Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.983
1.
Mol Biol Rep ; 51(1): 626, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717621

BACKGROUND: Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most devastating diseases of rice leading to huge yield losses in Southeast Asia. The recessive resistance gene xa-45(t) from Oryza glaberrima IRGC102600B, mapped on rice chromosome 8, spans 80 Kb with 9 candidate genes on Nipponbare reference genome IRGSP-1.0. The xa-45(t) gene provides durable resistance against all the ten Xanthomonas pathotypes of Northern India, thus aiding in the expansion of recessive bacterial blight resistance gene pool. Punjab Rice PR127, carrying xa-45(t), was released for wider use in breeding programs. This study aims to precisely locate the target gene among the 9 candidates conferring resistance to bacterial blight disease. METHODS AND RESULTS: Sanger sequencing of all nine candidate genes revealed seven SNPs and an Indel between the susceptible parent Pusa 44 and the resistant introgression line IL274. The genotyping with polymorphic markers identified three recombinant breakpoints for LOC_Os08g42370, and LOC_Os08g42400, 15 recombinants for LOC_Os08g423420 and 26 for LOC_Os08g42440 out of 190 individuals. Relative expression analysis across six time intervals (0, 8, 24, 48, 72, and 96 h) after bacterial blight infection showed over expression of LOC_Os08g42410-specific transcripts in IL274 compared to Pusa 44, with a significant 4.46-fold increase observed at 72 h post-inoculation. CONCLUSIONS: The Indel marker at the locus LOC_Os08g42410 was found co-segregating with the phenotype, suggesting its candidacy towards xa-45(t). The transcript abundance assay provides strong evidence for the involvement of LOC_Os08g42410 in the resistance conferred by the bacterial blight gene xa-45(t).


Chromosome Mapping , Disease Resistance , Genes, Plant , Genes, Recessive , Oryza , Plant Diseases , Xanthomonas , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Oryza/genetics , Oryza/microbiology , Xanthomonas/pathogenicity , Chromosome Mapping/methods , Genes, Plant/genetics , Polymorphism, Single Nucleotide/genetics , Chromosomes, Plant/genetics , Genotype , Gene Expression Regulation, Plant/genetics
2.
PLoS One ; 19(5): e0302870, 2024.
Article En | MEDLINE | ID: mdl-38776345

The systematic identification of insertion/deletion (InDel) length polymorphisms from the entire lentil genome can be used to map the quantitative trait loci (QTL) and also for the marker-assisted selection (MAS) for various linked traits. The InDels were identified by comparing the whole-genome resequencing (WGRS) data of two extreme bulks (early- and late-flowering bulk) and a parental genotype (Globe Mutant) of lentil. The bulks were made by pooling 20 extreme recombinant inbred lines (RILs) each, derived by crossing Globe Mutant (late flowering parent) with L4775 (early flowering parent). Finally, 734,716 novel InDels were identified, which is nearly one InDel per 5,096 bp of lentil genome. Furthermore, 74.94% of InDels were within the intergenic region and 99.45% displayed modifier effects. Of these, 15,732 had insertions or deletions of 20 bp or more, making them amenable to the development of PCR-based markers. An InDel marker I-SP-356.6 (chr. 3; position 356,687,623; positioned 174.5 Kb from the LcFRI gene) was identified as having a phenotypic variance explained (PVE) value of 47.7% for earliness when validated in a RIL population. Thus, I-SP-356.6 marker can be deployed in MAS to facilitate the transfer of the earliness trait to other elite late-maturing cultivars. Two InDel markers viz., I-SP-356.6 and I-SP-383.9 (chr. 3; linked to LcELF3a gene) when tested in 9 lentil genotypes differing for maturity duration, clearly distinguished three early (L4775, ILL7663, Precoz) and four late genotypes (Globe Mutant, MFX, L4602, L830). However, these InDels could not be validated in two genotypes (L4717, L4727), suggesting either absence of polymorphism and/or presence of other loci causing earliness. The identified InDel markers can act as valuable tools for MAS for the development of early maturing lentil varieties.


Genome, Plant , Genotype , INDEL Mutation , Lens Plant , Quantitative Trait Loci , Lens Plant/genetics , Lens Plant/growth & development , Genetic Markers , Polymerase Chain Reaction/methods , Chromosome Mapping/methods
3.
Nat Commun ; 15(1): 4358, 2024 May 22.
Article En | MEDLINE | ID: mdl-38778058

3C-based methods have significantly advanced our understanding of 3D genome organization. However, it remains a formidable task to precisely capture long-range chromosomal interactions between individual loci, such as those between promoters and distal enhancers. Here, we present Methyltransferase Targeting-based chromosome Architecture Capture (MTAC), a method that maps the contacts between a target site (viewpoint) and the rest of the genome in budding yeast with high resolution and sensitivity. MTAC detects hundreds of intra- and inter-chromosomal interactions within nucleosome-depleted regions (NDRs) that cannot be captured by 4C, Hi-C, or Micro-C. By applying MTAC to various viewpoints, we find that (1) most long-distance chromosomal interactions detected by MTAC reflect tethering by the nuclear pore complexes (NPCs), (2) genes co-regulated by methionine assemble into inter-chromosomal clusters near NPCs upon activation, (3) mediated by condensin, the mating locus forms a highly specific interaction with the recombination enhancer (RE) in a mating-type specific manner, and (4) correlation of MTAC signals among NDRs reveal spatial mixing and segregation of the genome. Overall, these results demonstrate MTAC as a powerful tool to resolve fine-scale long-distance chromosomal interactions and provide insights into the 3D genome organization.


Chromosomes, Fungal , DNA Methylation , Nucleosomes , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Nucleosomes/metabolism , Nucleosomes/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Chromosomes, Fungal/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Chromosome Mapping/methods , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Genome, Fungal , Promoter Regions, Genetic/genetics , Multiprotein Complexes/metabolism , Multiprotein Complexes/genetics , Nuclear Pore/metabolism , Nuclear Pore/genetics , Methyltransferases/metabolism , Methyltransferases/genetics
4.
Sci Rep ; 14(1): 11239, 2024 05 16.
Article En | MEDLINE | ID: mdl-38755281

While short-read sequencing currently dominates genetic research and diagnostics, it frequently falls short of capturing certain structural variants (SVs), which are often implicated in the etiology of neurodevelopmental disorders (NDDs). Optical genome mapping (OGM) is an innovative technique capable of capturing SVs that are undetectable or challenging-to-detect via short-read methods. This study aimed to investigate NDDs using OGM, specifically focusing on cases that remained unsolved after standard exome sequencing. OGM was performed in 47 families using ultra-high molecular weight DNA. Single-molecule maps were assembled de novo, followed by SV and copy number variant calling. We identified 7 variants of interest, of which 5 (10.6%) were classified as likely pathogenic or pathogenic, located in BCL11A, OPHN1, PHF8, SON, and NFIA. We also identified an inversion disrupting NAALADL2, a gene which previously was found to harbor complex rearrangements in two NDD cases. Variants in known NDD genes or candidate variants of interest missed by exome sequencing mainly consisted of larger insertions (> 1kbp), inversions, and deletions/duplications of a low number of exons (1-4 exons). In conclusion, in addition to improving molecular diagnosis in NDDs, this technique may also reveal novel NDD genes which may harbor complex SVs often missed by standard sequencing techniques.


Chromosome Mapping , DNA Copy Number Variations , Neurodevelopmental Disorders , Humans , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/diagnosis , Female , Male , Chromosome Mapping/methods , Exome Sequencing/methods , Child , Genomic Structural Variation , Child, Preschool
5.
PLoS Comput Biol ; 20(5): e1012067, 2024 May.
Article En | MEDLINE | ID: mdl-38709825

Chromosome conformation capture (3C) technologies reveal the incredible complexity of genome organization. Maps of increasing size, depth, and resolution are now used to probe genome architecture across cell states, types, and organisms. Larger datasets add challenges at each step of computational analysis, from storage and memory constraints to researchers' time; however, analysis tools that meet these increased resource demands have not kept pace. Furthermore, existing tools offer limited support for customizing analysis for specific use cases or new biology. Here we introduce cooltools (https://github.com/open2c/cooltools), a suite of computational tools that enables flexible, scalable, and reproducible analysis of high-resolution contact frequency data. Cooltools leverages the widely-adopted cooler format which handles storage and access for high-resolution datasets. Cooltools provides a paired command line interface (CLI) and Python application programming interface (API), which respectively facilitate workflows on high-performance computing clusters and in interactive analysis environments. In short, cooltools enables the effective use of the latest and largest genome folding datasets.


Computational Biology , Software , Computational Biology/methods , Programming Languages , Genomics/methods , Genome/genetics , Chromosome Mapping/methods , Humans
6.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731906

Roots are the hidden and most important part of plants. They serve as stabilizers and channels for uptaking water and nutrients and play a crucial role in the growth and development of plants. Here, two-dimensional image data were used to identify quantitative trait loci (QTL) controlling root traits in an interspecific mapping population derived from a cross between wild soybean 'PI366121' and cultivar 'Williams 82'. A total of 2830 single-nucleotide polymorphisms were used for genotyping, constructing genetic linkage maps, and analyzing QTLs. Forty-two QTLs were identified on twelve chromosomes, twelve of which were identified as major QTLs, with a phenotypic variation range of 36.12% to 39.11% and a logarithm of odds value range of 12.01 to 17.35. Two significant QTL regions for the average diameter, root volume, and link average diameter root traits were detected on chromosomes 3 and 13, and both wild and cultivated soybeans contributed positive alleles. Six candidate genes, Glyma.03G027500 (transketolase/glycoaldehyde transferase), Glyma.03G014500 (dehydrogenases), Glyma.13G341500 (leucine-rich repeat receptor-like protein kinase), Glyma.13G341400 (AGC kinase family protein), Glyma.13G331900 (60S ribosomal protein), and Glyma.13G333100 (aquaporin transporter) showed higher expression in root tissues based on publicly available transcriptome data. These results will help breeders improve soybean genetic components and enhance soybean root morphological traits using desirable alleles from wild soybeans.


Chromosome Mapping , Glycine max , Plant Roots , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Glycine max/genetics , Glycine max/anatomy & histology , Glycine max/growth & development , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/anatomy & histology , Chromosome Mapping/methods , Phenotype , Chromosomes, Plant/genetics , Genetic Linkage , Genotype
7.
Theor Appl Genet ; 137(5): 117, 2024 May 03.
Article En | MEDLINE | ID: mdl-38700534

KEY MESSAGE: A large-effect QTL was fine mapped, which revealed 79 gene models, with 10 promising candidate genes, along with a novel inversion. In commercial maize breeding, doubled haploid (DH) technology is arguably the most efficient resource for rapidly developing novel, completely homozygous lines. However, the DH strategy, using in vivo haploid induction, currently requires the use of mutagenic agents which can be not only hazardous, but laborious. This study focuses on an alternative approach to develop DH lines-spontaneous haploid genome duplication (SHGD) via naturally restored haploid male fertility (HMF). Inbred lines A427 and Wf9, the former with high HMF and the latter with low HMF, were selected to fine-map a large-effect QTL associated with SHGD-qshgd1. SHGD alleles were derived from A427, with novel haploid recombinant groups having varying levels of the A427 chromosomal region recovered. The chromosomal region of interest is composed of 45 megabases (Mb) of genetic information on chromosome 5. Significant differences between haploid recombinant groups for HMF were identified, signaling the possibility of mapping the QTL more closely. Due to suppression of recombination from the proximity of the centromere, and a newly discovered inversion region, the associated QTL was only confined to a 25 Mb region, within which only a single recombinant was observed among ca. 9,000 BC1 individuals. Nevertheless, 79 gene models were identified within this 25 Mb region. Additionally, 10 promising candidate genes, based on RNA-seq data, are described for future evaluation, while the narrowed down genome region is accessible for straightforward introgression into elite germplasm by BC methods.


Chromosome Mapping , Haploidy , Quantitative Trait Loci , Zea mays , Zea mays/genetics , Chromosome Mapping/methods , Plant Breeding , Genome, Plant , Phenotype , Alleles , Chromosomes, Plant/genetics , Genes, Plant
8.
Theor Appl Genet ; 137(6): 119, 2024 May 06.
Article En | MEDLINE | ID: mdl-38709271

KEY MESSAGE: A candidate gene TaSP1 related to spike shape was cloned, and the gene-specific marker was developed to efficiently track the superior haplotype in common wheat. Spike shape, an important factor that affects wheat grain yield, is mainly defined by spike length (SPL), spikelet number (SPN), and compactness. Zhoumai32 mutant 1160 (ZM1160), a mutant obtained from ethyl methane sulfonate (EMS) treatment of hexaploid wheat variety Zhoumai32, was used to identify and clone the candidate gene that conditioned the spike shape. Genetic analysis of an F2 population derived from a cross of ZM1160 and Bainong207 suggested that the compact spike shape in ZM1160 was controlled by a single recessive gene, and therefore, the mutated gene was designated as Tasp1. With polymorphic markers identified through bulked segregant analysis (BSA), the gene was mapped to a 2.65-cM interval flanked by markers YZU0852 and MIS46239 on chromosome 7D, corresponding to a 0.42-Mb physical interval of Chinese spring (CS) reference sequences (RefSeq v1.0). To fine map TaSP1, 15 and seven recombinants were, respectively, screened from 1599 and 1903 F3 plants derived from the heterozygous F2 plants. Finally, TaSP1 was delimited to a 21.9 Kb (4,870,562 to 4,892,493 bp) Xmis48123-Xmis48104 interval. Only one high-confidence gene TraesCS7D02G010200 was annotated in this region, which encodes an unknown protein with a putative vWA domain. Quantitative reverse transcription PCR (qRT-PCR) analysis showed that TraesCS7D02G010200 was mainly expressed in the spike. Haplotype analysis of 655 wheat cultivars using the candidate gene-specific marker Xg010200p2 identified a superior haplotype TaSP1b with longer spike and more spikelet number. TaSP1 is beneficial to the improvement in wheat spike shape.


Chromosome Mapping , Cloning, Molecular , Ethyl Methanesulfonate , Genes, Plant , Mutation , Phenotype , Triticum , Triticum/genetics , Triticum/growth & development , Chromosome Mapping/methods , Genetic Markers , Haplotypes , Chromosomes, Plant/genetics
9.
Genes (Basel) ; 15(5)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38790188

Cytogenetic studies are essential in the diagnosis and follow up of patients with bone marrow failure syndromes (BMFSs), but obtaining good quality results is often challenging due to hypocellularity. Optical Genome Mapping (OGM), a novel technology capable of detecting most types chromosomal structural variants (SVs) at high resolution, is being increasingly used in many settings, including hematologic malignancies. Herein, we compared conventional cytogenetic techniques to OGM in 20 patients with diverse BMFSs. Twenty metaphases for the karyotype were only obtained in three subjects (15%), and no SVs were found in any of the samples. One patient with culture failure showed a gain in chromosome 1q by fluorescence in situ hybridization, which was confirmed by OGM. In contrast, OGM provided good quality results in all subjects, and SVs were detected in 14 of them (70%), mostly corresponding to cryptic submicroscopic alterations not observed by standard techniques. Therefore, OGM emerges as a powerful tool that provides complete and evaluable results in hypocellular BMFSs, reducing multiple tests into a single assay and overcoming some of the main limitations of conventional techniques. Furthermore, in addition to confirming the abnormalities detected by conventional techniques, OGM found new alterations beyond their detection limits.


In Situ Hybridization, Fluorescence , Humans , Male , Female , Middle Aged , Adult , Aged , In Situ Hybridization, Fluorescence/methods , Chromosome Mapping/methods , Bone Marrow Failure Disorders/genetics , Chromosome Aberrations , Adolescent , Cytogenetic Analysis/methods , Bone Marrow Diseases/genetics , Karyotyping/methods , Young Adult
10.
Genes (Basel) ; 15(5)2024 May 20.
Article En | MEDLINE | ID: mdl-38790276

This study was conducted to evaluate the 5S rDNA site number, position, and origin of signal pattern diversity in 42 plant species using fluorescence in situ hybridization. The species were selected based on the discovery of karyotype rearrangement, or because 5S rDNA had not yet been explored the species. The chromosome number varied from 14 to 160, and the chromosome length ranged from 0.63 to 6.88 µm, with 21 species having small chromosomes (<3 µm). The chromosome numbers of three species and the 5S rDNA loci of nineteen species are reported for the first time. Six 5S rDNA signal pattern types were identified. The 5S rDNA varied and was abundant in signal site numbers (2-18), positions (distal, proximal, outside of chromosome arms), and even in signal intensity. Variation in the numbers and locations of 5S rDNA was observed in 20 species, whereas an extensive stable number and location of 5S rDNA was found in 22 species. The potential origin of the signal pattern diversity was proposed and discussed. These data characterized the variability of 5S rDNA within the karyotypes of the 42 species that exhibited chromosomal rearrangements and provided anchor points for genetic physical maps.


Chromosomes, Plant , In Situ Hybridization, Fluorescence , Karyotype , RNA, Ribosomal, 5S , Chromosomes, Plant/genetics , RNA, Ribosomal, 5S/genetics , In Situ Hybridization, Fluorescence/methods , Chromosome Mapping/methods , DNA, Ribosomal/genetics , Plants/genetics , Karyotyping/methods
11.
Theor Appl Genet ; 137(6): 142, 2024 May 26.
Article En | MEDLINE | ID: mdl-38796822

KEY MESSAGE: A Bayesian linkage disequilibrium-based multiple-locus mixed model identified QTLs for fibre, seed and oil traits and predicted breeding worthiness of test lines, enabling their simultaneous improvement in cotton. Improving cotton seed and oil yields has become increasingly important while continuing to breed for higher lint yield. In this study, a novel Bayesian linkage disequilibrium-based multiple-locus mixed model was developed for QTL identification and genomic prediction (GP). A multi-parent population consisting of 256 recombinant inbred lines, derived from four elite cultivars with distinct combinations of traits, was used in the analysis of QTLs for lint percentage, seed index, lint index and seed oil content and their interrelations. All four traits were moderately heritable and correlated but with no large influence of genotype × environment interactions across multiple seasons. Seven to ten major QTLs were identified for each trait with many being adjacent or overlapping for different trait pairs. A fivefold cross-validation of the model indicated prediction accuracies of 0.46-0.62. GP results based on any two-season phenotypes were strongly correlated with phenotypic means of a pooled analysis of three-season experiments (r = 0.83-0.92). When used for selection of improvement in lint, seed and oil yields, GP captured 40-100% of individuals with comparable lint yields of those selected based on the three-season phenotypic results. Thus, this quantitative genomics-enabled approach can not only decipher the genomic variation underlying lint, seed and seed oil traits and their interrelations, but can provide predictions for their simultaneous improvement. We discuss future breeding strategies in cotton that will enhance the entire value of the crop, not just its fibre.


Bayes Theorem , Gossypium , Linkage Disequilibrium , Phenotype , Plant Breeding , Quantitative Trait Loci , Seeds , Gossypium/genetics , Gossypium/growth & development , Seeds/genetics , Seeds/growth & development , Plant Breeding/methods , Genotype , Genomics/methods , Chromosome Mapping/methods , Cotton Fiber/analysis , Models, Genetic , Selection, Genetic
12.
Theor Appl Genet ; 137(6): 121, 2024 May 06.
Article En | MEDLINE | ID: mdl-38709317

KEY MESSAGE: This study precisely mapped and validated a quantitative trait locus (QTL) located on chromosome 4B for flag leaf angle in wheat. Flag leaf angle (FLANG) is closely related to crop architecture and yield. We previously identified the quantitative trait locus (QTL) QFLANG-4B for FLANG on chromosome 4B, located within a 14-cM interval flanked by the markers Xbarc20 and Xzyh357, using a mapping population of recombinant inbred lines (RILs) derived from a cross between Nongda3331 (ND3331) and Zang1817. In this study, we fine-mapped QFLANG-4B and validated its associated genetic effect. We developed a BC3F3 population using ND3331 as the recurrent parent through marker-assisted selection, as well as near-isogenic lines (NILs) by selfing BC3F3 plants carrying different heterozygous segments for the QFLANG-4B region. We obtained eight recombinant types for QFLANG-4B, narrowing its location down to a 5.3-Mb region. This region contained 76 predicted genes, 7 of which we considered to be likely candidate genes for QFLANG-4B. Marker and phenotypic analyses of individual plants from the secondary mapping populations and their progeny revealed that the FLANG of the ND3331 allele is significantly higher than that of the Zang1817 allele in multiple environments. These results not only provide a basis for the map-based cloning of QFLANG-4B, but also indicate that QFLANG-4B has great potential for marker-assisted selection in wheat breeding programs designed to improve plant architecture and yield.


Chromosome Mapping , Plant Leaves , Quantitative Trait Loci , Triticum , Chromosome Mapping/methods , Chromosomes, Plant/genetics , Genes, Plant , Genetic Linkage , Genetic Markers , Phenotype , Plant Breeding , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Plant Leaves/growth & development , Triticum/genetics , Triticum/growth & development , Triticum/anatomy & histology
13.
Science ; 384(6695): 533-539, 2024 May 03.
Article En | MEDLINE | ID: mdl-38603523

Short telomeres cause age-related disease, and long telomeres contribute to cancer; however, the mechanisms regulating telomere length are unclear. We developed a nanopore-based method, which we call Telomere Profiling, to determine telomere length at nearly single-nucleotide resolution. Mapping telomere reads to chromosome ends showed chromosome end-specific length distributions that could differ by more than six kilobases. Examination of telomere lengths in 147 individuals revealed that certain chromosome ends were consistently longer or shorter. The same rank order was found in newborn cord blood, suggesting that telomere length is determined at birth and that chromosome end-specific telomere length differences are maintained as telomeres shorten with age. Telomere Profiling makes precision investigation of telomere length widely accessible for laboratory, clinical, and drug discovery efforts and will allow deeper insights into telomere biology.


Chromosome Mapping , Nanopore Sequencing , Telomere Homeostasis , Telomere Shortening , Telomere , Humans , Male , Chromosomes, Human/genetics , Fetal Blood , Nanopore Sequencing/methods , Telomere/genetics , Telomere Homeostasis/genetics , Telomere Shortening/genetics , Chromosome Mapping/methods
14.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38673973

The quality of rice, evaluated using multiple quality-related traits, is the main determinant of its market competitiveness. In this study, two japonica rice varieties with significant differences in quality-related traits were used as parents to construct two populations, BC3F2 and BC3F2:3, with Kongyu131 (KY131) as the recurrent parent. A genetic linkage map was constructed using the BC3F2 population based on 151 pairs of SSR/InDel polymorphic markers selected between the parents. Grain-shape-related traits (grain length GL, grain width GW, and length-to-width ratio LWR), chalkiness-related traits (white-core rate WCR, white-belly rate WBR, white-back rate BR, and chalkiness rate CR), and amylose content (AC) were investigated in the two populations in 2017 and 2018. Except for BR and CR, the traits showed similar characteristics with a normal distribution in both populations. Genetic linkage analysis was conducted for these quality-related traits, and a total of 37 QTLs were detected in the two populations. Further validation was performed on the newly identified QTLs with larger effects, and three grain shape QTLs and four chalkiness QTLs were successfully validated in different environments. One repeatedly validated QTL, qWCR3, was selected for fine mapping and was successfully narrowed down to a 100 kb region in which only two genes, LOC_0s03g45210 and LOC_0s03g45320, exhibited sequence variations between the parents. Furthermore, the variation of LOC_Os03g45210 leads to a frameshift mutation and premature protein termination. The results of this study provide a theoretical basis for positional cloning of the qWCR3 gene, thus offering new genetic resources for rice quality improvement.


Chromosome Mapping , Genetic Linkage , Oryza , Phenotype , Quantitative Trait Loci , Oryza/genetics , Chromosome Mapping/methods , Edible Grain/genetics , Chromosomes, Plant/genetics , Genes, Plant
15.
Theor Appl Genet ; 137(5): 109, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649662

KEY MESSAGE: A stable genomic region conferring FSR resistance at ~250 Mb on chromosome 1 was identified by GWAS. Genomic prediction has the potential to improve FSR resistance. Fusarium stalk rot (FSR) is a global destructive disease in maize; the efficiency of phenotypic selection for improving FSR resistance was low. Novel genomic tools of genome-wide association study (GWAS) and genomic prediction (GP) provide an opportunity for genetic dissection and improving FSR resistance. In this study, GWAS and GP analyses were performed on 562 tropical maize inbred lines consisting of two populations. In total, 15 SNPs significantly associated with FSR resistance were identified across two populations and the combinedPOP consisting of all 562 inbred lines, with the P-values ranging from 1.99 × 10-7 to 8.27 × 10-13, and the phenotypic variance explained (PVE) values ranging from 0.94 to 8.30%. The genetic effects of the 15 favorable alleles ranged from -4.29 to -14.21% of the FSR severity. One stable genomic region at ~ 250 Mb on chromosome 1 was detected across all populations, and the PVE values of the SNPs detected in this region ranged from 2.16 to 5.18%. Prediction accuracies of FSR severity estimated with the genome-wide SNPs were moderate and ranged from 0.29 to 0.51. By incorporating genotype-by-environment interaction, prediction accuracies were improved between 0.36 and 0.55 in different breeding scenarios. Considering both the genome coverage and the threshold of the P-value of SNPs to select a subset of molecular markers further improved the prediction accuracies. These findings extend the knowledge of exploiting genomic tools for genetic dissection and improving FSR resistance in tropical maize.


Disease Resistance , Fusarium , Phenotype , Plant Diseases , Polymorphism, Single Nucleotide , Zea mays , Zea mays/genetics , Zea mays/microbiology , Disease Resistance/genetics , Fusarium/pathogenicity , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Breeding , Genotype , Genomics/methods , Genetic Association Studies , Alleles , Chromosome Mapping/methods
16.
Theor Appl Genet ; 137(5): 112, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38662228

KEY MESSAGE: Two key genes Zm00001d021232 and Zm00001d048138 were identified by QTL mapping and GWAS. Additionally, they were verified to be significantly associated with maize husk number (HN) using gene-based association study. As a by-product of maize production, maize husk is an important industrial raw material. Husk layer number (HN) is an important trait that affects the yield of maize husk. However, the genetic mechanism underlying HN remains unclear. Herein, a total of 13 quantitative trait loci (QTL) controlling HN were identified in an IBM Syn 10 DH population across different locations. Among these, three QTL were individually repeatedly detected in at least two environments. Meanwhile, 26 unique single nucleotide polymorphisms (SNPs) were detected to be significantly (p < 2.15 × 10-6) associated with HN in an association pool. Of these SNPs, three were simultaneously detected across multiple environments or environments and best linear unbiased prediction (BLUP). We focused on these environment-stable and population-common genetic loci for excavating the candidate genes responsible for maize HN. Finally, 173 initial candidate genes were identified, of which 22 were involved in both multicellular organism development and single-multicellular organism process and thus confirmed as the candidate genes for HN. Gene-based association analyses revealed that the variants in four genes were significantly (p < 0.01/N) correlated with HN, of which Zm00001d021232 and Zm00001d048138 were highly expressed in husks and early developing ears among different maize tissues. Our study contributes to the understanding of genetic and molecular mechanisms of maize husk yield and industrial development in the future.


Chromosome Mapping , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Zea mays , Zea mays/genetics , Zea mays/growth & development , Chromosome Mapping/methods , Genes, Plant , Genome-Wide Association Study , Genetic Association Studies , Linkage Disequilibrium , Genotype
17.
Sci Rep ; 14(1): 9606, 2024 04 26.
Article En | MEDLINE | ID: mdl-38670987

Coix lacryma-jobi L. is one of the most economically and medicinally important corns. This study constructed a high-density genetic linkage map of C. lacryma-jobi based on a cross between the parents 'Qianyi No. 2' × 'Wenyi No. 2' and their F2 progeny through high-throughput sequencing and the construction of a specific-locus amplified fragment (SLAF) library. After pre-processing, 325.49 GB of raw data containing 1628 M reads were obtained. A total of 22,944 high-quality SLAFs were identified, among which 3952 SLAFs and 3646 polymorphic markers met the requirements for the construction of a genetic linkage map. The integrated map contained 3605 high-quality SLAFs, which were grouped into ten genetic linkage groups. The total length of the map was 1620.39 cM, with an average distance of 0.45 cM and an average of 360.5 markers per linkage group. This report presents the first high-density genetic map of C. lacryma-jobi. This map was constructed using an F2 population and SLAF-seq approach, which allows the development of a large number of polymorphic markers in a short period. These results provide a platform for precise gene/quantitative trait locus (QTL) mapping, map-based gene separation, and molecular breeding in C. lacryma-jobi. They also help identify a target gene for tracking, splitting quantitative traits, and estimating the phenotypic effects of each QTL for QTL mapping. They are of great significance for improving the efficiency of discovering and utilizing excellent gene resources of C. lacryma-jobi.


Chromosome Mapping , Genetic Linkage , Chromosome Mapping/methods , Genetic Markers , Quantitative Trait Loci , High-Throughput Nucleotide Sequencing/methods
18.
PLoS One ; 19(4): e0299825, 2024.
Article En | MEDLINE | ID: mdl-38593174

Chilling sensitivity is one of the greatest challenges affecting the marketability and profitability of sweet basil (Ocimum basilicum L.) in the US and worldwide. Currently, there are no sweet basils commercially available with significant chilling tolerance and traditional aroma profiles. This study was conducted to identify quantitative trait loci (QTLs) responsible for chilling tolerance and aroma compounds in a biparental mapping population, including the Rutgers advanced breeding line that served as a chilling tolerant parent, 'CB15', the chilling sensitive parent, 'Rutgers Obsession DMR' and 200 F2 individuals. Chilling tolerance was assessed by percent necrosis using machine learning and aroma profiling was evaluated using gas chromatography (GC) mass spectrometry (MS). Single nucleotide polymorphism (SNP) markers were generated from genomic sequences derived from double digestion restriction-site associated DNA sequencing (ddRADseq) and converted to genotype data using a reference genome alignment. A genetic linkage map was constructed and five statistically significant QTLs were identified in response to chilling temperatures with possible interactions between QTLs. The QTL on LG24 (qCH24) demonstrated the largest effect for chilling response and was significant in all three replicates. No QTLs were identified for linalool, as the population did not segregate sufficiently to detect this trait. Two significant QTLs were identified for estragole (also known as methyl chavicol) with only qEST1 on LG1 being significant in the multiple-QTL model (MQM). QEUC26 was identified as a significant QTL for eucalyptol (also known as 1,8-cineole) on LG26. These QTLs may represent key mechanisms for chilling tolerance and aroma in basil, providing critical knowledge for future investigation of these phenotypic traits and molecular breeding.


Ocimum basilicum , Quantitative Trait Loci , Humans , Ocimum basilicum/genetics , Plant Breeding , Chromosome Mapping/methods , Phenotype , Genomics , Polymorphism, Single Nucleotide , Genetic Linkage
19.
Methods Mol Biol ; 2787: 169-181, 2024.
Article En | MEDLINE | ID: mdl-38656489

Genetic maps are an excellent tool for the analysis of important traits, the development of which is the result of the combined expression of several genes, enabling the genomic localization of the factors determining them. Such features, characterized by a normal distribution of values, are referred to as quantitative or polygenic. The analysis of their genetic background using a chromosome map is called the mapping of quantitative traits loci (QTL). QTL analysis is a statistical method of determining the genetic association of phenotypic data (trait measurements) with genotypic data (DNA markers assigned to linkage groups).There are numerous tools developed for QTL mapping. This chapter introduces Windows QTL Cartographer with Composite Interval Mapping (CIM) method, which estimates the QTL position by combining interval mapping with multiple regression. The genotypic and phenotypic data used in the exemplary QTL mapping procedure were obtained for the recombinant inbred line (RIL) population of rye. Plant height, assessed in three seasons, was the exemplary trait under study.


Chromosome Mapping , Phenotype , Quantitative Trait Loci , Chromosome Mapping/methods , Genotype , Genetic Linkage , Software , Inbreeding , Chromosomes, Plant/genetics
20.
Methods Mol Biol ; 2787: 153-168, 2024.
Article En | MEDLINE | ID: mdl-38656488

Genetic mapping is the determination of the position and relative genetic distance between genes or molecular markers in the chromosomes of a particular species. The construction of genetic maps uses data from the genotyping of the mapping population. Among the different mapping populations used, two are relatively common: the F2 and recombinant inbred lines (RILs) obtained as a result of the controlled crossing of genetically diverse parental forms (e.g., inbred lines). Also, the dihaploid (DH) population is often used in plants, but obtaining DHs in different crops, including rye, is very difficult or even impossible. Any molecular marker system can be used for genotyping. Polymorphic markers are used for linkage analysis, differentiating parental forms with segregation in the mapping population, consistent with the appropriate single-gene model. A genetic map is a great source of information on a species and can be an exquisite tool for analyzing important quantitative traits (QT).This chapter presents the procedure of genetic map construction with two different algorithms using the JoinMap5.0 program. First, the Materials section briefly informs about the mapping program, showing how to obtain a mapping population and prepare data for mapping. Finally, the Methods section describes the protocol for the mapping procedure itself.


Chromosome Mapping , Genetic Linkage , Quantitative Trait Loci , Chromosome Mapping/methods , Algorithms , Crosses, Genetic , Genotype , Genetic Markers , Software , Chromosomes, Plant/genetics
...