Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 927
Filter
1.
Molecules ; 29(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38998979

ABSTRACT

To reduce unwanted fat bloom in the manufacturing and storage of chocolates, detailed knowledge of the chemical composition and molecular mobility of the oils and fats contained is required. Although the formation of fat bloom on chocolate products has been studied for many decades with regard to its prevention and reduction, questions on the molecular level still remain to be answered. Chocolate products with nut-based fillings are especially prone to undesirable fat bloom. The chemical composition of fat bloom is thought to be dominated by the triacylglycerides of the chocolate matrix, which migrate to the chocolate's surface and recrystallize there. Migration of oils from the fillings into the chocolate as driving force for fat bloom formation is an additional factor in the discussion. In this work, the migration was studied and confirmed by MRI, while the chemical composition of the fat bloom was measured by NMR spectroscopy and HPLC-MS, revealing the most important triacylglycerides in the fat bloom. The combination of HPLC-MS with NMR spectroscopy at 800 MHz allows for detailed chemical structure determination. A rapid routine was developed combining the two modalities, which was then applied to investigate the aging, the impact of chocolate composition, and the influence of hazelnut fillings processing parameters, such as the degree of roasting and grinding of the nuts or the mixing time, on fat bloom formation.


Subject(s)
Chocolate , Magnetic Resonance Spectroscopy , Chocolate/analysis , Chromatography, High Pressure Liquid/methods , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Triglycerides/analysis , Triglycerides/chemistry , Cacao/chemistry , Food Analysis/methods , Corylus/chemistry , Liquid Chromatography-Mass Spectrometry
2.
J Food Sci ; 89(7): 4419-4429, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957111

ABSTRACT

The objective of this research was to evaluate changes in flow behavior of chocolate during chocolate grinding using a stone grinder as affected by chocolate formulation. Three different types of chocolates were evaluated. Two chocolates without milk added (70% chocolate) and two chocolates with milk added and with different amounts of cocoa nibs (30% chocolate and 14% chocolate) were tested. For the 70% chocolates, nibs of two different origins were used; therefore, a total of four samples were evaluated. Chocolates were processed in a stone grinder, and samples were taken as a function of grinding time. For each timepoint, the flow behavior of the samples was measured using a rotational rheometer and fitted to the Casson model. Particle size was measured using a laser scattering instrument. Results showed that yield stress increased linearly while the Casson plastic viscosity decreased exponentially with grinding time (smaller particles). Particle size distribution of the chocolates showed a prominent bimodal distribution for short grinding times (∼9 h) with small (∼15 µm) and large (∼100 µm) particles; with longer grinding time, the population of larger particles decreased. Yield stress values were higher for the 70% chocolate, but they were not very different between the two milk chocolates tested. The Casson plastic viscosity was greatest for the 70% chocolate, followed by the 30% chocolate. The 14% chocolate had the lowest Casson plastic viscosity. Changes of Casson plastic viscosity with particle size were more evident for the dark chocolates compared to the milk ones. These results are helpful to small chocolate producers who need better understanding of how the formulation and grinding of chocolate affect its flow behavior, which will ultimately affect chocolate handling during production.


Subject(s)
Chocolate , Food Handling , Milk , Particle Size , Chocolate/analysis , Food Handling/methods , Viscosity , Milk/chemistry , Rheology , Cacao/chemistry , Animals
3.
J Texture Stud ; 55(4): e12856, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39030825

ABSTRACT

The transition from primary to permanent dentition is an important phase in children's oral development, yet its impact on texture perception and food acceptance are less explored. This study aimed to investigate how changing dentition and tooth loss influence texture preferences and perception of eating difficulty among children aged 5 to 12 years. Children (n = 475) completed a forced-choice questionnaire featuring drawings of six food pairs, each available in hard or soft texture, and reported whether they had started losing primary teeth and the number of tooth gaps present. They also tasted four samples: chocolate snacks (cake and biscuits) and cheddar cheese (grated and cubes), evaluating their perceived eating difficulty and liking for each sample. Analysis of questionnaire responses showed a general preference for softer food textures among children, with a 36% probability of choosing hard foods. Preferences were not related to child's dental state, including primary teeth loss (p = .13) or number of tooth gaps (p = .45). In the taste test, chocolate biscuits and cheese cubes were perceived as significantly more difficult to eat than chocolate cake and grated cheese, respectively (both p < .0001). Children with more than two tooth gaps reported greater eating difficulty for chocolate biscuits and cheese cubes compared to children with fewer or no tooth gaps. This study demonstrated that children's texture preferences for hardness of foods remained consistent during dentition change, while their perception of eating difficulty could vary based on their dental state at specific points in time.


Subject(s)
Food Preferences , Humans , Child , Female , Male , Child, Preschool , Australia , Taste , Surveys and Questionnaires , Chocolate , Cheese , Eating , Dentition , Tooth, Deciduous , Feeding Behavior , Snacks
4.
Soft Matter ; 20(26): 5134-5152, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38895755

ABSTRACT

This study presents a rigorous mechanical characterisation investigation on milk chocolate with varying porosities, at different temperatures and strain rate levels. Uniaxial compression tests at temperatures varying from 20 °C to 30 °C were performed to measure the bulk properties of chocolate as a function of porosity and temperature. Fracture experiments were also conducted to compute the fracture energy at temperature levels between 20 °C and 30 °C for all tested samples. Additionally, rheological experiments are conducted to compute the viscosity of the different chocolates at 37 °C. This combined experimental analysis of solid mechanics, fracture mechanics, and rheology aims to define the impact of temperature and chocolate's phase change from solid to liquid on its mechanical properties. Moreover, the impact of micro-aeration on the relationship between material properties and temperature is discussed. The results demonstrate a significant impact of both temperature and micro-aeration on the chocolate's material properties; fracture stresses decrease with micro-aeration due to the presence of micro-pores creating weak links in the chocolate matrix, the critical strain energy release rate decreases with micro-aeration at temperatures up to 25 °C and increases at temperatures above 30 °C. Finally, the viscosity at 37 °C increases with increasing porosity due to the obstruction of the flow by micro-pores acting as "solid" particles. The results highlight how the impact of micro-aeration on the material properties of chocolate alters as the testing temperature rises and the material changes phase. The relationships between the micro-aeration and material properties and the dependence of temperature on the different mechanical properties are used to explain the difference in textural attributes as obtained from temporal dominance sensation tests. This study seeks to contribute valuable insights into the field of chocolate technology, emphasizing the need for a combined engineering approach to understand the structural breakdown of chocolate during oral processing as mechanisms such as chewing, melting, mixing and shearing occur.


Subject(s)
Chocolate , Rheology , Temperature , Viscosity , Porosity
5.
Food Res Int ; 189: 114552, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876591

ABSTRACT

The objective of this study was to assess the effects of simulated digestion on the formation of α-dicarbonyl compounds (α-DCs) in chocolates. For that purpose, the concentrations of glyoxal and methylglyoxal in chocolates were determined through High-Performance Liquid Chromatography (HPLC) analysis before and after in vitro digestion. The initial concentrations ranged from 0.0 and 228.2 µg/100 g, and 0.0 and 555.1 for glyoxal and methylglyoxal, respectively. Following digestion, there was a significant increase in both glyoxal and methylglyoxal levels, reaching up to 1804 % and 859 %, respectively. The findings indicate that digestive system conditions facilitate the formation of advanced glycation end product (AGE) precursors. Also, glyoxal and methylglyoxal levels were found to be low in chocolate samples containing dark chocolate. In contrast, they were found to be high in samples containing hazelnuts, almonds, pistache, and milk. Further studies should focus on α-DCs formation under digestive system conditions, including the colon, to determine the effects of gut microbiota.


Subject(s)
Chocolate , Digestion , Glyoxal , Pyruvaldehyde , Glyoxal/analysis , Pyruvaldehyde/metabolism , Pyruvaldehyde/analysis , Chocolate/analysis , Chromatography, High Pressure Liquid , Glycation End Products, Advanced/metabolism , Glycation End Products, Advanced/analysis , Biological Availability , Humans
6.
Nutrients ; 16(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38931273

ABSTRACT

BACKGROUND: We conducted a systematic review and meta-analysis to examine the effect of dietary intake of cocoa on anthropometric measurements, lipid and glycemic profiles, and blood pressure levels in adults, with and without comorbidities. METHODS: The databases used were MEDLINE (PubMed), EMBASE, Web of Science, Cochrane, LILACS, and SciELO. The eligible studies were randomized clinical trials (RCTs) involving adults undergoing cocoa consumption (cocoa extract or ≥70% cocoa dark chocolate) for ≥4 weeks that evaluated at least one of the following markers: body weight, body mass index (BMI), waist/abdominal circumference, total cholesterol, LDL-c, triglycerides, HDL-c, blood glucose, glycated hemoglobin (HbA1c), and systolic and diastolic blood pressure (SBP/DBP). RESULTS: Thirty-one studies were included, totaling 1986 participants. Cocoa consumption showed no effects on body weight, BMI, waist circumference, triglycerides, HDL-c and HbA1c. Yet, there was a reduction in total cholesterol (-8.35 mg/dL, 95% CI -14.01; -2.69 mg/dL), LDL-c (-9.47 mg/dL, 95% CI -13.75; -5.20 mg/dL), fasting blood glucose (-4.91 mg/dL, 95% CI -8.29; -1.52 mg/dL), SBP (-2.52 mmHg, 95% CI -4.17; -0.88 mmHg), and DBP (-1.58 mmHg, 95% CI -2.54; -0.62 mmHg). CONCLUSIONS: The consumption of cocoa showed protective effects on major cardiometabolic risk markers that have a clinical impact in terms of cardiovascular risk reduction.


Subject(s)
Blood Glucose , Blood Pressure , Cacao , Cardiometabolic Risk Factors , Randomized Controlled Trials as Topic , Humans , Blood Glucose/metabolism , Biomarkers/blood , Glycated Hemoglobin/metabolism , Glycated Hemoglobin/analysis , Cardiovascular Diseases/prevention & control , Chocolate , Male , Female , Adult , Body Mass Index , Body Weight , Waist Circumference , Middle Aged , Triglycerides/blood , Diet , Lipids/blood
7.
Food Funct ; 15(13): 6883-6899, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38864465

ABSTRACT

The most significant contributor to global mortality are cardiovascular diseases. Dietary factors significantly impact the risk, advancement, and treatment of cardiometabolic conditions. Chocolate, known for its adaptability and capacity to stimulate pleasure centers, emerges as a promising vehicle for integrating different bioactive elements. This systematic review analyzed 10 randomized controlled trials investigating the health effects of consuming enriched, fortified, or supplemented chocolate. These trials varied in chocolate intake amounts (ranging from 5 to 101 g day-1), incorporated bioactive components (co-crystalized astaxanthin, lycopene, wood-based phytosterol-phytostanol mixture, canola sterol esters, etc.), and duration (from 2 weeks to 1 year). Some enriched chocolates were found to reduce total and LDL cholesterol and influence markers of oxidative damage, inflammation, immune function, and skin parameters. However, certain trials showed a minimal impact on health outcomes. Therefore, while enriched chocolate holds promise as a carrier for beneficial bioactive compounds, rigorous scientific inquiry and methodological rigor are crucial to fully substantiate these claims. Comprehensive evaluations covering cardiovascular health, metabolic function, immune response, and other aspects are needed to understand its potential benefits and limitations. Advancing robust research initiatives could help realize the full potential of enriched chocolate in promoting human health and well-being.


Subject(s)
Chocolate , Dietary Supplements , Food, Fortified , Humans , Cardiovascular Diseases/prevention & control , Chocolate/analysis , Functional Food , Randomized Controlled Trials as Topic
8.
Nutrients ; 16(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38892691

ABSTRACT

In the present study, the effect of the addition of quince and collagen type I and III to dessert chocolate on its functional properties was determined. The study evaluated the antioxidant potential of the tested formulations using the FRAP method and the linoleic acid oxidation test and beta-carotene bleaching test. The tested samples were also evaluated for inhibitory activity against enzymes important in preventive health (inflammation and neurodegenerative disorders) namely: AChE, BChE, GR, GPx, COX, and SOD. The addition of quince and collagen to the chocolate samples resulted in higher activity compared to the control sample, as indicated by the FRAP test. The experiment highlighted the impact of including quince fruit on the antioxidant activity of the chocolate samples. Interestingly, merely increasing the quince fruit amount did not consistently enhance antioxidant potential. Specifically, chocolate samples with a lower proportion of quince fruit (2 g/100 g) exhibited greater antioxidant activity when supplemented with collagen I. Conversely, in samples with higher quince percentages (3 g and 4 g), those enriched with collagen III showed higher antioxidant activity. Similar correlations were observed in the linoleic acid oxidation test. Notably, samples containing 3 g and 4 g of quince and type III collagen demonstrated statistically similar highest antioxidant properties. Regardless of the collagen type used, there was no observed increase in activity towards the tested enzymes for samples with the lowest percentage of quince fruit. Both collagen types exhibited the highest activity in the inhibition assay against acetylcholinesterase and butyrylcholinesterase when combined with 3 g and 4 g of quince. Overall, the experimental incorporation of both fruit and collagen enhanced the chocolates' activity. Similarly to the antioxidant activity findings, chocolates with lower quince fruit quantities showed increased activity when supplemented with collagen III, while those with higher quince content (3 g and 4 g) displayed higher activity with collagen I. Bitter chocolate by itself is an attractive food product, rich in many bioactive compounds. However, enriching it with other attractive raw materials can make its properties and taste even more attractive.


Subject(s)
Antioxidants , Chocolate , Rosaceae , Chocolate/analysis , Antioxidants/pharmacology , Animals , Rosaceae/chemistry , Collagen , Inflammation/prevention & control , Fruit/chemistry , Swine , Oxidation-Reduction/drug effects
9.
Food Res Int ; 188: 114429, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823856

ABSTRACT

Among the emerging prebiotics, galactooligosaccharide (GOS) has a remarkable value with health-promoting properties confirmed by several studies. In addition, the application of ohmic heating has been gaining prominence in food processing, due to its various technological and nutritional benefits. This study focuses on the transformative potential of ohmic heating processing (OH, voltage values 30 and 60 V, frequencies 100, 300, and 500 Hz, respectively) in prebiotic chocolate milk beverage (3.0 %w/v galactooligosaccharide) processing. Chemical stability of GOS was assessed along all the ohmic conditions. In addition, microbiological analysis (predictive modeling), physical analysis (color and rheology), thermal load indicators assessment, bioactivity values, and volatile compound was performed. HPAEC-PAD analysis confirmed GOS stability and volatile compound evaluation supported OH's ability to preserve flavor-associated compounds. Besides, OH treatments demonstrated superior microbial reduction and decreased thermal load indicators as well as the assessment of the bioactivity. In conclusion, OH presented was able to preserve the GOS chemical stability on chocolate milk beverages processing with positive effects of the intrinsic quality parameters of the product.


Subject(s)
Chocolate , Food Handling , Milk , Oligosaccharides , Oligosaccharides/chemistry , Oligosaccharides/analysis , Chocolate/analysis , Food Handling/methods , Milk/chemistry , Animals , Prebiotics/analysis , Hot Temperature , Beverages/analysis , Rheology , Cacao/chemistry , Volatile Organic Compounds/analysis
10.
Nat Food ; 5(5): 361-362, 2024 May.
Article in English | MEDLINE | ID: mdl-38773277

Subject(s)
Chocolate , Humans , Cacao
11.
Nat Food ; 5(5): 423-432, 2024 May.
Article in English | MEDLINE | ID: mdl-38773278

ABSTRACT

Chocolate production faces nutritional, environmental and socio-economic challenges present in the conventional cocoa value chain. Here we developed an approach that addresses these challenges by repurposing the often-discarded pectin-rich cocoa pod endocarp and converting it into a gel. This is done using cocoa pulp juice concentrate to replace traditional sugar from sugar beets. Although swelling of fibres, proteins and starches can limit gel incorporation, our proposed chocolate formulation contains up to 20 wt% gel. It also has comparable sweet taste as traditional chocolate while offering improved nutritional value with higher fibre and reduced saturated fatty acid content. A cradle-to-factory life cycle assessment shows that large-scale production of this chocolate could reduce land use and global warming potential compared with average European dark chocolate production. The process also provides opportunities for diversification of farmers' income and technology transfer, offering potential socio-economic benefits for cocoa-producing regions.


Subject(s)
Cacao , Chocolate , Nutritive Value , Cacao/chemistry , Chocolate/analysis , Humans , Pectins/chemistry , Dietary Fiber/analysis , Taste , Fruit/chemistry , Food Handling/methods
12.
Food Res Int ; 187: 114360, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763644

ABSTRACT

The presence of contaminants in cacao-derived products, especially in chocolates, has raised concerns regarding food safety and human health. The study assessed the concentration variation of 16 elements in 155 chocolate samples from the US market by cacao content and country of geographic origin. The study further examined the potential health risks posed by toxic metals and determined the contribution of essential elements to the Daily Recommended Intake (DRI), estimated based on an ounce (∼28.4 g) of daily chocolate consumption. Dark chocolates with ≥50 % cacao exhibited consecutively increasing mean levels from 1.2 to 391 µg/kg for U, Tl, Th, As, Pb, Se, Cd, and Co. Similarly, Ni, Sr, Cu, Mn, Zn, Fe, Ca, and Mg had mean concentrations from 4.0 to 1890 mg/kg. Dark chocolates sourced from Central and South America exhibited the highest mean levels of Cd, and South America samples also contained elevated Pb, whereas those from West Africa and Asia had low Cd and Pb, respectively. Cacao contents showed increasingly strong association with Cd, Co, Mn, Sr, Ni, Cu, Zn, and Mg (r = 0.60-0.84), and moderately with Se, Fe, As, and Tl (r = 0.35-0.49), indicating these elements are primarily derived from cacao beans. Weak association of cacao contents with Pb, Th, and U levels (r < 0.25), indicates post-harvest contaminations. Hazard Quotient (HQ) > 1 was found only for Cd in 4 dark chocolates, and Hazard Index (HI) > 1 for cumulative risk of Cd, Pb, Ni, As, and U was found in 33 dark chocolates, indicating potential non-carcinogenic risks for 15 kg children but none for 70 kg adults. Dark chocolate also substantially contributed to 47-95 % of the DRI of Cu for children and 50 % for adults. Dark chocolates also provided notable Fe, Mn, Mg, and Zn contributions to the DRI. These essential elements are recognized to reduce the bioavailability of toxic metals such as Cd, Pb, or Ni, thereby potentially lowering associated health risks. This study informs consumers, food industries, and regulatory agencies to target cacao origins or chocolate brands with lower toxic metal contents for food safety and minimizing adverse health effects.


Subject(s)
Cacao , Chocolate , Food Contamination , Metals, Heavy , Metals, Heavy/analysis , Risk Assessment , Chocolate/analysis , Humans , Cacao/chemistry , Food Contamination/analysis , United States , Trace Elements/analysis , Recommended Dietary Allowances
13.
Food Res Int ; 187: 114378, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763650

ABSTRACT

Although chocolates are often chosen for sensory pleasure, they are also selected to enhance mood and relieve emotional stress, or potentially chosen for its perceived health benefits if stress adversely affects physical well-being. This study aimed to investigate whether emotional stress influenced the motivations behind chocolate selection, subsequent liking, and emotional response. Participants were divided into a control group (n = 76) and a group with induced acute stress (n = 74). Stimuli were presented as dark chocolate packaging, each evoking sensory appeal, health, and emotional stress relief. Participants chose one stimulus from three options that they were most inclined to consume and evaluated the overall liking and emotional attributes of the stimuli. They also rated the overall liking and emotional attributes of three types of chocolates, each identical but paired with distinct stimuli. Their food attitudes were also assessed. Stress did not change the choice of stimuli, indicating that stress did not influence the motivation for chocolate selection. Instead, the choice of stimuli aligned with participants' food attitudes; those favoring sensory appeal and emotional stress relief prioritized pleasure in their usual food choices. Stress tended to increase liking and chocolate-associated positive emotions with sensory appeal, as opposed to others, to immediately alleviate negative emotions. The most robust motivation to consume chocolates was sensory pleasure, irrespective of stress, because of a preestablished association between sensory pleasure and mood enhancement.


Subject(s)
Chocolate , Choice Behavior , Emotions , Food Preferences , Motivation , Stress, Psychological , Humans , Female , Male , Food Preferences/psychology , Young Adult , Adult , Stress, Psychological/psychology , Pleasure , Adolescent
14.
J Agric Food Chem ; 72(23): 13308-13319, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38808883

ABSTRACT

α,ß-Unsaturated carbonyls are highly reactive and described as structural alerts for genotoxicity. Ten of them (either commercially available or synthesized here by combinatorial chemistry) were first investigated throughout the chocolate-making process by solvent-assisted flavor evaporation (SAFE) coupled to GC-MS/SIM. Monitored α,ß-unsaturated aldehydes were formed during chocolate production, primarily through aldol condensation of Strecker aldehydes triggered by bean roasting. Notably, levels of 2-phenylbut-2-enal (up to 399 µg·kg-1) and 5-methyl-2-phenylhex-2-enal (up to 216 µg·kg-1) increased up to 40-fold. Dry conching caused evaporation of α,ß-unsaturated carbonyls, while wet conching partially restored or increased their levels due to cocoa butter addition. Further analyses showed that α,ß-unsaturated aldehydes also occurred in most commercial sweet snacks (up to 16 µg·kg-1), although often at lower concentrations than in roasted cocoa or derived chocolates. In the end, none of the monitored α,ß-unsaturated aldehydes did raise a health concern compared to current maximum use levels (2-5 mg·kg-1). On the other hand, much higher levels of genotoxic furan-2(5H)-one were found in crepe and cake samples (up to 4.3 mg·kg-1).


Subject(s)
Aldehydes , Cacao , Chocolate , Snacks , Chocolate/analysis , Cacao/chemistry , Aldehydes/chemistry , Aldehydes/analysis , Gas Chromatography-Mass Spectrometry , Mutagens/analysis , Cooking , Food Handling , Flavoring Agents/chemistry
15.
J Neuroimaging ; 34(4): 415-423, 2024.
Article in English | MEDLINE | ID: mdl-38676308

ABSTRACT

BACKGROUND AND PURPOSE: Preferences can be developed for, or against, specific brands and services. Using two functional magnetic resonance imaging (fMRI) experiments, this study investigated two dissociable aspects of reward processing, craving and liking, in chocolate lovers. The goal was to further delineate the neural basis supporting branding effects using familiar chocolate (FC) and unfamiliar chocolate (UC) brand images. METHODS: In the first experiment, subjects rated their subjective craving and liking on a scale of 1-5 (weak-strong) for each FC and UC image. In the second experiment, they performed a choice task between FC and UC images. RESULTS: Both the craving and liking ratings were significantly greater for FC and were differentially correlated with choice behavior. Craving ratings predicted greater preference for UC, and liking ratings predicted greater preference for FC. A contrast of neural activity for UC versus FC choice trials revealed significantly greater activation for UC choices in the bilateral inferior frontal gyrus and right caudate head. Response times for the FC images were faster than UC images; fMRI activity in the ventromedial prefrontal cortex was significantly correlated with response times during FC trials, but not UC trials. These correlations were significantly different from each other at the group level. CONCLUSIONS: The choices for branded chocolate products are driven by higher subjective reward ratings and lower neural processing demands.


Subject(s)
Brain , Chocolate , Food Preferences , Magnetic Resonance Imaging , Humans , Female , Male , Adult , Brain/diagnostic imaging , Brain/physiology , Food Preferences/physiology , Brain Mapping/methods , Young Adult , Choice Behavior/physiology
16.
Nutrients ; 16(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38613003

ABSTRACT

The ingestion of dietary cocoa flavanols acutely alters functions of the cerebral endothelium, but whether the effects of flavanols permeate beyond this to alter other brain functions remains unclear. Based on converging evidence, this work tested the hypothesis that cocoa flavanols would alter brain excitability in young healthy adults. In a randomised, cross-over, double-blinded, placebo-controlled design, transcranial magnetic stimulation was used to assess corticospinal and intracortical excitability before as well as 1 and 2 h post-ingestion of a beverage containing either high (695 mg flavanols, 150 mg (-)-epicatechin) or low levels (5 mg flavanols, 0 mg (-)-epicatechin) of cocoa flavanols. In addition to this acute intervention, the effects of a short-term chronic intervention where the same cocoa flavanol doses were ingested once a day for 5 consecutive days were also investigated. For both the acute and chronic interventions, the results revealed no robust alteration in corticospinal or intracortical excitability. One possibility is that cocoa flavanols yield no net effect on brain excitability, but predominantly alter functions of the cerebral endothelium in young healthy adults. Future studies should increase intervention durations to maximize the acute and chronic accumulation of flavanols in the brain, and further investigate if cocoa flavanols would be more effective at altering brain excitability in older adults and clinical populations than in younger adults.


Subject(s)
Cacao , Catechin , Chocolate , Humans , Aged , Catechin/pharmacology , Food , Brain , Polyphenols
17.
Med Arch ; 78(2): 149-153, 2024.
Article in English | MEDLINE | ID: mdl-38566867

ABSTRACT

Background: Dark chocolate and carrot juice may positively decline the pain. However, there is a lack evidence the impact of combination dark chocolate and carrot juice on labor pain during stage 1 of birth delivery among primigravida. Objective: This study aimed to examine the effectiveness of dark chocolate and carrot juice on perceived labor pain during stage 1 of birth delivery among primigravida. Methods: This was a quasi-experimental study with participants who received dark chocolate (n=30), carrot juice (n=30), and control group (n=30). Pain level was assessed by using the Numeric Pain Rating Scale (NPRS) before the intervention and at 30 hours after intervention. The Chi-square and one-way analysis of variance tests and general equational model were used. Results: Data were collected and analyzed before and after 60 minutes of intervention. Our results showed a significant interaction between the group and time, with both groups independently ameliorating labor pain. Conclusion: Dark chocolate and carrot juice therapies independently lowered pain labor in primigravida mothers, making them a viable treatment for advanced pain labor.


Subject(s)
Chocolate , Daucus carota , Labor Pain , Pregnancy , Female , Humans , Labor Pain/therapy
18.
Sci Rep ; 14(1): 8261, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38589622

ABSTRACT

In view of the health concerns associated with high sugar intake, this study investigates methods to enhance sweetness perception in chocolate without increasing its sugar content. Using additive manufacturing, chocolate structures were created from masses with varying sugar and fat compositions, where hazelnut oil served as a partial cocoa butter replacement. The study found that while variations in sugar content minimally affected the physical properties of the chocolate masses, hazelnut oil significantly modified melting behavior and consumption time. Chocolate masses with higher hazelnut oil content but similar sugar content exhibited a 24% increase in sweetness perception, likely due to accelerated tastant (i.e., sucrose) release into saliva. Multiphase structures, designated as layered, cube-in-cube, and sandwich structures, exhibited less sensory differences compared to the homogeneous control. Nonetheless, structures with hazelnut oil-rich outer layers resulted in an 11% increase in sweetness perception, even without sugar gradients. This suggests that tastant release plays a more critical role than structural complexity in modifying sweetness perception. This research highlights the efficacy of simpler multiphase structures, such as sandwich designs, which offer sensory enhancements comparable to those of more complex designs but with reduced manufacturing effort, thus providing viable options for industrial-scale production.


Subject(s)
Cacao , Chocolate , Cacao/chemistry , Sucrose , Carbohydrates , Nutrients
19.
PLoS One ; 19(4): e0297662, 2024.
Article in English | MEDLINE | ID: mdl-38603675

ABSTRACT

The cocoa pod borer (CPB) Conopomorpha cramerella (Snellen) (Lepidoptera: Gracillaridae) is one of the major constraints for cocoa production in South East Asia. In addition to cultural and chemical control methods, autocidal control tactics such as the Sterile Insect Technique (SIT) could be an efficient addition to the currently control strategy, however SIT implementation will depend on the population genetics of the targeted pest. The aim of the present work was to search for suitable microsatellite loci in the genome of CPB that is partially sequenced. Twelve microsatellites were initially selected and used to analyze moths collected from Indonesia, Malaysia, and the Philippines. A quality control verification process was carried out and seven microsatellites found to be suitable and efficient to distinguish differences between CPB populations from different locations. The selected microsatellites were also tested against a closely related species, i.e. the lychee fruit borer Conopomorpha sinensis (LFB) from Vietnam and eight loci were found to be suitable. The availability of these novel microsatellite loci will provide useful tools for the analysis of the population genetics and gene flow of these pests, to select suitable CPB strains to implement the SIT.


Subject(s)
Cacao , Chocolate , Lepidoptera , Moths , Animals , Lepidoptera/genetics , Moths/genetics , Cacao/genetics , Genetics, Population , Microsatellite Repeats/genetics
20.
J Sci Food Agric ; 104(10): 6289-6297, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38488316

ABSTRACT

BACKGROUND: In this study, innovative chocolate, citrus and mixture flavoured tofu-based nutritionally customised, dysphagia-oriented, comfortably consumed, appetising, one-bite-sized finger foods, oriented to malnutrition, sarcopenia and frailty prevention in older people were created by using 3D printing technology. Developed products were characterised by evaluating chemical composition and physical properties and performing sensory evaluation among geriatric clinic residents (≥60 years). RESULTS: The dietary composition of the developed foods was: 19-21 g (100 g)-1 protein, 6-8 g (100 g)-1 fibre, 8-9 g (100 g)-1 fat, 11 mg (100 g)-1 iron, 14 mg (100 g)-1 zinc, 70 µg (100 g)-1 selenium. Foods were also enriched with branched-chain amino acids, such as leucine, isoleucine and valine. All formulated foods were classified as level 6 by International Dysphagia Diet Standardisation Initiative classification. Chocolate-flavoured food was much harder (4914 g) with lower adhesiveness value (-33.6 g s), compared to the citrus- or mixture-flavoured foods. Older people evaluated all finger foods as very easy handled by hand, soft, easy to swallow, having a moderate flavour intensity and a weak afterfeel. Despite the fact that the chocolate food was evaluated as having the highest hardness and gumminess values by the instrumental method, this difference was not noticeable to the evaluators. However 7% of the participants said that 3D printed foods were sticky to dentures. CONCLUSION: The results suggest that it is possible to create nutrient-dense comfortably consumed 3D printed foods, oriented to malnutrition, sarcopenia and frailty prevention in older people. © 2024 Society of Chemical Industry.


Subject(s)
Frailty , Malnutrition , Printing, Three-Dimensional , Sarcopenia , Humans , Aged , Malnutrition/prevention & control , Frailty/prevention & control , Male , Sarcopenia/prevention & control , Female , Aged, 80 and over , Deglutition Disorders/diet therapy , Deglutition Disorders/prevention & control , Chocolate/analysis , Middle Aged , Foods, Specialized , Citrus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL