Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.365
Filter
1.
Medicine (Baltimore) ; 103(31): e39198, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093757

ABSTRACT

INTRODUCTION: Nocardiosis is an unusual infection caused by aerobic gram-positive bacteria in the genus Nocardia. Infections resulting from Nocardia species are frequent in immunosuppressive patients. Weakened immune systems caused by human immunodeficiency virus infection, diabetes, cancer, and other conditions such as chronic lung disease, renal failure, etc, are the main risk factors for nocardiosis. Central nervous system (CNS) nocardiosis has been reported to represent ~2% of all and to be present in 15% to 50% of patients with systemic infection. The patient in our case had an isolated CNS nocardiosis caused by Nocardia terpenica infection, a rare reclassified Nocardia pathogen of CNS nocardiosis. CASE: We here present a 54-year-old Chinese male with a fever and headache for 15 days who showed positive meningeal irritation signs. Magnetic resonance imaging showed the right trigone of the lateral ventricular choroid plexitis and diffused leptomeningeal meningitis involving the bilateral cerebral hemisphere, cerebellar hemisphere, and brain stem. The patient was quickly diagnosed with CNS Nocardia infection by next-generation sequencing within 48 hours after admission. Meanwhile, the diagnosis was validated by Nocardia-positive staining in cerebral spinal fluid culturing. The patient was given trimethoprim-sulfamethoxazole, and his symptoms recovered after 3 days. CONCLUSIONS: In this case, the clinical, radiological, and microbiological findings highlight the importance of suspecting Nocardia as the potential pathogen in patients with central nervous system inflammation of doubted immune incompetence. In addition, next-generation sequencing as an effective test is also highly recommended for suspicious CNS infection patients to perform a rapid diagnosis and treatment.


Subject(s)
Nocardia Infections , Nocardia , Humans , Male , Nocardia Infections/diagnosis , Nocardia Infections/drug therapy , Nocardia Infections/microbiology , Nocardia Infections/complications , Middle Aged , Nocardia/isolation & purification , Magnetic Resonance Imaging , Anti-Bacterial Agents/therapeutic use , Choroid Plexus/microbiology , Meningitis/microbiology , Meningitis/diagnosis , Meningitis/etiology
2.
Fluids Barriers CNS ; 21(1): 56, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997764

ABSTRACT

BACKGROUND: The cerebrospinal fluid (CSF), primarily generated by the choroid plexus (ChP), is the major carrier of the glymphatic system. The alternations of CSF production and the ChP can be associated with the Alzheimer's disease (AD). The present work investigated the roles of the ChP in the AD based on a proposed ChP image segmentation pipeline. METHODS: A human-in-the-loop ChP image segmentation pipeline was implemented with intermediate and active learning datasets. The performance of the proposed pipeline was evaluated on manual contours by five radiologists, compared to the FreeSurfer and FastSurfer toolboxes. The ChP volume and blood flow were investigated among AD groups. The correlations between the ChP volume and AD CSF biomarkers including phosphorylated tau (p-tau), total tau (t-tau), amyloid-ß42 (Aß42), and amyloid-ß40 (Aß40) was investigated using three models (univariate, multiple variables, and stepwise regression) on two datasets with 806 and 320 subjects. RESULTS: The proposed ChP segmentation pipeline achieved superior performance with a Dice coefficient of 0.620 on the test dataset, compared to the FreeSurfer (0.342) and FastSurfer (0.371). Significantly larger volumes (p < 0.001) and higher perfusion (p = 0.032) at the ChP were found in AD compared to CN groups. Significant correlations were found between the tau and the relative ChP volume (the ChP volume and ChP/parenchyma ratio) in each patient groups and in the univariate regression analysis (p < 0.001), the multiple regression model (p < 0.05 except for the t-tau in the LMCI), and in the step-wise regression model (p < 0.021). In addition, the correlation coefficients changed from - 0.32 to - 0.21 along with the AD progression in the multiple regression model. In contrast, the Aß42 and Aß40 shows consistent and significant associations with the lateral ventricle related measures in the step-wise regression model (p < 0.027). CONCLUSIONS: The proposed pipeline provided accurate ChP segmentation which revealed the associations between the ChP and tau level in the AD. The proposed pipeline is available on GitHub ( https://github.com/princeleeee/ChP-Seg ).


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Choroid Plexus , tau Proteins , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/cerebrospinal fluid , Humans , tau Proteins/cerebrospinal fluid , tau Proteins/metabolism , Choroid Plexus/diagnostic imaging , Choroid Plexus/metabolism , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Male , Female , Aged , Supervised Machine Learning , Biomarkers/cerebrospinal fluid , Biomarkers/metabolism , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Middle Aged , Aged, 80 and over
3.
Alzheimers Res Ther ; 16(1): 149, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961406

ABSTRACT

BACKGROUND: Enlarged choroid plexus (ChP) volume has been reported in patients with Alzheimer's disease (AD) and inversely correlated with cognitive performance. However, its clinical diagnostic and predictive value, and mechanisms by which ChP impacts the AD continuum remain unclear. METHODS: This prospective cohort study enrolled 607 participants [healthy control (HC): 110, mild cognitive impairment (MCI): 269, AD dementia: 228] from the Chinese Imaging, Biomarkers, and Lifestyle study between January 1, 2021, and December 31, 2022. Of the 497 patients on the AD continuum, 138 underwent lumbar puncture for cerebrospinal fluid (CSF) hallmark testing. The relationships between ChP volume and CSF pathological hallmarks (Aß42, Aß40, Aß42/40, tTau, and pTau181), neuropsychological tests [Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Neuropsychiatric Inventory (NPI), and Activities of Daily Living (ADL) scores], and multimodal neuroimaging measures [gray matter volume, cortical thickness, and corrected cerebral blood flow (cCBF)] were analyzed using partial Spearman's correlation. The mediating effects of four neuroimaging measures [ChP volume, hippocampal volume, lateral ventricular volume (LVV), and entorhinal cortical thickness (ECT)] on the relationship between CSF hallmarks and neuropsychological tests were examined. The ability of the four neuroimaging measures to identify cerebral Aß42 changes or differentiate among patients with AD dementia, MCI and HCs was determined using receiver operating characteristic analysis, and their associations with neuropsychological test scores at baseline were evaluated by linear regression. Longitudinal associations between the rate of change in the four neuroimaging measures and neuropsychological tests scores were evaluated on the AD continuum using generalized linear mixed-effects models. RESULTS: The participants' mean age was 65.99 ± 8.79 years. Patients with AD dementia exhibited the largest baseline ChP volume than the other groups (P < 0.05). ChP volume enlargement correlated with decreased Aß42 and Aß40 levels; lower MMSE and MoCA and higher NPI and ADL scores; and lower volume, cortical thickness, and cCBF in other cognition-related regions (all P < 0.05). ChP volume mediated the association of Aß42 and Aß40 levels with MMSE scores (19.08% and 36.57%), and Aß42 levels mediated the association of ChP volume and MMSE or MoCA scores (39.49% and 34.36%). ChP volume alone better identified cerebral Aß42 changes than LVV alone (AUC = 0.81 vs. 0.67, P = 0.04) and EC thickness alone (AUC = 0.81 vs.0.63, P = 0.01) and better differentiated patients with MCI from HCs than hippocampal volume alone (AUC = 0.85 vs. 0.81, P = 0.01), and LVV alone (AUC = 0.85 vs.0.82, P = 0.03). Combined ChP and hippocampal volumes significantly increased the ability to differentiate cerebral Aß42 changes and patients among AD dementia, MCI, and HCs groups compared with hippocampal volume alone (all P < 0.05). After correcting for age, sex, years of education, APOE ε4 status, eTIV, and hippocampal volume, ChP volume was associated with MMSE, MoCA, NPI, and ADL score at baseline, and rapid ChP volume enlargement was associated with faster deterioration in NPI scores with an average follow-up of 10.03 ± 4.45 months (all P < 0.05). CONCLUSIONS: ChP volume may be a novel neuroimaging marker associated with neurodegenerative changes and clinical AD manifestations. It could better detect the early stages of the AD and predict prognosis, and significantly enhance the differential diagnostic ability of hippocampus on the AD continuum.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Choroid Plexus , Cognitive Dysfunction , Neuroimaging , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/pathology , Female , Male , Aged , Choroid Plexus/diagnostic imaging , Choroid Plexus/pathology , Prospective Studies , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Neuroimaging/methods , Biomarkers/cerebrospinal fluid , Middle Aged , Neuropsychological Tests , Magnetic Resonance Imaging/methods , tau Proteins/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid
4.
J Gen Virol ; 105(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38995681

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is associated with neurological sequelae including haemorrhage, thrombosis and ischaemic necrosis and encephalitis. However, the mechanism by which this occurs is unclear. Neurological disease associated with COVID-19 has been proposed to occur following direct infection of the central nervous system and/or indirectly by local or systemic immune activation. We evaluated the expression of angiotensin-converting enzyme-2 and transmembrane protease, serine 2 (TMPRSS2) in brain tissue from five healthy human donors and observed low-level expression of these proteins in cells morphologically consistent with astrocytes, neurons and choroidal ependymal cells within the frontal cortex and medulla oblongata. Primary human astrocytes, neurons, choroid plexus epithelial cells and pericytes supported productive SARS-CoV-2 infection with ancestral, Alpha, Delta and Omicron variants. Infected cells supported the full viral life cycle, releasing infectious virus particles. In contrast, primary brain microvascular endothelial cells and microglia were refractory to SARS-CoV-2 infection. These data support a model whereby SARS-CoV-2 can infect human brain cells, and the mechanism of viral entry warrants further investigation.


Subject(s)
Angiotensin-Converting Enzyme 2 , Astrocytes , COVID-19 , Choroid Plexus , Epithelial Cells , Neurons , Pericytes , SARS-CoV-2 , Serine Endopeptidases , Humans , Pericytes/virology , SARS-CoV-2/physiology , Astrocytes/virology , Choroid Plexus/virology , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Neurons/virology , COVID-19/virology , COVID-19/pathology , Epithelial Cells/virology , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Cells, Cultured , Brain/virology , Brain/pathology , Central Nervous System/virology
5.
Brain Behav ; 14(7): e3611, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38956818

ABSTRACT

PURPOSE: Mild cognitive impairment (MCI) can be the prodromal phase of Alzheimer's disease (AD) where appropriate intervention might prevent or delay conversion to AD. Given this, there has been increasing interest in using magnetic resonance imaging (MRI) and neuropsychological testing to predict conversion from MCI to AD. Recent evidence suggests that the choroid plexus (ChP), neural substrates implicated in brain clearance, undergo volumetric changes in MCI and AD. Whether the ChP is involved in memory changes observed in MCI and can be used to predict conversion from MCI to AD has not been explored. METHOD: The current study used data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database to investigate whether later progression from MCI to AD (progressive MCI [pMCI], n = 115) or stable MCI (sMCI, n = 338) was associated with memory scores using the Rey Auditory Verbal Learning Test (RAVLT) and ChP volumes as calculated from MRI. Classification analyses identifying pMCI or sMCI group membership were performed to compare the predictive ability of the RAVLT and ChP volumes. FINDING: The results indicated a significant difference between pMCI and sMCI groups for right ChP volume, with the pMCI group showing significantly larger right ChP volume (p = .01, 95% confidence interval [-.116, -.015]). A significant linear relationship between the RAVLT scores and right ChP volume was found across all participants, but not for the two groups separately. Classification analyses showed that a combination of left ChP volume and auditory verbal learning scores resulted in the most accurate classification performance, with group membership accurately predicted for 72% of the testing data. CONCLUSION: These results suggest that volumetric ChP changes appear to occur before the onset of AD and might provide value in predicting conversion from MCI to AD.


Subject(s)
Alzheimer Disease , Choroid Plexus , Cognitive Dysfunction , Disease Progression , Magnetic Resonance Imaging , Verbal Learning , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/physiopathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnosis , Male , Female , Aged , Verbal Learning/physiology , Choroid Plexus/diagnostic imaging , Choroid Plexus/pathology , Aged, 80 and over , Neuropsychological Tests
6.
Mult Scler Relat Disord ; 88: 105750, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38986172

ABSTRACT

BACKGROUND: The choroid plexus (CP) is suggested to be closely associated with the neuroinflammation of multiple sclerosis (MS). Segmentation based on deep learning (DL) could facilitate rapid and reproducible volume assessment of the CP, which is crucial for elucidating its role in MS. PURPOSE: To develop a reliable DL model for the automatic segmentation of CP, and further validate its clinical significance in MS. METHODS: The 3D UX-Net model (3D U-Net used for comparison) was trained and validated on T1-weighted MRI from a cohort of 216 relapsing-remitting MS (RRMS) patients and 75 healthy subjects. Among these, 53 RRMS with baseline and 2-year follow-up scans formed an internal test set (dataset1b). Another 58 RRMS from multi-center data served as an external test set (dataset2). Dice coefficient was computed to assess segmentation performance. Compare the correlation of CP volume obtained through automatic and manual segmentation with clinical outcomes in MS. Disability and cognitive function of patients were assessed using the Expanded Disability Status Scale (EDSS) and Symbol Digit Modalities Test (SDMT). RESULTS: The 3D UX-Net model achieved Dice coefficients of 0.875 ± 0.030 and 0.870 ± 0.044 for CP segmentation on dataset1b and dataset2, respectively, outperforming 3D U-Net's scores of 0.809 ± 0.098 and 0.601 ± 0.226. Furthermore, CP volumes segmented by the 3D UX-Net model aligned consistently with clinical outcomes compared to manual segmentation. In dataset1b, both manual and automatic segmentation revealed a significant positive correlation between normalized CP volume (nCPV) and EDSS scores at baseline (manual: r = 0.285, p = 0.045; automatic: r = 0.287, p = 0.044) and a negative correlation with SDMT scores (manual: r = -0.331, p = 0.020; automatic: r = -0.329, p = 0.021). In dataset2, similar correlations were found with EDSS scores (manual: r = 0.337, p = 0.021; automatic: r = 0.346, p = 0.017). Meanwhile, in dataset1b, both manual and automatic segmentation revealed a significant increase in nCPV from baseline to follow-up (p < 0.05). The increase of nCPV was more pronounced in patients with disability worsened than stable patients (manual: p = 0.023; automatic: p = 0.018). Patients receiving disease-modifying therapy (DMT) exhibited a significantly lower nCPV increase than untreated patients (manual: p = 0.004; automatic: p = 0.004). CONCLUSION: The 3D UX-Net model demonstrated strong segmentation performance for the CP, and the automatic segmented CP can be directly used in MS clinical practice. CP volume can serve as a surrogate imaging biomarker for monitoring disease progression and DMT response in MS patients.


Subject(s)
Choroid Plexus , Deep Learning , Disease Progression , Magnetic Resonance Imaging , Multiple Sclerosis, Relapsing-Remitting , Humans , Female , Male , Adult , Choroid Plexus/diagnostic imaging , Choroid Plexus/pathology , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/physiopathology , Multiple Sclerosis, Relapsing-Remitting/pathology , Middle Aged , Imaging, Three-Dimensional
7.
Proc Natl Acad Sci U S A ; 121(28): e2400213121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38954546

ABSTRACT

The brain's neuroreparative capacity after injuries such as ischemic stroke is partly contained in the brain's neurogenic niches, primarily the subventricular zone (SVZ), which lies in close contact with the cerebrospinal fluid (CSF) produced by the choroid plexus (ChP). Despite the wide range of their proposed functions, the ChP/CSF remain among the most understudied compartments of the central nervous system (CNS). Here, we report a mouse genetic tool (the ROSA26iDTR mouse line) for noninvasive, specific, and temporally controllable ablation of CSF-producing ChP epithelial cells to assess the roles of the ChP and CSF in brain homeostasis and injury. Using this model, we demonstrate that ChP ablation causes rapid and permanent CSF volume loss in both aged and young adult brains, accompanied by disruption of ependymal cilia bundles. Surprisingly, ChP ablation did not result in overt neurological deficits at 1 mo postablation. However, we observed a pronounced decrease in the pool of SVZ neuroblasts (NBs) following ChP ablation, which occurs due to their enhanced migration into the olfactory bulb. In the middle cerebral artery occlusion model of ischemic stroke, NB migration into the lesion site was also reduced in the CSF-depleted mice. Thus, our study establishes an important role of ChP/CSF in regulating the regenerative capacity of the adult brain under normal conditions and after ischemic stroke.


Subject(s)
Choroid Plexus , Lateral Ventricles , Neurogenesis , Animals , Choroid Plexus/metabolism , Neurogenesis/physiology , Mice , Lateral Ventricles/metabolism , Lateral Ventricles/cytology , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Stroke/pathology , Stroke/metabolism , Stroke/physiopathology , Male , Cell Movement , Cerebral Ventricles/metabolism
8.
Biomolecules ; 14(7)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39062538

ABSTRACT

Increased choroid plexus (CP) volume has been recently implicated as a potential predictor of worse multiple sclerosis (MS) outcomes. The biomarker signature of CP changes in MS are currently unknown. To determine the blood-based biomarker characteristics of the cross-sectional and longitudinal MRI-based CP changes in a heterogeneous group of people with MS (pwMS), a total of 202 pwMS (148 pwRRMS and 54 pwPMS) underwent MRI examination at baseline and at a 5-year follow-up. The CP was automatically segmented and subsequently refined manually in order to obtain a normalized CP volume. Serum samples were collected at both timepoints, and the concentration of 21 protein measures relevant to MS pathophysiology were determined using the Olink™ platform. Age-, sex-, and BMI-adjusted linear regression models explored the cross-sectional and longitudinal relationships between MRI CP outcomes and blood-based biomarkers. At baseline, there were no significant proteomic predictors of CP volume, while at follow-up, greater CP volume was significantly associated with higher neurofilament light chain levels, NfL (standardized ß = 0.373, p = 0.001), and lower osteopontin levels (standardized ß = -0.23, p = 0.02). Higher baseline GFAP and lower FLRT2 levels were associated with future 5-year CP % volume expansion (standardized ß = 0.277, p = 0.004 and standardized ß = -0.226, p = 0.014, respectively). The CP volume in pwMS is associated with inflammatory blood-based biomarkers of neuronal injury (neurofilament light chain; NfL) and glial activation such as GFAP, osteopontin, and FLRT2. The expansion of the CP may play a central role in chronic and compartmentalized inflammation and may be driven by glial changes.


Subject(s)
Biomarkers , Choroid Plexus , Magnetic Resonance Imaging , Multiple Sclerosis , Humans , Female , Male , Biomarkers/blood , Multiple Sclerosis/blood , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Choroid Plexus/diagnostic imaging , Choroid Plexus/pathology , Adult , Middle Aged , Cross-Sectional Studies , Neurofilament Proteins/blood , Osteopontin/blood , Proteomics , Glial Fibrillary Acidic Protein/blood
9.
Fluids Barriers CNS ; 21(1): 58, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39020361

ABSTRACT

BACKGROUND: Structural and functional changes of the choroid plexus (ChP) have been reported in Alzheimer's disease (AD). Nonetheless, the role of the ChP in the pathogenesis of AD remains largely unknown. We aim to unravel the relation between ChP functioning and core AD pathogenesis using a unique proteomic approach in mice and humans. METHODS: We used an APP knock-in mouse model, APPNL-G-F, exhibiting amyloid pathology, to study the association between AD brain pathology and protein changes in mouse ChP tissue and CSF using liquid chromatography mass spectrometry. Mouse proteomes were investigated at the age of 7 weeks (n = 5) and 40 weeks (n = 5). Results were compared with previously published human AD CSF proteomic data (n = 496) to identify key proteins and pathways associated with ChP changes in AD. RESULTS: ChP tissue proteome was dysregulated in APPNL-G-F mice relative to wild-type mice at both 7 and 40 weeks. At both ages, ChP tissue proteomic changes were associated with epithelial cells, mitochondria, protein modification, extracellular matrix and lipids. Nonetheless, some ChP tissue proteomic changes were different across the disease trajectory; pathways related to lysosomal function, endocytosis, protein formation, actin and complement were uniquely dysregulated at 7 weeks, while pathways associated with nervous system, immune system, protein degradation and vascular system were uniquely dysregulated at 40 weeks. CSF proteomics in both mice and humans showed similar ChP-related dysregulated pathways. CONCLUSIONS: Together, our findings support the hypothesis of ChP dysfunction in AD. These ChP changes were related to amyloid pathology. Therefore, the ChP could become a novel promising therapeutic target for AD.


Subject(s)
Alzheimer Disease , Choroid Plexus , Disease Models, Animal , Mice, Transgenic , Proteomics , Choroid Plexus/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/cerebrospinal fluid , Animals , Humans , Mice , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics , Proteome/metabolism , Male , Female , Mice, Inbred C57BL
10.
PLoS Pathog ; 20(7): e1012335, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39038049

ABSTRACT

The human polyomavirus JCPyV is an opportunistic pathogen that infects greater than 60% of the world's population. The virus establishes a persistent and asymptomatic infection in the urogenital system but can cause a fatal demyelinating disease in immunosuppressed or immunomodulated patients following invasion of the CNS. The mechanisms responsible for JCPyV invasion into CNS tissues are not known but direct invasion from the blood to the cerebral spinal fluid via the choroid plexus has been hypothesized. To study the potential of the choroid plexus as a site of neuroinvasion, we used an adult human choroid plexus epithelial cell line to model the blood-cerebrospinal fluid (B-CSF) barrier in a transwell system. We found that these cells formed a highly restrictive barrier to virus penetration either as free virus or as virus associated with extracellular vesicles (EVJC+). The restriction was not absolute and small amounts of virus or EVJC+ penetrated and were able to establish foci of infection in primary astrocytes. Disruption of the barrier with capsaicin did not increase virus or EVJC+ penetration leading us to hypothesize that virus and EVJC+ were highly cell-associated and crossed the barrier by an active process. An inhibitor of macropinocytosis increased virus penetration from the basolateral (blood side) to the apical side (CSF side). In contrast, inhibitors of clathrin and raft dependent transcytosis reduced virus transport from the basolateral to the apical side of the barrier. None of the drugs inhibited apical to basolateral transport suggesting directionality. Pretreatment with cyclosporin A, an inhibitor of P-gp, MRP2 and BCRP multidrug resistance transporters, restored viral penetration in cells treated with raft and clathrin dependent transcytosis inhibitors. Because choroid plexus epithelial cells are known to be susceptible to JCPyV infection both in vitro and in vivo we also examined the release of infectious virus from the barrier. We found that virus was preferentially released from the cells into the apical (CSF) chamber. These data show clearly that there are two mechanisms of penetration, direct transcytosis which is capable of seeding the CSF with small amounts of virus, and infection followed by directional release of infectious virions into the CSF compartment.


Subject(s)
Blood-Brain Barrier , Choroid Plexus , JC Virus , Humans , Blood-Brain Barrier/virology , Blood-Brain Barrier/metabolism , Choroid Plexus/virology , Choroid Plexus/metabolism , JC Virus/physiology , Extracellular Vesicles/metabolism , Extracellular Vesicles/virology , Animals , Astrocytes/virology , Astrocytes/metabolism , Cell Line , Epithelial Cells/virology , Epithelial Cells/metabolism , Multidrug Resistance-Associated Protein 2
11.
Sci Adv ; 10(23): eadj4735, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38838150

ABSTRACT

Why individuals with Down syndrome (DS) are more susceptible to SARS-CoV-2-induced neuropathology remains elusive. Choroid plexus (ChP) plays critical roles in barrier function and immune response modulation and expresses the ACE2 receptor and the chromosome 21-encoded TMPRSS2 protease, suggesting its substantial role in establishing SARS-CoV-2 infection in the brain. To explore this, we established brain organoids from DS and isogenic euploid iPSC that consist of a core of functional cortical neurons surrounded by a functional ChP-like epithelium (ChPCOs). DS-ChPCOs recapitulated abnormal DS cortical development and revealed defects in ciliogenesis and epithelial cell polarity in ChP-like epithelium. We then demonstrated that the ChP-like epithelium facilitates infection and replication of SARS-CoV-2 in cortical neurons and that this is increased in DS. Inhibiting TMPRSS2 and furin activity reduced viral replication in DS-ChPCOs to euploid levels. This model enables dissection of the role of ChP in neurotropic virus infection and euploid forebrain development and permits screening of therapeutics for SARS-CoV-2-induced neuropathogenesis.


Subject(s)
Brain , COVID-19 , Choroid Plexus , Down Syndrome , Organoids , SARS-CoV-2 , Serine Endopeptidases , Choroid Plexus/virology , Choroid Plexus/metabolism , Choroid Plexus/pathology , Organoids/virology , Organoids/metabolism , Organoids/pathology , Humans , SARS-CoV-2/physiology , COVID-19/virology , COVID-19/pathology , COVID-19/metabolism , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Down Syndrome/metabolism , Down Syndrome/pathology , Down Syndrome/genetics , Brain/virology , Brain/pathology , Brain/metabolism , Neurons/metabolism , Neurons/virology , Neurons/pathology , Virus Replication , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/virology , Furin/metabolism , Furin/genetics , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Viral Tropism
12.
Cereb Cortex ; 34(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38912605

ABSTRACT

Glymphatic dysfunction has been correlated with cognitive decline, with a higher choroid plexus volume (CPV) being linked to a slower glymphatic clearance rate. Nevertheless, the interplay between CPV, glymphatic function, and cognitive impairment in white matter hyperintensities (WMHs) has not yet been investigated. In this study, we performed neuropsychological assessment, T1-weighted three-dimensional (3D-T1) images, and diffusion tensor imaging (DTI) in a cohort of 206 WMHs subjects and 43 healthy controls (HCs) to further explore the relationship. The DTI analysis along the perivascular space (DTI-ALPS) index, as a measure of glymphatic function, was calculated based on DTI. Severe WMHs performed significantly worse in information processing speed (IPS) than other three groups, as well as in executive function than HCs and mild WMHs. Additionally, severe WMHs demonstrated lower DTI-ALPS index and higher CPV than HCs and mild WMHs. Moderate WMHs displayed higher CPV than HCs and mild WMHs. Mini-Mental State Examination, IPS, and executive function correlated negatively with CPV but positively with DTI-ALPS index in WMHs patients. Glymphatic function partially mediated the association between CPV and IPS, indicating a potential mechanism for WMHs-related cognitive impairment. CPV may act as a valuable prognostic marker and glymphatic system as a promising therapeutic target for WMHs-related cognitive impairment.


Subject(s)
Choroid Plexus , Cognitive Dysfunction , Diffusion Tensor Imaging , Glymphatic System , White Matter , Humans , Male , Female , Choroid Plexus/diagnostic imaging , Choroid Plexus/pathology , Choroid Plexus/physiopathology , White Matter/diagnostic imaging , White Matter/pathology , Aged , Glymphatic System/diagnostic imaging , Glymphatic System/pathology , Glymphatic System/physiopathology , Middle Aged , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/pathology , Neuropsychological Tests , Magnetic Resonance Imaging/methods , Processing Speed
13.
Cell Rep ; 43(6): 114331, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38843394

ABSTRACT

The choroid plexus (ChP) produces cerebrospinal fluid (CSF). It also contributes to brain development and serves as the CSF-blood barrier. Prior studies have identified transporters on the epithelial cells that transport water and ions from the blood vasculature to the ventricles and tight junctions involved in the CSF-blood barrier. Yet, how the ChP epithelial cells control brain physiology remains unresolved. We use zebrafish to provide insights into the physiological roles of the ChP. Upon histological and transcriptomic analyses, we identify that the zebrafish ChP is conserved with mammals and expresses transporters involved in CSF secretion. Next, we show that the ChP epithelial cells secrete proteins into CSF. By ablating the ChP epithelial cells, we identify a reduction of the ventricular sizes without alterations of the CSF-blood barrier. Altogether, our findings reveal that the zebrafish ChP is conserved and contributes to the size and homeostasis of the brain ventricles.


Subject(s)
Cerebral Ventricles , Choroid Plexus , Homeostasis , Zebrafish , Animals , Zebrafish/metabolism , Choroid Plexus/metabolism , Cerebral Ventricles/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Cerebrospinal Fluid/metabolism , Epithelial Cells/metabolism , Biological Evolution , Blood-Brain Barrier/metabolism
14.
Fluids Barriers CNS ; 21(1): 46, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802875

ABSTRACT

Choroid plexus (ChP), the brain structure primarily responsible for cerebrospinal fluid production, contains a robust circadian clock, whose role remains to be elucidated. The aim of our study was to [1] identify rhythmically controlled cellular processes in the mouse ChP and [2] assess the role and nature of signals derived from the master clock in the suprachiasmatic nuclei (SCN) that control ChP rhythms. To accomplish this goal, we used various mouse models (WT, mPer2Luc, ChP-specific Bmal1 knockout) and combined multiple experimental approaches, including surgical lesion of the SCN (SCNx), time-resolved transcriptomics, and single cell luminescence microscopy. In ChP of control (Ctrl) mice collected every 4 h over 2 circadian cycles in darkness, we found that the ChP clock regulates many processes, including the cerebrospinal fluid circadian secretome, precisely times endoplasmic reticulum stress response, and controls genes involved in neurodegenerative diseases (Alzheimer's disease, Huntington's disease, and frontotemporal dementia). In ChP of SCNx mice, the rhythmicity detected in vivo and ex vivo was severely dampened to a comparable extent as in mice with ChP-specific Bmal1 knockout, and the dampened cellular rhythms were restored by daily injections of dexamethasone in mice. Our data demonstrate that the ChP clock controls tissue-specific gene expression and is strongly dependent on the presence of a functional connection with the SCN. The results may contribute to the search for a novel link between ChP clock disruption and impaired brain health.


Subject(s)
Choroid Plexus , Circadian Clocks , Suprachiasmatic Nucleus , Animals , Suprachiasmatic Nucleus/metabolism , Suprachiasmatic Nucleus/physiology , Choroid Plexus/metabolism , Choroid Plexus/physiology , Circadian Clocks/physiology , Mice , Mice, Inbred C57BL , Circadian Rhythm/physiology , Male , Mice, Knockout , ARNTL Transcription Factors/metabolism , ARNTL Transcription Factors/genetics
15.
Neurol Neurochir Pol ; 58(3): 233-244, 2024.
Article in English | MEDLINE | ID: mdl-38721672

ABSTRACT

INTRODUCTION: Multiple sclerosis (MS) is a central nervous system (CNS) disease associated with inflammation, demyelination, and neurodegeneration. It affects more than 2 million people globally, and usually occurs in young adults, three-quarters of whom are women. Importantly, accurate diagnosis and treatment are essential, as this disease can lead to the rapid development of disability. The choroid plexus (CP) is a structure widely known as the main cerebrospinal fluid source. However, it is also involved in immune cell trafficking to the cerebrospinal fluid, which is increased in different neurological disorders, particularly those associated with neuroinflammation. As MS is generally thought to be caused by an autoimmune process, it has been suggested that the choroid plexus may play a significant role in its pathogenesis, manifesting via changes in imaging characteristics. MATERIAL AND METHODS: Although research regarding this topic has been very limited, the results of the available studies appear promising. To further investigate this subject, we performed a systematic literature review according to the PRISMA 2020 guidelines. The PubMed and Embase databases were searched for relevant articles, and after thorough analysis, 16 studies were included in our review. RESULTS: CP volume was significantly increased in MS patients compared to healthy individuals. Furthermore, some studies found that CP enlargement occurs even before a definite diagnosis. Moreover, a few articles reported correlations between CP volume and brain atrophy, or even disease severity. CONCLUSIONS: Our findings show that CP imaging has the potential to become a novel and valuable tool in multiple sclerosis management.


Subject(s)
Choroid Plexus , Multiple Sclerosis , Humans , Multiple Sclerosis/diagnostic imaging , Choroid Plexus/diagnostic imaging , Choroid Plexus/pathology , Magnetic Resonance Imaging , Female , Neuroimaging/methods , Adult
16.
Mult Scler Relat Disord ; 87: 105668, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744032

ABSTRACT

BACKGROUND: The choroid plexus (CP), located within the ventricles of the brain and the primary producer of cerebrospinal fluid, has been shown to be enlarged in patients with multiple sclerosis (MS) and linked to periventricular remyelination failure. Atrophied T2-lesion volume (aT2-LV), a promising neurodegenerative imaging marker in progressive MS (PMS), reflects the volume of periventricular lesions subsumed into cerebrospinal fluid over the follow-up. METHODS: In a cohort of 143 people with relapsing-remitting MS (RRMS) and 53 with PMS, we used 3T magnetic resonance imaging (MRI) to quantify CP volume (CPV) at baseline and aT2-LV over an average of 5.4 years of follow-up. Partial correlations, adjusting for age and sex, and linear regression analyses were used to assess the relationships between imaging measures. RESULTS: In both cohorts, CPV was associated with aT2-LV in both the RRMS group (r = 0.329, p < 0.001) as well as the PMS group (r = 0.522, p < 0.001). In regression analyses predicting aT2-LV, ventricular volume (final adjusted R2 = 0.407, p < 0.001) explained additional variance beyond age, sex, and T2-lesion volume in the RRMS group while CPV (final adjusted R2 = 0.446, p = 0.009) was retained in the PMS group. CONCLUSION: Findings from this study suggest that the CP enlargement is associated with future neurodegeneration, with a particularly relevant role in PMS.


Subject(s)
Cerebral Ventricles , Choroid Plexus , Magnetic Resonance Imaging , Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis, Relapsing-Remitting , Humans , Female , Male , Adult , Middle Aged , Choroid Plexus/pathology , Choroid Plexus/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/pathology , Multiple Sclerosis, Chronic Progressive/diagnostic imaging , Multiple Sclerosis, Chronic Progressive/pathology , Cerebral Ventricles/diagnostic imaging , Cerebral Ventricles/pathology , Disease Progression , Follow-Up Studies , Atrophy/pathology
17.
Fluids Barriers CNS ; 21(1): 43, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773599

ABSTRACT

The European Choroid plexus Scientific Forum (ECSF), held in Heidelberg, Germany between the 7th and 9th of November 2023, involved 21 speakers from eight countries. ECSF focused on discussing cutting-edge fundamental and medical research related to the development and functions of the choroid plexus and its implications for health, aging, and disease, including choroid plexus tumors. In addition to new findings in this expanding field, innovative approaches, animal models and 3D in vitro models were showcased to encourage further investigation into choroid plexus and cerebrospinal fluid roles.


Subject(s)
Choroid Plexus , Humans , Animals , Cerebrospinal Fluid , Europe , Choroid Plexus Neoplasms
18.
J Exp Biol ; 227(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38690647

ABSTRACT

Hibernation is an extreme state of seasonal energy conservation, reducing metabolic rate to as little as 1% of the active state. During the hibernation season, many species of hibernating mammals cycle repeatedly between the active (aroused) and hibernating (torpid) states (T-A cycling), using brown adipose tissue (BAT) to drive cyclical rewarming. The regulatory mechanisms controlling this process remain undefined but are presumed to involve thermoregulatory centres in the hypothalamus. Here, we used the golden hamster (Mesocricetus auratus), and high-resolution monitoring of BAT, core body temperature and ventilation rate, to sample at precisely defined phases of the T-A cycle. Using c-fos as a marker of cellular activity, we show that although the dorsomedial hypothalamus is active during torpor entry, neither it nor the pre-optic area shows any significant changes during the earliest stages of spontaneous arousal. Contrastingly, in three non-neuronal sites previously linked to control of metabolic physiology over seasonal and daily time scales - the choroid plexus, pars tuberalis and third ventricle tanycytes - peak c-fos expression is seen at arousal initiation. We suggest that through their sensitivity to factors in the blood or cerebrospinal fluid, these sites may mediate metabolic feedback-based initiation of the spontaneous arousal process.


Subject(s)
Arousal , Choroid Plexus , Ependymoglial Cells , Hibernation , Proto-Oncogene Proteins c-fos , Torpor , Animals , Proto-Oncogene Proteins c-fos/metabolism , Arousal/physiology , Torpor/physiology , Hibernation/physiology , Ependymoglial Cells/metabolism , Ependymoglial Cells/physiology , Choroid Plexus/metabolism , Choroid Plexus/physiology , Mesocricetus , Male , Adipose Tissue, Brown/physiology , Adipose Tissue, Brown/metabolism , Cricetinae
19.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732233

ABSTRACT

Donepezil (DNPZ) is a cholinesterase inhibitor used for the management of Alzheimer's disease (AD) and is dependent on membrane transporters such as ABCG2 to actively cross brain barriers and reach its target site of action in the brain. Located in the brain ventricles, the choroid plexus (CP) forms an interface between the cerebrospinal fluid (CSF) and the bloodstream, known as the blood-CSF barrier (BCSFB). Historically, the BCSFB has received little attention as a potential pathway for drug delivery to the central nervous system (CNS). Nonetheless, this barrier is presently viewed as a dynamic transport interface that limits the traffic of molecules into and out of the CNS through the presence of membrane transporters, with parallel activity with the BBB. The localization and expression of drug transporters in brain barriers represent a huge obstacle for drug delivery to the brain and a major challenge for the development of therapeutic approaches to CNS disorders. The widespread interest in understanding how circadian clocks modulate many processes that define drug delivery in order to predict the variability in drug safety and efficacy is the next bridge to improve effective treatment. In this context, this study aims at characterizing the circadian expression of ABCG2 and DNPZ circadian transport profile using an in vitro model of the BCSFB. We found that ABCG2 displays a circadian pattern and DNPZ is transported in a circadian way across this barrier. This study will strongly impact on the capacity to modulate the BCSFB in order to control the penetration of DNPZ into the brain and improve therapeutic strategies for the treatment of AD according to the time of the day.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Blood-Brain Barrier , Donepezil , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Blood-Brain Barrier/metabolism , Animals , Humans , Brain/metabolism , Cholinesterase Inhibitors/pharmacokinetics , Cholinesterase Inhibitors/pharmacology , Biological Transport , Choroid Plexus/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Mice , Circadian Rhythm , Neoplasm Proteins
20.
J Med Virol ; 96(5): e29671, 2024 May.
Article in English | MEDLINE | ID: mdl-38747003

ABSTRACT

The coronavirus disease of 2019 (COVID-19) pandemic has led to more than 700 million confirmed cases and nearly 7 million deaths. Although severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus mainly infects the respiratory system, neurological complications are widely reported in both acute infection and long-COVID cases. Despite the success of vaccines and antiviral treatments, neuroinvasiveness of SARS-CoV-2 remains an important question, which is also centered on the mystery of whether the virus is capable of breaching the barriers into the central nervous system. By studying the K18-hACE2 infection model, we observed clear evidence of microvascular damage and breakdown of the blood-brain barrier (BBB). Mechanistically, SARS-CoV-2 infection caused pericyte damage, tight junction loss, endothelial activation and vascular inflammation, which together drive microvascular injury and BBB impairment. In addition, the blood-cerebrospinal fluid barrier at the choroid plexus was also impaired after infection. Therefore, cerebrovascular and choroid plexus dysfunctions are important aspects of COVID-19 and may contribute to neurological complications both acutely and in long COVID.


Subject(s)
Blood-Brain Barrier , COVID-19 , Choroid Plexus , SARS-CoV-2 , Blood-Brain Barrier/virology , Animals , Choroid Plexus/virology , Choroid Plexus/pathology , COVID-19/virology , COVID-19/pathology , COVID-19/complications , COVID-19/physiopathology , Mice , Tight Junctions/virology , Disease Models, Animal , Angiotensin-Converting Enzyme 2/metabolism , Inflammation/virology , Humans , Pericytes/virology , Pericytes/pathology
SELECTION OF CITATIONS
SEARCH DETAIL