to be a good multi-stress-tolerant option for a biological pest control agent capable of improving global food security and managing contaminated sites.


Subject(s)
Bacillus cereus , Chlorpyrifos , Monocrotophos , Chlorpyrifos/metabolism , Chlorpyrifos/toxicity , Bacillus cereus/metabolism , Monocrotophos/toxicity , Dimethoate/toxicity , Gossypium , Biodegradation, Environmental , Organothiophosphates , Rhizosphere , Phosphoramides
10.
Article in English | MEDLINE | ID: mdl-38838796

ABSTRACT

Organophosphorus pesticides (OPs), such as chlorpyrifos (CPF), are the most commonly used pesticides worldwide. Considering that OPs will eventually enter aquatic ecosystems due to runoff from agricultural lands, accidental leakage, and other unforeseen emergencies, monitoring water pollution of those substances is crucial for environmental protection and public health. In this study, Japanese medaka (Oryzias latipes) were exposed to CPF (0.03, 0.06, and 0.12 mg/L) for 6 h, and the time-series variations in their locomotor behavior and vocal traits were investigated. Compared with that measured before exposure, significantly changed locomotor behavior and vocal traits in Japanese medaka exposed to CPF could be observed at 4 h after exposure and thereafter, and the pattern of behavioral changes depends on the CPF concentrations. Exposure to CPF also changed the frequency-sound pressure level curve of Japanese medaka at 6 h after exposure, especially at 0.12 mg/L. Moreover, CPF exposure could significantly inhibit the acetylcholinesterase (AChE) activity in the brains and eyes of medaka, which exhibited significant correlations with the variation of locomotor behavioral and vocal traits. Considering that inhibiting the AChE activity is the primary mechanism underlying the neurobehavioral toxicity of all OPs, our finding suggested that simultaneously monitoring changes in the locomotor behavioral and vocal traits has a high potential to reflect the pollution of organophosphorus substances.


Subject(s)
Chlorpyrifos , Locomotion , Oryzias , Water Pollutants, Chemical , Animals , Oryzias/physiology , Chlorpyrifos/toxicity , Water Pollutants, Chemical/toxicity , Locomotion/drug effects , Vocalization, Animal/drug effects , Acetylcholinesterase/metabolism , Insecticides/toxicity , Pesticides/toxicity , Behavior, Animal/drug effects , Cholinesterase Inhibitors/toxicity , Brain/drug effects
11.
Chem Biol Interact ; 398: 111096, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38844257

ABSTRACT

Breast cancer is currently one of the most prevalent cancers worldwide. The mechanisms by which pesticides can increase breast cancer risk are multiple and complex. We have previously observed that two aryl hydrocarbon receptor (AhR) agonists ‒pesticides hexachlorobenzene (HCB) and chlorpyrifos (CPF)‒ act on tumor progression, stimulating cell migration and invasion in vitro and tumor growth in animal models. Elevated levels of hypoxia inducible factor-1α (HIF-1α) are found in malignant breast tumors, and HIF-1α is known to induce proangiogenic factors such as vascular endothelial growth factor (VEGF), nitric oxide synthase-2 (NOS-2) and cyclooxygenase-2 (COX-2), which are fundamental in breast cancer progression. In this work, we studied HCB (0.005, 0.05, 0.5 and 5 µM) and CPF (0.05, 0.5, 5 and 50 µM) action on the expression of these proangiogenic factors in triple negative breast cancer cells MDA-MB-231, as well as the effect of their conditioned medium (CM) on endothelial cells. Exposure to pesticides increased HIF-1α and VEGF protein expression in an AhR-dependent manner. In addition, HCB and CPF boosted NOS-2 and COX-2 content and VEGF secretion in MDA-MB-231 cells. The treatment of endothelial cells with CM from tumor cells exposed to pesticides increased cell proliferation, migration, and tubule formation, enhancing both tubule length and branching points. Of note, these effects were VEGF-dependent, as they were blocked in the presence of a VEGF receptor-2 (VEGFR-2) inhibitor. In sum, our results highlight the harmful impact of HCB and CPF in modulating the interaction between breast cancer and endothelial cells and promoting angiogenesis.


Subject(s)
Chlorpyrifos , Cyclooxygenase 2 , Hexachlorobenzene , Hypoxia-Inducible Factor 1, alpha Subunit , Receptors, Aryl Hydrocarbon , Triple Negative Breast Neoplasms , Vascular Endothelial Growth Factor A , Chlorpyrifos/toxicity , Receptors, Aryl Hydrocarbon/metabolism , Humans , Hexachlorobenzene/metabolism , Hexachlorobenzene/toxicity , Vascular Endothelial Growth Factor A/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Cell Line, Tumor , Cyclooxygenase 2/metabolism , Ligands , Nitric Oxide Synthase Type II/metabolism , Female , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Cell Movement/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Cell Proliferation/drug effects
12.
Mol Biol Rep ; 51(1): 616, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722391

ABSTRACT

BACKGROUND: Chlorpyrifos (CPF) is a widely used pesticide in the production of plant crops. Despite rapid CPF biodegradation, fish were exposed to wastewater containing detectable residues. Recently, medicinal plants and algae were intensively used in aquaculture to replace antibiotics and ameliorate stress impacts. METHODS AND RESULTS: An indoor experiment was conducted to evaluate the deleterious impacts of CPF pollution on Nile tilapia health and the potential mitigation role of Chlorella vulgaris algae. Firstly, the median lethal concentration LC50 - 72 h of CPF was determined to be 85.8 µg /L in Nile tilapia (35.6 ± 0.5 g body weight) at a water temperature of 27.5 °C. Secondly, fish were exposed to 10% of LC50 - 72 h for six weeks, and tissue samples were collected and examined every two weeks. Also, Nile tilapia were experimentally infected with Streptococcus agalactiae. Exposed fish were immunosuppressed expressed with a decrease in gene expressions of interleukin (IL) 1ß, IL-10, and tumor necrosis factor (TNF)-α. Also, a decline was recorded in glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) gene expression in the head kidney tissue. A high mortality rate (MR) of 100% was recorded in fish exposed to CPF for six weeks and challenged with S. agalactiae. Fish that received dietary C. vulgaris could restore gene expression cytokines and antioxidants compared to the control. After six weeks of CPF exposure, fish suffered from anemia as red blood cell count (RBCs), hemoglobin (Hb), and packed cell volume (PCV) significantly declined along with downregulation of serum total protein (TP), globulin (GLO), and albumin (ALB). Liver enzymes were significantly upregulated in fish exposed to CPF pollution, alanine aminotransferase (ALT) (42.5, 53.3, and 61.7 IU/L) and aspartate aminotransferase (AST) (30.1, 31.2, and 22.8) after 2, 4, and 6 weeks, respectively. On S. agalactiae challenge, high MR was recorded in Nile tilapia exposed to CPF (G3) 60%, 60%, and 100% in week 2, week 4, and week 6, and C. vulgaris provided a relative protection level (RPL) of 0, 14.29, and 20%, respectively. CONCLUSIONS: It was concluded that CPF pollution induces immunosuppressed status, oxidative stress, and anemic signs in Nile tilapia. In contrast, C. vulgaris at a 50 g/kg fish feed dose could partially ameliorate such withdrawals, restoring normal physiological parameters.


Subject(s)
Antioxidants , Chlorella vulgaris , Chlorpyrifos , Cichlids , Fish Diseases , Streptococcus agalactiae , Animals , Streptococcus agalactiae/drug effects , Cichlids/metabolism , Cichlids/microbiology , Cichlids/genetics , Chlorpyrifos/toxicity , Antioxidants/metabolism , Fish Diseases/microbiology , Streptococcal Infections/veterinary , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Catalase/metabolism , Catalase/genetics , Water Pollutants, Chemical/toxicity , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/genetics , Oxidative Stress/drug effects , Aquaculture/methods
13.
Aquat Toxicol ; 272: 106945, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759526

ABSTRACT

Human impacts on ecological communities are pervasive and species must either move or adapt to changing environmental conditions. For environments polluted by contaminants, researchers have found hundreds of target pest species evolving increased tolerance, but we have substantially fewer cases of evolved tolerance in non-target species. When species do evolve increased tolerance, inducible tolerance can provide immediate protection and favor the evolution of increased tolerance over generations via genetic assimilation. Using a model larval amphibian (wood frogs, Rana sylvatica), we examined the tolerance of 15 populations from western Pennsylvania and eastern New York (USA), when first exposed to no pesticide or sublethal concentrations and subsequently exposed to lethal concentrations of three common insecticides (carbaryl, chlorpyrifos, and diazinon). We found high variation in naïve tolerance among the populations for all three insecticides. We also discovered that nearly half of the populations exhibited inducible tolerance, though the degree of inducible tolerance (magnitude of tolerance plasticity; MoTP) varied. We observed a cross-tolerance pattern of the populations between chlorpyrifos and diazinon, but no pattern of similar MoTP among the pesticides. With populations combined from two regions, increased tolerance was not associated with proximity to agricultural fields, but there were correlations between proximity to agriculture and MoTP. Collectively, these results suggests that amphibian populations possess a wide range of naïve tolerance to common pesticides, with many also being able to rapidly induce increased tolerance. Future research should examine inducible tolerance in a wide variety of other taxa and contaminants to determine the ubiquity of these responses to anthropogenic factors.


Subject(s)
Carbaryl , Chlorpyrifos , Diazinon , Insecticides , Animals , Insecticides/toxicity , Chlorpyrifos/toxicity , Diazinon/toxicity , Carbaryl/toxicity , Water Pollutants, Chemical/toxicity , Larva/drug effects , Ranidae , Pennsylvania , New York , Drug Tolerance
14.
Environ Toxicol Pharmacol ; 108: 104468, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759849

ABSTRACT

Chlorpyrifos, widely used for pest control, is known to have various harmful effects, although its toxic effects in macrophages and the mechanisms underlying its toxicity remain unclear. The present study investigated the toxic effects of chlorypyrifos in a macrophage cell line. Here, we found that chlorpyrifos induced cytotoxicity and genotoxicity in RAW264.7 macrophages. Moreover, chlorpyrifos induced intracellular ROS production, subsequently leading to lipid peroxidation. Chlorpyrifos reduced the activation of antioxidative enzymes including superoxide dismutase, catalase, and glutathione peroxidase. Chlorpyrifos upregulated HO-1 expression and activated the Keap1-Nrf2 pathway, as indicated by enhanced Nrf2 phosphorylation and Keap1 degradation. Chlorpyrifos exerted effects on the following in a dose-dependent manner: cytotoxicity, genotoxicity, lipid peroxidation, intracellular ROS production, antioxidative enzyme activity reduction, HO-1 expression, Nrf2 phosphorylation, and Keap1 degradation. Notably, N-acetyl-L-cysteine successfully inhibited chlorpyrifos-induced intracellular ROS generation, cytotoxicity, and genotoxicity. Thus, chlorpyrifos may induce cytotoxicity and genotoxicity by promoting intracellular ROS production and suppressing the antioxidative defense system activation in macrophages.


Subject(s)
Chlorpyrifos , Insecticides , Kelch-Like ECH-Associated Protein 1 , Macrophages , NF-E2-Related Factor 2 , Reactive Oxygen Species , Chlorpyrifos/toxicity , Animals , Mice , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Macrophages/drug effects , Macrophages/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Insecticides/toxicity , Cell Survival/drug effects , Antioxidants/pharmacology , Lipid Peroxidation/drug effects , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Superoxide Dismutase/metabolism , Catalase/metabolism , Glutathione Peroxidase/metabolism , Oxidative Stress/drug effects , Membrane Proteins
15.
Chemosphere ; 359: 142252, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735493

ABSTRACT

Organophosphates, a widely used group of pesticides, can cause severe toxicity in human beings and other non-target organisms. Liver, being the primary site for xenobiotic metabolism, is extremely vulnerable to xenobiotic-induced toxicity. Considering the numerous vital functions performed by the liver, including xenobiotic detoxification, protecting this organ from the ubiquitous pesticides in our food and environment is essential for maintaining homeostasis. In this study, we have investigated the impact of the organophosphate pesticide, Chlorpyrifos (CPF), on zebrafish liver at a concentration (300 µg/L) which is environmentally realistic. We have also demonstrated the role of dietary supplementation of α-tocopherol or Vitamin E (Vit E) (500 mg/kg feed) in mitigating pesticide-induced liver toxicity. Mechanistically, we showed that Vit E resulted in significant elevation of the Nrf2 and its downstream antioxidant enzyme activities and gene expressions, especially that of GST and GPx, resulting in reduction of CPF-induced intracellular lipid ROS and hepatic LPO. Further interrogation, such as analysis of GSH: GSSG ratio, intracellular iron concentration, iron metabolizing genes, mitochondrial dysfunction etc. revealed that CPF induces ferroptosis which can be reversed by Vit E supplementation. Ultimately, reduced concentration of CPF in zebrafish serum and flesh highlighted the role of Vit E in ameliorating CPF toxicity.


Subject(s)
Chlorpyrifos , Ferroptosis , Glutathione , Hepatocytes , Iron , Lipid Peroxidation , Vitamin E , Zebrafish , Animals , Chlorpyrifos/toxicity , Vitamin E/pharmacology , Vitamin E/metabolism , Iron/metabolism , Lipid Peroxidation/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Ferroptosis/drug effects , Glutathione/metabolism , Liver/drug effects , Liver/metabolism , Antioxidants/metabolism , NF-E2-Related Factor 2/metabolism
16.
Int Immunopharmacol ; 136: 112335, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38815349

ABSTRACT

Chlorpyrifos (CPF) is a widely used organophosphate insecticide in agriculture and homes. Exposure to organophosphates is associated with neurotoxicity. Fluoxetine (FLX) is a selective serotonin reuptake inhibitor (SSRI) that is widely prescribed for depression and anxiety disorders. Studies have shown that FLX has neuroprotective, anti-inflammatory, antioxidant, and antiapoptotic effects. The molecular mechanisms underlying FLX are not fully understood. This work aimed to investigate the potential neuroprotective effect of FLX on CPF-induced neurotoxicity and the underlying molecular mechanisms involved. Thirty-two rats were randomly divided into four groups: (I) the vehicle control group; (II) the FLX-treated group (10 mg/kg/day for 28 days, p.o); (III) the CPF-treated group (10 mg/kg for 28 days); and (IV) the FLX+CPF group. FLX attenuated CPF-induced neuronal injury, as evidenced by a significant decrease in Aß and p-Tau levels and attenuation of cerebral and hippocampal histological abrasion injury induced by CPF. FLX ameliorated neuronal oxidative stress, effectively reduced MDA production, and restored SOD and GSH levels through the coactivation of the PPARγ and SIRT1 proteins. FLX counteracted the neuronal inflammation induced by CPF by decreasing MPO, NO, TNF-α, IL-1ß, and IL-6 levels by suppressing NF-κB and JAK1/STAT3 activation. The antioxidant and anti-inflammatory properties of FLX help to prevent CPF-induced neuronal intoxication.


Subject(s)
Chlorpyrifos , Fluoxetine , Janus Kinase 1 , NF-kappa B , Neuroprotective Agents , PPAR gamma , STAT3 Transcription Factor , Signal Transduction , Sirtuin 1 , Animals , STAT3 Transcription Factor/metabolism , Sirtuin 1/metabolism , NF-kappa B/metabolism , PPAR gamma/metabolism , Janus Kinase 1/metabolism , Male , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Signal Transduction/drug effects , Chlorpyrifos/toxicity , Rats , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neurons/drug effects , Neurons/pathology , Oxidative Stress/drug effects , Insecticides/toxicity , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Rats, Sprague-Dawley , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/pathology
17.
Ecotoxicology ; 33(6): 642-652, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38776006

ABSTRACT

The excessive use of pesticides in agriculture and the widespread use of metals in industrial activities and or technological applications has significantly increased the concentrations of these pollutants in both aquatic and terrestrial ecosystems worldwide, making aquatic biota increasingly vulnerable and putting many species at risk of extinction. Most aquatic habitats receive pollutants from various anthropogenic actions, leading to interactions between compounds that make them even more toxic. The aim of this study was to assess the effects of the compounds Chlorpyrifos (insecticide) and Cadmium (metal), both individually and in mixtures, on the cladocerans Ceriodaphnia rigaudi and Ceriodaphnia silvestrii. Acute toxicity tests were conducted for the compounds individually and in mixture, and an ecological risk assessment (ERA) was performed for both compounds. Acute toxicity tests with Cadmium resulted in EC50-48 h of 0.020 mg L-1 for C. rigaudi and 0.026 mg L-1 for C. silvestrii, while tests with Chlorpyrifos resulted in EC50-48 h of 0.047 µg L-1 and 0.062 µg L-1, respectively. The mixture test for C. rigaudi showed the occurrence of additive effects, while for C. silvestrii, antagonistic effects occurred depending on the dose level. The species sensitivity distribution curve for crustaceans, rotifers, amphibians, and fishes resulted in an HC5 of 3.13 and an HC50 of 124.7 mg L-1 for Cadmium; an HC5 of 9.96 and an HC50 of 5.71 µg L-1 for Chlorpyrifos. Regarding the ERA values, Cadmium represented a high risk, while Chlorpyrifos represented an insignificant to a high risk.


Subject(s)
Cadmium , Chlorpyrifos , Cladocera , Toxicity Tests, Acute , Water Pollutants, Chemical , Animals , Chlorpyrifos/toxicity , Water Pollutants, Chemical/toxicity , Cladocera/drug effects , Cadmium/toxicity , Insecticides/toxicity , Risk Assessment
18.
J Agric Food Chem ; 72(19): 11205-11220, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38708789

ABSTRACT

Chlorpyrifos (CPF), dichlorvos (DDV), and cypermethrin (CP), as commonly used pesticides, have been implicated in inducing neuropsychiatric disorders, such as anxiety, depression-like behaviors, and locomotor activity impairment. However, the exact molecular mechanisms of these adverse effects, particularly in both sexes and their next-generation effects, remain unclear. In this study, we conducted behavioral analysis, along with cellular assays (monodansylcadaverine staining) and molecular investigations (qRT-PCR and western blotting of mTOR, P62, and Beclin-1) to clear the potential role of autophagy in pesticide-induced behavioral alterations. For this purpose, 42 adult female and 21 male inbred ICR mice (F0) were distributed into seven groups. Maternal mice (F0) and 112 F1 offspring were exposed to 0.5 and 1 ppm of CPF, DDV, and CP through drinking water. F1 male and female animals were studied to assess the sex-specific effects of pesticides on brain tissue. Our findings revealed pronounced anxiogenic effects and impaired locomotor activity in mice. F1 males exposed to CPF (1 ppm) exhibited significantly elevated depression-like behaviors compared to other groups. Moreover, pesticide exposure reduced mTOR and P62 levels, while enhancing the Beclin-1 gene and protein expression. These changes in autophagy signaling pathways, coupled with oxidative and neurogenic damage in the cerebral cortex and hippocampus, potentially contribute to heightened locomotor activity, anxiety, and depression-like behaviors following pesticide exposure. This study underscores the substantial impact of pesticides on both physiological and behavioral aspects, emphasizing the necessity for comprehensive assessments and regulatory considerations for pesticide use. Additionally, the identification of sex-specific responses presents a crucial dimension for pharmaceutical sciences, highlighting the need for tailored therapeutic interventions and further research in this field.


Subject(s)
Anxiety , Autophagy , Behavior, Animal , Depression , Mice, Inbred ICR , Oxidative Stress , Pesticides , Animals , Female , Male , Mice , Autophagy/drug effects , Anxiety/chemically induced , Anxiety/physiopathology , Anxiety/metabolism , Depression/metabolism , Depression/genetics , Depression/chemically induced , Depression/physiopathology , Oxidative Stress/drug effects , Pesticides/toxicity , Pesticides/adverse effects , Behavior, Animal/drug effects , Locomotion/drug effects , Humans , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Chlorpyrifos/toxicity , Chlorpyrifos/adverse effects
19.
Environ Sci Pollut Res Int ; 31(24): 35470-35482, 2024 May.
Article in English | MEDLINE | ID: mdl-38730216

ABSTRACT

Co-exposure soil studies of pollutants are necessary for an appropriate ecological risk assessment. Here, we examined the effects of two-component mixtures of metal oxide nanoparticles (ZnO NPs or goethite NPs) with the insecticide chlorpyrifos (CPF) under laboratory conditions in short-term artificial soil assays using Eisenia andrei earthworms. We characterized NPs and their mixtures by scanning electron microscopy, atomic force microscopy, dynamic light scattering and zeta potential, and evaluated effects on metal accumulation, oxidative stress enzymes, and neurotoxicity related biomarkers in single and combined toxicity assays. Exposure to ZnO NPs increased Zn levels compared to control in single and combined exposure (ZnO NPs + CPF) at 72 h and 7 days, respectively. In contrast, there was no indication of Fe increase in organisms exposed to goethite NPs. One of the most notable effects on oxidative stress biomarkers was produced by single exposure to goethite NPs, showing that the worms were more sensitive to goethite NPs than to ZnO NPs. Acetylcholinesterase and carboxylesterase activities indicated that ZnO NPs alone were not neurotoxic to earthworms, but similar degrees of inhibition were observed after single CPF and ZnO NPs + CPF exposure. Differences between single and combined exposure were found for catalase and superoxide dismutase (goethite NPs) and for glutathione S-transferase (ZnO NPs) activities, mostly at 72 h. These findings suggest a necessity to evaluate mixtures of NPs with co-existing contaminants in soil, and that the nature of metal oxide NPs and exposure time are relevant factors to be considered when assessing combined toxicity, as it may have an impact on ecotoxicological risk assessment.


Subject(s)
Chlorpyrifos , Metal Nanoparticles , Oligochaeta , Soil Pollutants , Animals , Oligochaeta/drug effects , Chlorpyrifos/toxicity , Metal Nanoparticles/toxicity , Soil Pollutants/toxicity , Oxidative Stress/drug effects , Zinc Oxide/toxicity , Insecticides/toxicity , Oxides/toxicity
20.
Ecotoxicol Environ Saf ; 277: 116374, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38677072

ABSTRACT

Farmland soil organisms frequently encounter pesticide mixtures presented in their living environment. However, the underlying toxic mechanisms employed by soil animals to cope with such combined pollution have yet to be explored. This investigation aimed to reveal the changes in cellular and mRNA levels under chlorpyrifos (CPF) and lambda-cyhalothrin (LCT) co-exposures in earthworms (Eisenia fetida). Results exhibited that the combination of CPF and LCT triggered an acute synergistic influence on the animals. Most exposures resulted in significant alterations in the activities of total superoxide dismutase (T-SOD), copper/zinc superoxide dismutase (Cu/Zn-SOD), caspase 3, and carboxylesterase (CarE) compared to the basal level. Moreover, when exposed to chemical mixtures, the transcription levels of four genes [heat shock protein 70 (hsp70), gst, sod, and calreticulin (crt)] also displayed more pronounced changes compared with their individual exposures. These changes in determined parameters indicated the occurrence of oxidative stress, cell death, detoxification dysfunction, and endoplasmic reticulum damage after co-exposure to CPF and LCT in E. fetida. The comprehensive examination of mixture toxicities of CPF and LCT at different endpoints would help to understand the overall toxicity they cause to soil invertebrates. The augmented deleterious effect of these pesticides in a mixture suggested that mixture toxicity assessment was necessary for the safety evaluation and application of pesticide mixtures.


Subject(s)
Chlorpyrifos , HSP70 Heat-Shock Proteins , Nitriles , Oligochaeta , Oxidative Stress , Pyrethrins , Soil Pollutants , Superoxide Dismutase , Animals , Oligochaeta/drug effects , Chlorpyrifos/toxicity , Pyrethrins/toxicity , Nitriles/toxicity , Superoxide Dismutase/metabolism , Soil Pollutants/toxicity , Oxidative Stress/drug effects , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Carboxylesterase/metabolism , Insecticides/toxicity , Caspase 3/metabolism , Caspase 3/genetics , Calreticulin/genetics , Calreticulin/metabolism , Glutathione Transferase/metabolism , Glutathione Transferase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL