Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.092
1.
Sci Rep ; 14(1): 12998, 2024 06 06.
Article En | MEDLINE | ID: mdl-38844535

The challenge of in-situ handling and high-resolution low-dose imaging of intact, sensitive and wet samples in their native state at nanometer scale, including live samples is met by Advanced Environmental Scanning Electron Microscopy (A-ESEM). This new generation of ESEM utilises machine learning-based optimization of thermodynamic conditions with respect to sample specifics to employ a low temperature method and an ionization secondary electron detector with an electrostatic separator. A modified electron microscope was used, equipped with temperature, humidity and gas pressure sensors for in-situ and real-time monitoring of the sample. A transparent ultra-thin film of ionic liquid is used to increase thermal and electrical conductivity of the samples and to minimize sample damage by free radicals. To validate the power of the new method, we analyze condensed mitotic metaphase chromosomes to reveal new structural features of their perichromosomal layer, and the organization of chromatin fibers, not observed before by any microscopic technique. The ability to resolve nano-structural details of chromosomes using A-ESEM is validated by measuring gold nanoparticles with achievable resolution in the lower nanometre units.


Microscopy, Electron, Scanning , Microscopy, Electron, Scanning/methods , Humans , Gold/chemistry , Metal Nanoparticles/chemistry , Mitosis , Chromosomes/ultrastructure
2.
Sci Rep ; 11(1): 23429, 2021 12 06.
Article En | MEDLINE | ID: mdl-34873180

Genomic instability (GI) influences treatment efficacy and resistance, and an accurate measure of it is lacking. Current measures of GI are based on counts of specific structural variation (SV) and mutational signatures. Here, we present a holistic approach to measuring GI based on the quantification of the steady-state equilibrium between DNA damage and repair as assessed by the residual breakpoints (BP) remaining after repair, irrespective of SV type. We use the notion of Hscore, a BP "hotspotness" magnitude scale, to measure the propensity of genomic structural or functional DNA elements to break more than expected by chance. We then derived new measures of transcription- and replication-associated GI that we call iTRAC (transcription-associated chromosomal instability index) and iRACIN (replication-associated chromosomal instability index). We show that iTRAC and iRACIN are predictive of metastatic relapse in Leiomyosarcoma (LMS) and that they may be combined to form a new classifier called MAGIC (mixed transcription- and replication-associated genomic instability classifier). MAGIC outperforms the gold standards FNCLCC and CINSARC in stratifying metastatic risk in LMS. Furthermore, iTRAC stratifies chemotherapeutic response in LMS. We finally show that this approach is applicable to other cancers.


Chromosomal Instability , Chromosomes/ultrastructure , DNA Replication , Algorithms , Antineoplastic Agents/administration & dosage , DNA/analysis , DNA Damage , DNA Mutational Analysis , DNA Repair , Enhancer Elements, Genetic , Gene Regulatory Networks , Genome, Human , Humans , Kaplan-Meier Estimate , Neoplasm Metastasis , Neoplasms/genetics , Promoter Regions, Genetic , Risk , Sarcoma/pathology , Sequence Analysis, DNA , Transcription, Genetic , Treatment Outcome
3.
Mol Cell ; 81(23): 4907-4923.e8, 2021 12 02.
Article En | MEDLINE | ID: mdl-34793711

Oncogene-induced senescence (OIS) is an inherent and important tumor suppressor mechanism. However, if not removed timely via immune surveillance, senescent cells also have detrimental effects. Although this has mostly been attributed to the senescence-associated secretory phenotype (SASP) of these cells, we recently proposed that "escape" from the senescent state is another unfavorable outcome. The mechanism underlying this phenomenon remains elusive. Here, we exploit genomic and functional data from a prototypical human epithelial cell model carrying an inducible CDC6 oncogene to identify an early-acquired recurrent chromosomal inversion that harbors a locus encoding the circadian transcription factor BHLHE40. This inversion alone suffices for BHLHE40 activation upon CDC6 induction and driving cell cycle re-entry of senescent cells, and malignant transformation. Ectopic overexpression of BHLHE40 prevented induction of CDC6-triggered senescence. We provide strong evidence in support of replication stress-induced genomic instability being a causative factor underlying "escape" from oncogene-induced senescence.


Cellular Senescence , Chromosome Inversion , Chromosomes/ultrastructure , Epithelial-Mesenchymal Transition , Neoplasms/genetics , Oncogenes , Recombination, Genetic , Animals , Bronchi/metabolism , CRISPR-Cas Systems , Cell Cycle , Cell Transformation, Neoplastic , Circadian Rhythm , Computational Biology , Epithelial Cells/metabolism , Flow Cytometry , Genomics , Humans , Karyotyping , Mice , Mice, SCID , Neoplasms/metabolism , Phenotype , Protein Binding , Protein Domains , Senescence-Associated Secretory Phenotype
4.
Mol Cell ; 81(23): 4891-4906.e8, 2021 12 02.
Article En | MEDLINE | ID: mdl-34739874

The ring-like structural maintenance of chromosomes (SMC) complex MukBEF folds the genome of Escherichia coli and related bacteria into large loops, presumably by active DNA loop extrusion. MukBEF activity within the replication terminus macrodomain is suppressed by the sequence-specific unloader MatP. Here, we present the complete atomic structure of MukBEF in complex with MatP and DNA as determined by electron cryomicroscopy (cryo-EM). The complex binds two distinct DNA double helices corresponding to the arms of a plectonemic loop. MatP-bound DNA threads through the MukBEF ring, while the second DNA is clamped by the kleisin MukF, MukE, and the MukB ATPase heads. Combinatorial cysteine cross-linking confirms this topology of DNA loop entrapment in vivo. Our findings illuminate how a class of near-ubiquitous DNA organizers with important roles in genome maintenance interacts with the bacterial chromosome.


Chromosomal Proteins, Non-Histone/chemistry , Chromosomes/ultrastructure , Cryoelectron Microscopy/methods , DNA/chemistry , Escherichia coli Proteins/chemistry , Repressor Proteins/chemistry , Adenosine Triphosphatases/chemistry , Cell Cycle Proteins/chemistry , Chromosomes, Bacterial , DNA/metabolism , DNA Repair , DNA-Binding Proteins/chemistry , Dimerization , Escherichia coli/metabolism , Genetic Techniques , Genome, Bacterial , Multiprotein Complexes/chemistry , Photorhabdus , Protein Binding , Protein Conformation , Protein Domains , Cohesins
5.
Sci Rep ; 11(1): 20298, 2021 10 13.
Article En | MEDLINE | ID: mdl-34645840

The frequency and distribution of chromosomal abnormalities and the impact of parental chromosomal aberration on the pregnancy outcomes of couples with recurrent pregnancy loss remains controversial. 3235 RPL couples who experienced two or more miscarriages before 20 weeks were diagnosed in our tertiary referral hospital during 2008-2018 and included in the single-center retrospective cohort study covering a 10-year period. Chromosome aberration was detected in 121 (3.74%) among 3235 RPL couples which included 75 female and 46 male cases at an individual level. 101 cases were structural aberrations including balanced translocations in 46(38.0%) cases, Robertsonian translocations in 13(10.7%) cases, inversions in 42(34.7%) cases and 20(16.5%) cases were numerical aberrations. 121 carriers and 428 non-carriers were followed up for two years, 55 carriers and 229 non-carriers were subsequent pregnant after diagnosis by natural conception or intrauterine insemination. The frequency of carriers to have a health newborn was not significantly different with non-carriers (72.7% vs. 71.2%, adjusted P = 0.968). This study described the majority of carriers were balanced translocations and chromosome aberrations had a limited influence on live birth rate from the present data. The results of the study also remind us that natural conception may be also a good alternative rather than PGD (Pre-implantation Genetic Diagnosis) which is common in many other reproductive centers for such patients.


Abortion, Habitual/genetics , Chromosomes/ultrastructure , Parents , Abnormal Karyotype , Adult , China , Chromosome Aberrations , Cytogenetic Analysis , Female , Fertilization , Follow-Up Studies , Gene Rearrangement , Heterozygote , Humans , Insemination, Artificial , Karyotyping , Live Birth , Male , Pregnancy , Pregnancy Outcome , Retrospective Studies , Tertiary Care Centers , Translocation, Genetic
6.
Nat Chem Biol ; 17(12): 1314-1323, 2021 12.
Article En | MEDLINE | ID: mdl-34608293

Spindle position control is essential for cell fate determination and organogenesis. Early studies indicate the essential role of the evolutionarily conserved Gαi/LGN/NuMA network in spindle positioning. However, the regulatory mechanisms that couple astral microtubules dynamics to the spindle orientation remain elusive. Here we delineated a new mitosis-specific crotonylation-regulated astral microtubule-EB1-NuMA interaction in mitosis. EB1 is a substrate of TIP60, and TIP60-dependent crotonylation of EB1 tunes accurate spindle positioning in mitosis. Mechanistically, TIP60 crotonylation of EB1 at Lys66 forms a dynamic link between accurate attachment of astral microtubules to the lateral cell cortex defined by NuMA-LGN and fine tune of spindle positioning. Real-time imaging of chromosome movements in HeLa cells expressing genetically encoded crotonylated EB1 revealed the importance of crotonylation dynamics for accurate control of spindle orientation during metaphase-anaphase transition. These findings delineate a general signaling cascade that integrates protein crotonylation with accurate spindle positioning for chromosome stability in mitosis.


Cell Cycle Proteins/metabolism , Lysine Acetyltransferase 5/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Spindle Apparatus/metabolism , Amino Acid Sequence , Chromosomes/ultrastructure , Escherichia coli/genetics , HeLa Cells , Humans , Kinetics , Mitosis , Protein Binding , Protein Conformation
7.
Int J Mol Sci ; 22(18)2021 Sep 10.
Article En | MEDLINE | ID: mdl-34575948

Chromatin conformation plays an important role in a variety of genomic processes, including genome replication, gene expression, and gene methylation. Hi-C data is frequently used to analyze structural features of chromatin, such as AB compartments, topologically associated domains, and 3D structural models. Recently, the genomics community has displayed growing interest in chromatin dynamics. Here, we present 4DMax, a novel method, which uses time-series Hi-C data to predict dynamic chromosome conformation. Using both synthetic data and real time-series Hi-C data from processes, such as induced pluripotent stem cell reprogramming and cardiomyocyte differentiation, we construct smooth four-dimensional models of individual chromosomes. These predicted 4D models effectively interpolate chromatin position across time, permitting prediction of unknown Hi-C contact maps at intermittent time points. Furthermore, 4DMax correctly recovers higher order features of chromatin, such as AB compartments and topologically associated domains, even at time points where Hi-C data is not made available to the algorithm. Contact map predictions made using 4DMax outperform naïve numerical interpolation in 87.7% of predictions on the induced pluripotent stem cell dataset. A/B compartment profiles derived from 4DMax interpolation showed higher similarity to ground truth than at least one profile generated from a neighboring time point in 100% of induced pluripotent stem cell experiments. Use of 4DMax may alleviate the cost of expensive Hi-C experiments by interpolating intermediary time points while also providing valuable visualization of dynamic chromatin changes.


Chromatin/ultrastructure , Chromosomes/ultrastructure , Computational Biology , Algorithms , Chromatin/genetics , Chromosomes/genetics , Genome/genetics , Humans , Molecular Conformation
8.
Science ; 374(6567): 586-594, 2021 Oct 29.
Article En | MEDLINE | ID: mdl-34591592

Diverse cell types in tissues have distinct gene expression programs, chromatin states, and nuclear architectures. To correlate such multimodal information across thousands of single cells in mouse brain tissue sections, we use integrated spatial genomics, imaging thousands of genomic loci along with RNAs and epigenetic markers simultaneously in individual cells. We reveal that cell type­specific association and scaffolding of DNA loci around nuclear bodies organize the nuclear architecture and correlate with differential expression levels in different cell types. At the submegabase level, active and inactive X chromosomes access similar domain structures in single cells despite distinct epigenetic and expression states. This work represents a major step forward in linking single-cell three-dimensional nuclear architecture, gene expression, and epigenetic modifications in a native tissue context.


Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Cerebral Cortex/cytology , Neuroglia/ultrastructure , Neurons/ultrastructure , Single-Cell Analysis , Animals , Cerebral Cortex/metabolism , Chromatin/metabolism , Chromatin/ultrastructure , Chromosomes/metabolism , Chromosomes/ultrastructure , Endothelial Cells/metabolism , Endothelial Cells/ultrastructure , Epigenesis, Genetic , Female , Genome , In Situ Hybridization, Fluorescence , Mice , Neuroglia/metabolism , Neurons/metabolism , RNA-Seq , Transcription, Genetic , Transcriptome , X Chromosome/metabolism , X Chromosome/ultrastructure
9.
Mol Cell ; 81(21): 4369-4376.e3, 2021 11 04.
Article En | MEDLINE | ID: mdl-34520722

Chromatin fibers must fold or coil in the process of chromosome condensation. Patterns of coiling have been demonstrated for reconstituted chromatin, but the actual trajectories of fibers in condensed states of chromosomes could not be visualized because of the high density of the material. We have exploited partial decondensation of mitotic chromosomes to reveal their internal structure at sub-nucleosomal resolution by cryo-electron tomography, without the use of stains, fixatives, milling, or sectioning. DNA gyres around nucleosomes were visible, allowing the nucleosomes to be identified and their orientations to be determined. Linker DNA regions were traced, revealing the trajectories of the chromatin fibers. The trajectories were irregular, with almost no evidence of coiling and no short- or long-range order of the chromosomal material. The 146-bp core particle, long known as a product of nuclease digestion, is identified as the native state of the nucleosome, with no regular spacing along the chromatin fibers.


Chromosomes/ultrastructure , DNA/chemistry , Mitosis , Nucleosomes/metabolism , Amino Acid Motifs , Chromatin/chemistry , Cryoelectron Microscopy , Green Fluorescent Proteins/metabolism , HeLa Cells , Histones/chemistry , Humans , Microscopy, Fluorescence , Nucleosomes/chemistry , Spermidine/chemistry , Tomography
10.
Elife ; 102021 08 18.
Article En | MEDLINE | ID: mdl-34406118

DNA loop extrusion by condensins and decatenation by DNA topoisomerase II (topo II) are thought to drive mitotic chromosome compaction and individualization. Here, we reveal that the linker histone H1.8 antagonizes condensins and topo II to shape mitotic chromosome organization. In vitro chromatin reconstitution experiments demonstrate that H1.8 inhibits binding of condensins and topo II to nucleosome arrays. Accordingly, H1.8 depletion in Xenopus egg extracts increased condensins and topo II levels on mitotic chromatin. Chromosome morphology and Hi-C analyses suggest that H1.8 depletion makes chromosomes thinner and longer through shortening the average loop size and reducing the DNA amount in each layer of mitotic loops. Furthermore, excess loading of condensins and topo II to chromosomes by H1.8 depletion causes hyper-chromosome individualization and dispersion. We propose that condensins and topo II are essential for chromosome individualization, but their functions are tuned by the linker histone to keep chromosomes together until anaphase.


Chromatin/metabolism , Chromosomes/genetics , DNA Topoisomerases, Type II/genetics , Histones/genetics , Adenosine Triphosphatases/metabolism , Animals , Cell Extracts/chemistry , Chromosomes/ultrastructure , DNA-Binding Proteins/metabolism , Female , Models, Biological , Multiprotein Complexes/metabolism , Oocytes/chemistry , Oocytes/metabolism , Spindle Apparatus/genetics , Spindle Apparatus/pathology , Spindle Apparatus/ultrastructure , Xenopus laevis
11.
Mol Cell ; 81(15): 3033-3037, 2021 08 05.
Article En | MEDLINE | ID: mdl-34358454

Some biological questions are tough to solve through standard molecular and cell biological methods and naturally lend themselves to investigation by physical approaches. Below, a group of formally trained physicists discuss, among other things, how they apply physics to address biological questions and how physical approaches complement conventional biological approaches.


Biophysics/methods , Models, Biological , Physics/methods , Single Molecule Imaging , Biology/education , Biophysics/trends , Chromosomes/chemistry , Chromosomes/ultrastructure , Computer Simulation , Humans , Molecular Motor Proteins/chemistry , Origin of Life , Physics/education , Single Molecule Imaging/methods
12.
Biomed Res Int ; 2021: 5561734, 2021.
Article En | MEDLINE | ID: mdl-34195268

Mineral malnutrition as a prevalent public health issue can be alleviated by increasing the intake of dietary minerals from major staple crops, such as rice. Identification of the gene responsible for mineral contents in rice would help breed cultivars enriched with minerals through marker-assisted selection. Two segregating populations of backcross inbred lines (BIL) were employed to map quantitative trait loci (QTLs) for macronutrient contents in brown and milled rice, BC1F5, and BC2F4:5 derived from an interspecific cross of Xieqingzao B (Oryza sativa) and Dongxiang wild rice (O. rufipogon). Phenotyping the populations was conducted in multiple locations and years, and up to 169 DNA markers were used for the genotyping. A total of 17 QTLs for P, K, Na, Ca, and Mg contents in brown and milled rice distributed on eight regions were identified in the BC1F5 population, which is explained to range from 5.98% to 56.80% of phenotypic variances. Two regions controlling qCa1.1 and qCa4.1 were validated, and seven new QTLs for Ca and Mg contents were identified in the BC2F4:5 population. 18 of 24 QTLs were clustered across seven chromosomal regions, indicating that different mineral accumulation might be involved in common regulatory pathways. Of 24 QTLs identified in two populations, 16 having favorable alleles were derived from O. rufipogon and 10 were novel. These results will not only help understand the molecular mechanism of macronutrient accumulation in rice but also provide candidate QTLs for further gene cloning and grain nutrient improvement through QTL pyramiding.


Nutrients/metabolism , Oryza/genetics , Oryza/metabolism , Quantitative Trait Loci , Species Specificity , Alleles , Calcium/metabolism , Chromosome Mapping , Chromosomes/ultrastructure , Chromosomes, Plant , Cloning, Molecular , Crosses, Genetic , DNA, Plant/genetics , Genetic Markers , Magnesium/metabolism , Phenotype , Phosphorus/metabolism , Plant Breeding , Polymorphism, Genetic , Potassium/metabolism , Sodium/metabolism
13.
Int J Mol Sci ; 22(11)2021 Jun 01.
Article En | MEDLINE | ID: mdl-34206020

Three dimensional (3D) ultra-structural imaging is an important tool for unraveling the organizational structure of individual chromosomes at various stages of the cell cycle. Performing hitherto uninvestigated ultra-structural analysis of the human genome at prophase, we used serial block-face scanning electron microscopy (SBFSEM) to understand chromosomal architectural organization within 3D nuclear space. Acquired images allowed us to segment, reconstruct, and extract quantitative 3D structural information about the prophase nucleus and the preserved, intact individual chromosomes within it. Our data demonstrate that each chromosome can be identified with its homolog and classified into respective cytogenetic groups. Thereby, we present the first 3D karyotype built from the compact axial structure seen on the core of all prophase chromosomes. The chromosomes display parallel-aligned sister chromatids with familiar chromosome morphologies with no crossovers. Furthermore, the spatial positions of all 46 chromosomes revealed a pattern showing a gene density-based correlation and a neighborhood map of individual chromosomes based on their relative spatial positioning. A comprehensive picture of 3D chromosomal organization at the nanometer level in a single human lymphocyte cell is presented.


Chromosomes/genetics , Lymphocytes/cytology , Mitosis/genetics , Sister Chromatid Exchange/genetics , Cell Nucleus/genetics , Chromosomes/ultrastructure , Humans , Karyotyping , Lymphocytes/ultrastructure , Microscopy, Electron, Scanning
14.
Int J Mol Sci ; 22(11)2021 May 31.
Article En | MEDLINE | ID: mdl-34072879

Reconstructing three-dimensional (3D) chromosomal structures based on single-cell Hi-C data is a challenging scientific problem due to the extreme sparseness of the single-cell Hi-C data. In this research, we used the Lennard-Jones potential to reconstruct both 500 kb and high-resolution 50 kb chromosomal structures based on single-cell Hi-C data. A chromosome was represented by a string of 500 kb or 50 kb DNA beads and put into a 3D cubic lattice for simulations. A 2D Gaussian function was used to impute the sparse single-cell Hi-C contact matrices. We designed a novel loss function based on the Lennard-Jones potential, in which the ε value, i.e., the well depth, was used to indicate how stable the binding of every pair of beads is. For the bead pairs that have single-cell Hi-C contacts and their neighboring bead pairs, the loss function assigns them stronger binding stability. The Metropolis-Hastings algorithm was used to try different locations for the DNA beads, and simulated annealing was used to optimize the loss function. We proved the correctness and validness of the reconstructed 3D structures by evaluating the models according to multiple criteria and comparing the models with 3D-FISH data.


Chromatin/ultrastructure , Chromosomes/ultrastructure , DNA/genetics , Imaging, Three-Dimensional , Chromatin/genetics , Chromosomes/genetics , DNA/ultrastructure , Humans , Models, Molecular
15.
Science ; 372(6545): 984-989, 2021 05 28.
Article En | MEDLINE | ID: mdl-34045355

We investigated genome folding across the eukaryotic tree of life. We find two types of three-dimensional (3D) genome architectures at the chromosome scale. Each type appears and disappears repeatedly during eukaryotic evolution. The type of genome architecture that an organism exhibits correlates with the absence of condensin II subunits. Moreover, condensin II depletion converts the architecture of the human genome to a state resembling that seen in organisms such as fungi or mosquitoes. In this state, centromeres cluster together at nucleoli, and heterochromatin domains merge. We propose a physical model in which lengthwise compaction of chromosomes by condensin II during mitosis determines chromosome-scale genome architecture, with effects that are retained during the subsequent interphase. This mechanism likely has been conserved since the last common ancestor of all eukaryotes.


Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/physiology , Biological Evolution , Chromosomes/ultrastructure , DNA-Binding Proteins/genetics , DNA-Binding Proteins/physiology , Eukaryota/genetics , Genome , Multiprotein Complexes/genetics , Multiprotein Complexes/physiology , Adenosine Triphosphatases/chemistry , Algorithms , Animals , Cell Nucleolus/ultrastructure , Cell Nucleus/ultrastructure , Centromere/ultrastructure , Chromosomes/chemistry , Chromosomes, Human/chemistry , Chromosomes, Human/ultrastructure , DNA-Binding Proteins/chemistry , Genome, Human , Genomics , Heterochromatin/ultrastructure , Humans , Interphase , Mitosis , Models, Biological , Multiprotein Complexes/chemistry , Telomere/ultrastructure
16.
Philos Trans A Math Phys Eng Sci ; 379(2199): 20200144, 2021 Jun 14.
Article En | MEDLINE | ID: mdl-33896204

We report that high-density single-molecule super-resolution microscopy can be achieved with a conventional epifluorescence microscope set-up and a mercury arc lamp. The configuration termed as laser-free super-resolution microscopy (LFSM) is an extension of single-molecule localization microscopy (SMLM) techniques and allows single molecules to be switched on and off (a phenomenon termed as 'blinking'), detected and localized. The use of a short burst of deep blue excitation (350-380 nm) can be further used to reactivate the blinking, once the blinking process has slowed or stopped. A resolution of 90 nm is achieved on test specimens (mouse and amphibian meiotic chromosomes). Finally, we demonstrate that stimulated emission depletion and LFSM can be performed on the same biological sample using a simple commercial mounting medium. It is hoped that this type of correlative imaging will provide a basis for a further enhanced resolution. This article is part of the Theo Murphy meeting issue 'Super-resolution structured illumination microscopy (part 1)'.


Microscopy, Fluorescence/instrumentation , Single Molecule Imaging/instrumentation , Amphibians , Animals , Chromosomes/chemistry , Chromosomes/ultrastructure , Equipment Design , Fluorescent Dyes , Mice , Microscopy, Confocal/instrumentation , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Organic Chemicals , Proof of Concept Study , Single Molecule Imaging/methods , Synaptonemal Complex/chemistry , Synaptonemal Complex/ultrastructure , Xanthenes
17.
Fertil Steril ; 116(2): 583-596, 2021 08.
Article En | MEDLINE | ID: mdl-33926715

OBJECTIVE: To quantify the percentage of monopronuclear-derived blastocysts (MNBs) that are potentially useful for reproductive purposes using classic and state-of-the-art chromosome analysis approaches, and to study chromosomal distribution in the inner cell mass (ICM) and trophectoderm (TE) for intertissue/intratissue concordance comparison. DESIGN: Prospective experimental study. SETTING: Single-center in vitro fertilization clinic and reproductive genetics laboratory. PATIENT(S): A total of 1,128 monopronuclear zygotes were obtained between June 2016 and December 2018. INTERVENTION(S): MNBs were whole-fixed or biopsied to obtain a portion of ICM and 2 TE portions (TE1 and TE2) and were subsequently analyzed by fluorescence in situ hybridization, new whole-genome sequencing, and fingerprinting by single-nucleotide polymorphism array-based techniques (a-SNP). MAIN OUTCOME MEASURE(S): We assessed MNB rate, ploidy rate, and chromosomal constitution by new whole-genome sequencing, and parental composition by comparative a-SNP, performed in a "trio"-format (embryo/parents). The 24-chromosome distribution was compared between the TE and the ICM and within the TE. RESULT(S): A total of 18.4% of monopronuclear zygotes progressed to blastocysts; 77.6% of MNBs were diploid; 20% of MNBs were male and euploid, which might be reproductively useful. Seventy-five percent of MNBs were biparental and half of them were euploid, indicating that 40% might be reproductively useful. Intratissue concordance (TE1/TE2) was established for 93.3% and 73.3% for chromosome matching. Intertissue concordance (TE/ICM) was established for 78.8%, but 57.6% for chromosome matching. When segmental aneuploidy was not considered, intratissue concordance and chromosome matching increased to 100% and 80%, respectively, and intertissue concordance and chromosome matching increased to 84.8% and 75.8%, respectively. CONCLUSION(S): The a-SNP-trio strategy provides information about ploidy, euploidy, and parental origin in a single biopsy. This approach enabled us to identify 40% of MNBs with reproductive potential, which can have a significant effect in the clinical setting. Additionally, segmental aneuploidy is relevant for mismatched preimplantation genetic testing of aneuploidies, both within and between MNB tissues. Repeat biopsy might clarify whether segmental aneuploidy is a prone genetic character.


Blastocyst/ultrastructure , Chromosomes/ultrastructure , Ploidies , Polymorphism, Single Nucleotide , Biopsy , Blastocyst/pathology , Blastocyst Inner Cell Mass/ultrastructure , DNA Fingerprinting , Female , High-Throughput Nucleotide Sequencing , Humans , In Situ Hybridization, Fluorescence , Prospective Studies
18.
Cytogenet Genome Res ; 161(1-2): 52-62, 2021.
Article En | MEDLINE | ID: mdl-33887732

With 82 species currently described, the genus Leptodactylus is the most diverse and representative one in the family Leptodactylidae. Concerning chromosomal organization, this genus represents an interesting and underexplored group since data from molecular cytogenetics are incipient, and little is known about the organization and distribution of repetitive DNA elements in the karyotypes. In this sense, this study aimed at providing a comparative analysis in 4 Leptodactylus species (L. macrosternum, L. pentadactylus, L. fuscus, and Leptodactylus cf. podicipinus), combining conventional cytogenetics (Giemsa staining, C-banding, and AgNOR staining) and mapping of molecular markers (18S rDNA, telomeric and microsatellite probes), to investigate mechanisms underlying their karyotype differentiation process. The results showed that all species had karyotypes with 2n = 22 and FN = 44, except for Leptodactylus cf. podicipinus which presented FN = 36. The 18S rDNA was observed in pair 8 of all analyzed species (corresponding to pair 4 in L. pentadactylus), coinciding with the secondary constrictions and AgNOR staining. FISH with microsatellite DNA probes demonstrated species-specific patterns, as well as an association of these repetitive sequences with constitutive heterochromatin blocks and ribosomal DNA clusters, revealing the dynamics of microsatellites in the genome of the analyzed species. In summary, our data demonstrate an ongoing process of genomic divergence inside species with almost similar karyotype, driven most likely by a series of pericentric inversions, followed by differential accumulation of repetitive sequences.


Anura/genetics , Chromosomes/ultrastructure , DNA, Ribosomal/genetics , Karyotyping , Microsatellite Repeats , Animals , Chromosome Banding , Chromosome Inversion , Cytogenetic Analysis , Cytogenetics , DNA Probes , Female , Geography , Heterochromatin/metabolism , In Situ Hybridization, Fluorescence , Karyotype , Male , Meiosis , Mitosis , Nucleolus Organizer Region , Phylogeny , Species Specificity
19.
PLoS Genet ; 17(4): e1009502, 2021 04.
Article En | MEDLINE | ID: mdl-33861748

Karyotype, including the chromosome and arm numbers, is a fundamental genetic characteristic of all organisms and has long been used as a species-diagnostic character. Additionally, karyotype evolution plays an important role in divergent adaptation and speciation. Centric fusion and fission change chromosome numbers, whereas the intra-chromosomal movement of the centromere, such as pericentric inversion, changes arm numbers. A probabilistic model simultaneously incorporating both chromosome and arm numbers has not been established. Here, we built a probabilistic model of karyotype evolution based on the "karyograph", which treats karyotype evolution as a walk on the two-dimensional space representing the chromosome and arm numbers. This model enables analysis of the stationary distribution with a stable karyotype for any given parameter. After evaluating their performance using simulated data, we applied our model to two large taxonomic groups of fish, Eurypterygii and series Otophysi, to perform maximum likelihood estimation of the transition rates and reconstruct the evolutionary history of karyotypes. The two taxa significantly differed in the evolution of arm number. The inclusion of speciation and extinction rates demonstrated possibly high extinction rates in species with karyotypes other than the most typical karyotype in both groups. Finally, we made a model including polyploidization rates and applied it to a small plant group. Thus, the use of this probabilistic model can contribute to a better understanding of tempo and mode in karyotype evolution and its possible role in speciation and extinction.


Chromosomes/genetics , Evolution, Molecular , Genetic Speciation , Karyotype , Animals , Centromere/genetics , Chromosome Inversion/genetics , Chromosomes/ultrastructure , Fishes/genetics , Humans , Markov Chains , Models, Statistical , Phylogeny
20.
Cytogenet Genome Res ; 161(1-2): 70-81, 2021.
Article En | MEDLINE | ID: mdl-33601372

Basic and molecular cytogenetic techniques were carried out in 3 Neotropical region populations of catfishes, two of Trachelyopterus galeatus (one from the marshlands of Paraguay River basin and another from Lago Catalão, Amazon River basin) and one of Trachelyopterus porosus, a sympatric population to T. galeatus from the Amazon River basin. This study aimed to describe and understand the structure and evolution of Trachelyopterus B chromosomes, mainly through physical mapping of repetitive elements. A diploid number of 58 chromosomes was found for all individuals, as well as the presence of B chromosomes. For T. porosus this is the first report of a supernumerary. The sympatric species of T. galeatus and T. porosus from Amazon River had 1-3 B chromosomes and T. galeatus from Paraguay River had 1-2 B chromosomes, all of them showed intra- and interindividual numerical variation. Two females of T. porosus exhibited a new variant B chromosome (B2), previously not seen in Auchenipteridae, which might have originated from B1 chromosomes. All B chromosomes were entirely heterochromatic. In contrast to all complement A and B2 chromosomes, in which the telomeric sequences were found in the telomeric regions, B1 chromosomes of all populations were totally marked by (TTAGGG)n probes. (GATA)n sequence sites were found through all complement A chromosomes, but B1 and B2 chromosomes exhibited only a clustered block in one of the chromosome arms. The most frequent B chromosomes (B1) in all populations/species, including those previously studied in Auchenipteridae catfishes, share the following characteristics: totally heterochromatic, small, metacentric, with accumulation of repetitive (TTAGGG)n sequences, and a low number of (GATA)n copies, which might suggest a common ancient origin in Trachelyopterus species/populations.


Catfishes/genetics , Chromosomes/ultrastructure , Animals , Brazil , Chromosome Mapping , Cytogenetic Analysis , Cytogenetics , Diploidy , Female , Karyotype , Male , Microsatellite Repeats , Paraguay , Repetitive Sequences, Nucleic Acid , Telomere/ultrastructure
...