Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33.287
Filter
1.
J Chromatogr A ; 1733: 465250, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39146864

ABSTRACT

The van't Hoff equation is a widely used tool to study adsorption thermodynamics in chromatography. Recent experimental data and some theoretical arguments questioned the accuracy of thermodynamic characteristics determined by using this equation. The present report addresses these concerns and shows that if certain requirements are satisfied, the van't Hoff analysis provide reliable results. These requirements include isothermality of the column not perturbed by the percolation of the mobile phase, mass transfer kinetics allowing sufficient proximity to equilibrium, pressure below 200 bar for low molecular weight compounds and below 50 bar for macromolecules, and knowledge of the phase ratio at all experimental temperatures to allow accurate conversion of the retention factor to the equilibrium constant. Physical meaning of adsorption enthalpy and entropy obtained by means of the van't Hoff analysis particularly in the case of heterogeneous adsorbents is discussed and recommendations on how to perform experiments to obtain reliable results are given.


Subject(s)
Thermodynamics , Adsorption , Kinetics , Models, Chemical , Chromatography/methods , Entropy , Temperature , Chromatography, Liquid/methods
2.
Compr Rev Food Sci Food Saf ; 23(4): e13399, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39072953

ABSTRACT

Milk, as a widely consumed nutrient-rich food, is crucial for bone health, growth, and overall nutrition. The persistent application of veterinary drugs for controlling diseases and heightening milk yield has imparted substantial repercussions on human health and environmental ecosystems. Due to the high demand, fresh consumption, complex composition of milk, and the potential adverse impacts of drug residues, advanced greener analytical methods are necessitated. Among them, functional materials-based analytical methods attract wide concerns. The magnetic molecularly imprinted polymers (MMIPs), as a kind of typical functional material, possess excellent greenification characteristics and potencies, and they are easily integrated into various detection technologies, which have offered green approaches toward analytes such as veterinary drugs in milk. Despite their increasing applications and great potential, MMIPs' use in dairy matrices remains underexplored, especially regarding ecological sustainability. This work reviews recent advances in MMIPs' synthesis and application as efficient sorbents for veterinary drug extraction in milk followed by chromatographic analysis. The uniqueness and effectiveness of MMIPs in real milk samples are evaluated, current limitations are addressed, and greenification opportunities are proposed. MMIPs show promise in revolutionizing green analytical procedures for veterinary drug detection, aligning with the environmental goals of modern food production systems.


Subject(s)
Drug Residues , Green Chemistry Technology , Milk , Molecularly Imprinted Polymers , Veterinary Drugs , Milk/chemistry , Drug Residues/analysis , Drug Residues/chemistry , Molecularly Imprinted Polymers/chemistry , Animals , Veterinary Drugs/analysis , Veterinary Drugs/chemistry , Green Chemistry Technology/methods , Food Contamination/analysis , Molecular Imprinting/methods , Chromatography/methods
3.
J Chromatogr A ; 1731: 465156, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39047442

ABSTRACT

The single-component Mollerup model, with over 40 direct applications and 442 citations, is the most widely used activity model for chromatographic mechanistic modeling. Many researchers have extended this formula to multi-component systems by directly adding subscripts, a modification deemed thermodynamically inconsistent (referred to as the reference model). In this work, we rederived the asymmetric activity model for multi-component systems, using the van der Waals equation of state, and termed it the multi-component Mollerup model. In contrast to the reference model, our proposed model accounts for the contributions of all components to the activity. Three numerical experiments were performed to investigate the impact of the three different activity models on the chromatographic modeling. The results indicate that our proposed model represents a thermodynamically consistent generalization of the single-component Mollerup model to multi-component systems. This communication advocates adopting of the multi-component Mollerup model for activity modeling in multi-component chromatographic separation to enhance thermodynamic consistency.


Subject(s)
Thermodynamics , Models, Chemical , Chromatography/methods , Models, Theoretical
4.
Mar Environ Res ; 199: 106626, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38950495

ABSTRACT

Understanding the distribution of halogenated organic compounds (HOCs) in marine sediments is essential for understanding the marine carbon and halogen cycling, and also important for assessing the ecosystem health. In this study, a method based on combustion-ion chromatography was developed for determination of the composition and abundance of HOCs in marine sediments. The method showed high accuracy, precision and reproducibility in determining the content of adsorbable organic halogens (AOX), including fluorine, chlorine and bromine (AOF, AOCl, AOBr) and the corresponding insoluble organic halogens (IOF, IOCl, IOBr, IOX), as well as total organic halogen contents (TOX). Application of the method in coastal and deep-sea sediments revealed high ratios of organic halogens in the organic carbon pool of marine sediments, suggesting that organic halogen compounds represent an important yet previously overlooked stock of carbon and energy in marine sediments. Both the TOX and the proportion of organohalogens in organic carbon (X:C ratio) showed an increasing trend from the coast to the deep-sea sediments, indicating an increased significance of HOCs in deep-sea environments. The developed method and the findings of this study lay the foundation for further studies on biogeochemical cycling of HOCs in the ocean.


Subject(s)
Environmental Monitoring , Geologic Sediments , Water Pollutants, Chemical , Geologic Sediments/chemistry , Geologic Sediments/analysis , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Halogens/analysis , Halogens/chemistry , Hydrocarbons, Halogenated/analysis , Chromatography/methods
5.
Food Chem ; 460(Pt 1): 140542, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39079380

ABSTRACT

Food fraud is widespread nowadays in the food products supply chain, from raw materials processing to the final product and during storage and transport. The most frequent fraud is practiced in staple food commodities like cereals. Their origin, variety, genotype, and bioactive compounds are altered to deceive consumers. Similarly, in various food sectors like beverage, baking, and confectionary, items like melamine, flour improver, and food colors are used in the market to temple consumers. To tackle food fraud and authentication, non-destructive techniques are being used. These techniques have limitations like lack of standardization, interference from multiple absorbing species, ambiguous results, and time-consuming to perform, depending on the type, size, and location of the system proved difficult to quantify the samples of adulteration. Chromatography has been introduced as an effective technique. It serves to safeguard public health due to its detection capabilities. Chromatography proved a crucial tool against fraudulent practices to preserve consumer trust.


Subject(s)
Food Contamination , Fraud , Public Health , Food Contamination/analysis , Fraud/prevention & control , Humans , Chromatography , Food Analysis
6.
ACS Nano ; 18(24): 15729-15743, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38839059

ABSTRACT

Lipid nanoparticles (LNP) have emerged as pivotal delivery vehicles for RNA therapeutics. Previous research and development usually assumed that LNPs are homogeneous in population, loading density, and composition. Such perspectives are difficult to examine due to the lack of suitable tools to characterize these physicochemical properties at the single-nanoparticle level. Here, we report an integrated spectroscopy-chromatography approach as a generalizable strategy to dissect the complexities of multicomponent LNP assembly. Our platform couples cylindrical illumination confocal spectroscopy (CICS) with single-nanoparticle free solution hydrodynamic separation (SN-FSHS) to simultaneously profile population identity, hydrodynamic size, RNA loading levels, and distributions of helper lipid and PEGylated lipid of LNPs at the single-particle level and in a high-throughput manner. Using a benchmark siRNA LNP formulation, we demonstrate the capability of this platform by distinguishing seven distinct LNP populations, quantitatively characterizing size distribution and RNA loading level in wide ranges, and more importantly, resolving composition-size correlations. This SN-FSHS-CICS analysis provides critical insights into a substantial degree of heterogeneity in the packing density of RNA in LNPs and size-dependent loading-size correlations, explained by kinetics-driven assembly mechanisms of RNA LNPs.


Subject(s)
Lipids , Nanoparticles , Particle Size , Nanoparticles/chemistry , Lipids/chemistry , RNA/chemistry , Chromatography/methods , RNA, Small Interfering/chemistry , Spectrum Analysis/methods , Liposomes
7.
J Chromatogr A ; 1730: 465077, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38879976

ABSTRACT

Chromatographic separation processes are most often modeled in the form of partial differential equations (PDEs) to describe the complex adsorption equilibria and kinetics. However, identifying parameters in such a model requires substantial computational effort. In this work, a novel parameter estimation approach using a Physics-informed Neural Network (PINN) model is developed and tested for a binary component system. Numerical accuracy of our PINN model is confirmed by validating its simulations against those of the finite element method (FEM). Furthermore, model parameters in the kinetic model are estimated by the PINN model with sufficient accuracy from the observed data at the column outlet, where parameter fitting error can be reduced by up to 35.0 % from the conventional method. In a comparison with the conventional numerical method, our approach can reduce the computational time by up to 95 %. The robustness of the PINN model has also been demonstrated by estimating model parameters from noisy artificial experimental data.


Subject(s)
Neural Networks, Computer , Kinetics , Adsorption , Finite Element Analysis , Computer Simulation , Models, Chemical , Algorithms , Chromatography/methods
8.
Curr Protoc ; 4(6): e1068, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837274

ABSTRACT

Adeno-associated virus (AAV) vectors can efficiently transduce exogenous genes into various tissues in vivo. Owing to their convenience, high efficiency, long-term stable gene expression, and minimal side effects, AAV vectors have become one of the gold standards for investigating gene functions in vivo, especially in non-clinical studies. However, challenges persist in efficiently preparing a substantial quantity of high-quality AAV vectors. Commercial AAV vectors are typically associated with high costs. Further, in-laboratory production is hindered by the lack of specific laboratory equipment, such as ultracentrifuges. Therefore, a simple, quick, and scalable preparation method for AAV vectors is needed for proof-of-concept experiments. Herein, we present an optimized method for producing and purifying high-quality AAV serotype 9 (AAV9) vectors using standard laboratory equipment and chromatography. Using ceramic hydroxyapatite as a mixed-mode chromatography medium can markedly increase the quality of purified AAV vectors. Basic Protocols and optional methods for evaluating purified AAV vectors are also described. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Production of AAV9 vectors in 293EB cells Basic Protocol 2: Concentration and buffer exchange of AAV9 vectors from 293EB cell culture supernatants using tangential flow filtration Basic Protocol 3: Purification of AAV9 vectors from TFF samples using ceramic hydroxyapatite chromatography Basic Protocol 4: Analysis of the purified AAV9 vectors.


Subject(s)
Ceramics , Dependovirus , Durapatite , Genetic Vectors , Serogroup , Dependovirus/genetics , Dependovirus/isolation & purification , Genetic Vectors/isolation & purification , Genetic Vectors/genetics , Humans , Ceramics/chemistry , Durapatite/chemistry , Chromatography/methods , HEK293 Cells
9.
Se Pu ; 42(6): 533-543, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38845514

ABSTRACT

Antibody drugs are becoming increasingly popular in disease diagnosis, targeted therapy, and immunoprevention owing to their characteristics of high targeting ability, strong specificity, low toxicity, and mild side effects. The demand for antibody drugs is steadily increasing, and their production scale is expanding. Upstream cell culture technology has been greatly improved by the high-capacity production of monoclonal antibodies. However, the downstream purification of antibodies presents a bottleneck in the production process. Moreover, the purification cost of antibodies is extremely high, accounting for approximately 50%-80% of the total cost of antibody production. Chromatographic technology, given its selectivity and high separation efficiency, is the main method for antibody purification. This process usually involves three stages: antibody capture, intermediate purification, and polishing. Different chromatographic techniques, such as affinity chromatography, ion-exchange chromatography, hydrophobic interaction chromatography, mixed-mode chromatography, and temperature-responsive chromatography, are used in each stage. Affinity chromatography, mainly protein A affinity chromatography, is applied for the selective capture and purification of antibodies from raw biofluids or harvested cell culture supernatants. Other chromatographic techniques, such as ion-exchange chromatography, hydrophobic interaction chromatography, and mixed-mode chromatography, are used for intermediate purification and antibody polishing. Affinity biomimetic chromatography and hydrophobic charge-induction chromatography can produce antibodies with purities comparable with those obtained through protein A chromatography, by employing artificial chemical/short peptide ligands with good selectivity, high stability, and low cost. Temperature-responsive chromatography is a promising technique for the separation and purification of antibodies. In this technique, antibody capture and elution is controlled by simply adjusting the column temperature, which greatly eliminates the risk of antibody aggregation and inactivation under acidic elution conditions. The combination of different chromatographic methods to improve separation selectivity and achieve effective elution under mild conditions is another useful strategy to enhance the yield and quality of antibodies. This review provides an overview of recent advances in the field of antibody purification using chromatography and discusses future developments in this technology.


Subject(s)
Chromatography, Affinity , Antibodies/isolation & purification , Antibodies/chemistry , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/chemistry , Chromatography/methods , Chromatography, Affinity/methods , Chromatography, Ion Exchange/methods , Hydrophobic and Hydrophilic Interactions
10.
J Chromatogr A ; 1728: 465034, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38824842

ABSTRACT

Covalent organic frameworks (COFs) are featured with large specific surface areas, good thermal stability, and abundant pores. These properties are exactly what the sorbents used for extraction or adsorption of interest substances are desired with. While, the low density and hydrophobicity of COFs often makes them difficult to be dispersed evenly and recovered from the aqueous solution. Magnetic covalent organic frameworks (MCOFs) inherit magnetic property of the magnetic particles and porous structure of COFs. They have improved dispersity in aqueous solution and phase separation can be rapidly achieved via external magnetic fields. This review summarized the synthesis strategies for MCOFs, and their application in trace environmental organic pollutants analysis by chromatography techniques. The selection of COFs types and modification with active groups for a certain adsorption purpose is discussed, along with the exploration of adsorption mechanisms, which is beneficial for the design and synthesis of MCOFs.


Subject(s)
Environmental Pollutants , Metal-Organic Frameworks , Adsorption , Metal-Organic Frameworks/chemistry , Environmental Pollutants/analysis , Environmental Pollutants/chemistry , Organic Chemicals/chemistry , Hydrophobic and Hydrophilic Interactions , Porosity , Chromatography/methods
11.
Bioanalysis ; 16(9): 307-364, 2024.
Article in English | MEDLINE | ID: mdl-38913185

ABSTRACT

The 17th Workshop on Recent Issues in Bioanalysis (17th WRIB) took place in Orlando, FL, USA on June 19-23, 2023. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 17th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines.Moreover, in-depth workshops on "EU IVDR 2017/746 Implementation and impact for the Global Biomarker Community: How to Comply with this NEW Regulation" and on "US FDA/OSIS Remote Regulatory Assessments (RRAs)" were the special features of the 17th edition.As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues.This 2023 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2023 edition of this comprehensive White Paper has been divided into three parts for editorial reasons.This publication covers the recommendations on Mass Spectrometry Assays, Regulated Bioanalysis/BMV (Part 1A) and Regulatory Inputs (Part 1B). Part 2 (Biomarkers, IVD/CDx, LBA and Cell-Based Assays) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 16 of Bioanalysis, issues 7 and 8 (2024), respectively.


Subject(s)
Biomarkers , Cell- and Tissue-Based Therapy , Proteomics , Humans , Biomarkers/analysis , Chromatography/methods , Genetic Therapy , Mass Spectrometry/methods , Proteomics/methods
12.
Se Pu ; 42(5): 487-493, 2024 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-38736393

ABSTRACT

The pharmaceutical analysis course is a three-dimensional knowledge network that connects several courses to form a new comprehensive knowledge node involving a large knowledge system and flexible knowledge structure. In this course, the subject of chromatography covers a wide range of topics. However, because accurate content is challenging to present, the teaching effect of this subject is poor. In this work, we sought to achieve the educational purpose of establishing morality and cultivating talent, as well as the goal of training highly skilled professionals, by taking the teaching of chromatography in the pharmaceutical analysis course as an example of transforming scientific research results into teaching resources. The resources obtained are integrated into the teaching process to provide innovative and scientific research ideas to students with the aim of not only helping them understand and master technical knowledge but also exercise their ability to raise and solve problems. Furthermore, we expound on how to introduce scientific development frontiers and formulate scientific problems through curriculum design. We also describe how our strategy can promote the teaching effect and achieve teaching objectives. Based on the characteristics of rapid knowledge update and equal emphasis on theory and practice in pharmaceutical analysis, the course is designed by introducing new advances in scientific development, formulating scientific problems, and adopting question- and problem-based learning methods for teaching. The teaching effect is then evaluated through diversified assessment, student feedback, and self-evaluation. The results show that the transformation of scientific research results into teaching resources plays a significant role in stimulating students' interest in learning, improving students' ability to solve problems, and achieving curriculum objectives, all of which greatly improve the teaching effect.


Subject(s)
Teaching , Chromatography , Curriculum , Humans
13.
J Chromatogr A ; 1727: 465008, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38788402

ABSTRACT

A critical factor for automated method development in chromatography is the maximization or minimization of an objective function describing the quality (and speed) of the separation. In chromatography, this function is commonly referred to as a chromatographic response function (CRF). Many CRFs have previously been introduced, but many have unfavourable properties such as featuring multiple optima, insufficient discriminatory power, and a too strong dependence on the weight factors needed to balance resolution and time penalty components. To overcome these problems, the present study introduces a new type of CRF wherein the relative weight of the time penalty term is a self-adaptive function of the separation quality. The ability to unambiguously identify the optimal gradient settings of this newly proposed CRF is compared to that of some of the most frequently used CRFs in a study covering 100 randomly composed in silico samples. Doing so, the new CRF is found to flawlessly lead to the correct solution (=linear gradient parameters providing the highest resolution in the shortest potential time) in 100 % of the cases, while the most frequently used literature CRFs were off-target for about 50 to 60 % of the samples, even when considering the availability of spectral peak shape data. Some slight alterations to the proposed CRF are introduced and discussed as well.


Subject(s)
Algorithms , Computer Simulation , Chromatography/methods , Automation
14.
Molecules ; 29(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675651

ABSTRACT

Outer membrane vesicles (OMVs) are attractive for biomedical applications based on their intrinsic properties in relation to bacteria and vesicles. However, their widespread use is hampered by low yields and purities. In this study, EVscore47 multifunctional chromatography microspheres were synthesized and used to efficiently isolate functional OMVs from Escherichia coli. Through this technology, OMV loss can be kept to a minimum, and OMVs can be harvested using EVscore47 at 11-fold higher yields and ~13-fold higher purity than those achieved by means of ultracentrifugation. Based on the results presented here, we propose a novel EVscore47-based isolation of OMVs that is fast and scalable.


Subject(s)
Escherichia coli , Extracellular Vesicles , Microspheres , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Bacterial Outer Membrane/metabolism , Bacterial Outer Membrane Proteins/chemistry , Ultracentrifugation , Chromatography/methods
15.
Molecules ; 29(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38675682

ABSTRACT

Drug discovery is a challenging process, with many compounds failing to progress due to unmet pharmacokinetic criteria. Lipophilicity is an important physicochemical parameter that affects various pharmacokinetic processes, including absorption, metabolism, and excretion. This study evaluated the lipophilic properties of a library of ipsapirone derivatives that were previously synthesized to affect dopamine and serotonin receptors. Lipophilicity indices were determined using computational and chromatographic approaches. In addition, the affinity to human serum albumin (HSA) and phospholipids was assessed using biomimetic chromatography protocols. Quantitative Structure-Retention Relationship (QSRR) methodologies were used to determine the impact of theoretical descriptors on experimentally determined properties. A multiple linear regression (MLR) model was calculated to identify the most important features, and genetic algorithms (GAs) were used to assist in the selection of features. The resultant models showed commendable predictive accuracy, minimal error, and good concordance correlation coefficient values of 0.876, 0.149, and 0.930 for the validation group, respectively.


Subject(s)
Quantitative Structure-Activity Relationship , Humans , Serum Albumin, Human/chemistry , Algorithms , Linear Models , Molecular Structure , Phospholipids/chemistry , Hydrophobic and Hydrophilic Interactions , Chromatography/methods
16.
Methods Mol Biol ; 2744: 517-523, 2024.
Article in English | MEDLINE | ID: mdl-38683339

ABSTRACT

This rapid, equipment-free DNA isolation procedure using chromatography paper is a simple method that can be performed in less than 30 min and requires no wet lab experience. With minimal expense, it offers an affordable alternative for anyone wanting to explore biodiversity. It also provides an excellent option for use in classrooms or other activities that are time limited. The method works best for plants or lichens, producing stable DNA on Whatman® chromatography paper at room temperature, which can be eluted as needed.


Subject(s)
DNA Barcoding, Taxonomic , DNA Barcoding, Taxonomic/methods , DNA/isolation & purification , DNA/genetics , DNA, Plant/genetics , DNA, Plant/isolation & purification , Plants/genetics , Chromatography/methods , Lichens/genetics
17.
Mar Pollut Bull ; 202: 116354, 2024 May.
Article in English | MEDLINE | ID: mdl-38642479

ABSTRACT

In recent decades, the harmful algal blooms (HABs) caused by Prorocentrum minimum have caused serious environmental damage and economic losses. The detection of P. minimum plays an important role in warning the outbreak of P. minimum-forming HABs. By utilizing the powerful absorption of graphene oxide (GO) on short-stranded DNA, a GO-assisted nucleic acid chromatography strip (GO-NACS) was proposed here to achieve a highly sensitive, specific, intuitive, and convenient detection of P. minimum. In particular, this study used our previously reported conventional-NACS (C-NACS) as a control to evaluate the improvement of detection performance with the use of GO. The performance of GO-NACS was evaluated from the perspectives of specificity, sensitivity, stability, and practicality. The specificity test demonstrated that it had a high degree of specificity and did not display cross-reacting with non-target algal species. The sensitivity test with the genomic DNA indicated that it had a detection limit of 1.30 × 10-3 ng µL-1, representing a 10-fold higher sensitivity than C-NACS and a 100-fold higher sensitivity than agarose gel electrophoresis (AGE). The interference test with non-target algal species demonstrated that it had a good detection stability, and the interfering algal species had no obvious effect on the detection of P. minimum. The practicality test with simulated natural water samples showed that the cellular detection limit of GO-NACS was 6.8 cells mL-1, which was 10-fold and 100-fold lower than that of C-NACS and AGE, respectively. In conclusion, the established GO-NACS may offer a novel alternative technique for the detection of P. minimum while guaranteeing specificity and enhancing sensitivity without requiring extensive apparatus.


Subject(s)
Graphite , Harmful Algal Bloom , Graphite/chemistry , Environmental Monitoring/methods , Chromatography/methods , Nucleic Acids/analysis
18.
Article in English | MEDLINE | ID: mdl-38640794

ABSTRACT

Chromatography is a robust and reliable separation method that can use various stationary phases to separate complex mixtures commonly seen in metabolomics. This review examines the types of chromatography and stationary phases that have been used in targeted or untargeted metabolomics with methods such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. General considerations for sample pretreatment and separations in metabolomics are considered, along with the various supports and separation formats for chromatography that have been used in such work. The types of liquid chromatography (LC) that have been most extensively used in metabolomics will be examined, such as reversed-phase liquid chromatography and hydrophilic liquid interaction chromatography. In addition, other forms of LC that have been used in more limited applications for metabolomics (e.g., ion-exchange, size-exclusion, and affinity methods) will be discussed to illustrate how these techniques may be utilized for new and future research in this field. Multidimensional LC methods are also discussed, as well as the use of gas chromatography and supercritical fluid chromatography in metabolomics. In addition, the roles of chromatography in NMR- vs. MS-based metabolomics are considered. Applications are given within the field of metabolomics for each type of chromatography, along with potential advantages or limitations of these separation methods.


Subject(s)
Chromatography , Metabolomics , Animals , Humans , Chromatography, Liquid/methods , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Metabolomics/methods , Chromatography/methods
19.
Sci Rep ; 14(1): 8714, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622266

ABSTRACT

Green, photosynthesizing plants can be proficiently used as cost-effective, single-use, fully biodegradable bioreactors for environmentally-friendly production of a variety of valuable recombinant proteins. Being near-infinitely scalable and most energy-efficient in generating biomass, plants represent profoundly valid alternatives to conventionally used stationary fermenters. To validate this, we produced a plastome-engineered tobacco bioreactor line expressing a recombinant variant of the protein A from Staphylococcus aureus, an affinity ligand widely useful in antibody purification processes, reaching accumulation levels up to ~ 250 mg per 1 kg of fresh leaf biomass. Chromatography resin manufactured from photosynthetically-sourced recombinant protein A ligand conjugated to agarose beads demonstrated the innate pH-driven ability to bind and elute IgG-type antibodies and allowed one-step efficient purification of functional monoclonal antibodies from the supernatants of the producing hybridomas. The results of this study emphasize the versatility of plant-based recombinant protein production and illustrate its vast potential in reducing the cost of diverse biotechnological applications, particularly the downstream processing and purification of monoclonal antibodies.


Subject(s)
Chromatography , Staphylococcal Protein A , Staphylococcal Protein A/chemistry , Ligands , Plants, Genetically Modified/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Antibodies, Monoclonal/metabolism , Immunoglobulin G/metabolism , Plant Proteins/metabolism , Chromatography, Affinity/methods
SELECTION OF CITATIONS
SEARCH DETAIL