Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 581
Filter
1.
Turkiye Parazitol Derg ; 48(2): 72-76, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38958374

ABSTRACT

Objective: Trichomonas vaginalis is a sexually transmitted protozoan parasite that usually causes infections in women. Metronidazole is used as the first choice in the treatment of this parasitic disease, but there is a need for new drugs since 1980's with increasing numbers of reported resistance. In this study, it was aimed to determine the antitrichomonal activity of the major components of Cinnamomum zeylanicum (cinnamon) and Thymus vulgaris (thyme) essential oils, cinnamaldehyde, carvacrol and thymol against metronidazole resistant and susceptible T. vaginalis strains, and to determine their interaction with metronidazole by checkerboard method. Methods: Cinnamaldehyde, carvacrol, thymol and metronidazole were obtained commercially. Two clinical isolates and one metronidazole resistant T. vaginalis reference strain were used in the study. MIC50 and MLC values of essential oil components and metronidazole were determined by broth microdilution method. The combinations of essential oil components with metronidazole were determined by the checkerboard method. Results: According to in vitro activity tests, cinnamaldehyde was determined to be most effective essential oil component. Clinical isolates were susceptible to metronidazole. In combination study, metronidazole showed synergy with cinnamaldehyde and carvacrol, and partial synergy with thymol. Conclusion: It was determined that cinnamaldehyde, carvacrol and thymol, which are known to have high antimicrobial activity, also have strong activity against T. vaginalis isolates and show a synergistic interaction with metronidazole. The use of metronidazole at lower doses in the synergistic interaction may contribute to the literature in terms of reducing drug side effects, creating a versatile antimicrobial target, and reducing the rate of resistance development.


Subject(s)
Acrolein , Cymenes , Drug Synergism , Metronidazole , Monoterpenes , Oils, Volatile , Thymol , Thymus Plant , Trichomonas vaginalis , Acrolein/analogs & derivatives , Acrolein/pharmacology , Thymol/pharmacology , Cymenes/pharmacology , Metronidazole/pharmacology , Humans , Oils, Volatile/pharmacology , Thymus Plant/chemistry , Trichomonas vaginalis/drug effects , Monoterpenes/pharmacology , Female , Cinnamomum zeylanicum/chemistry , Antiprotozoal Agents/pharmacology , Microbial Sensitivity Tests , Drug Resistance
2.
Int J Food Microbiol ; 421: 110797, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38878706

ABSTRACT

Nowadays, the discovery of alternative natural antimicrobial substances such as bacteriophages, essential oils, and other physical and chemical agents is developing in the food industry. In this study, nine bacteriophages were isolated from various parts of raw chickens and exhibited lytic activities against L. monocytogenes and various Listeria spp. The characterization of phage vB_LmoS-PLM9 was stable at 4 to 50 °C and pH range from 4 to 10. Phage vB_LmoS-PLM9 had a circular, double-stranded genomic DNA with 38,345 bp having endolysin but no antibiotic resistance or virulence genes. Among the eight essential oils tested at 10 %, cinnamon bark, and cassia oils showed the strongest antilisterial activities. The combined use of phage vB_LmoS-PLM9 and cinnamon oils indicated higher efficiency than single treatments. The combination of phage (MOI of 10) and both cinnamon oils (0.03 %) reduced the viable counts of L. monocytogenes and inhibited the regrowth of resistant cell populations in broth at 30 °C. Furthermore, treatment with the combination of phage (MOI of 100) and cinnamon oil (0.125 %) was effective in milk, especially at 4 °C by reducing the viable count to less than lower limit of detection. These results suggest combining phage and cinnamon oil is a potential approach for controlling L. monocytogenes in milk.


Subject(s)
Bacteriophages , Cinnamomum zeylanicum , Listeria monocytogenes , Milk , Oils, Volatile , Salmon , Animals , Listeria monocytogenes/drug effects , Listeria monocytogenes/virology , Milk/microbiology , Cinnamomum zeylanicum/chemistry , Oils, Volatile/pharmacology , Salmon/microbiology , Food Microbiology , Plant Oils/pharmacology , Food Preservation/methods , Chickens , Anti-Bacterial Agents/pharmacology
3.
BMC Vet Res ; 20(1): 256, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867202

ABSTRACT

Acetamiprid (ACDP) is a widely used neonicotinoid insecticide that is popular for its efficacy in controlling fleas in domestic settings and for pets. Our study aims to offer a comprehensive examination of the toxicological impacts of ACDP and the prophylactic effects of cinnamon nanoemulsions (CMNEs) on the pathological, immunohistochemical, and hematological analyses induced by taking ACDP twice a week for 28 days. Forty healthy rats were divided into four groups (n = 10) at random; the first group served as control rats; the second received CMNEs (2 mg/Kg body weight); the third group received acetamiprid (ACDP group; 21.7 mg/Kg body weight), and the fourth group was given both ACDP and CMNEs by oral gavage. Following the study period, tissue and blood samples were extracted and prepared for analysis. According to a GC-MS analysis, CMNEs had several bioactive ingredients that protected the liver from oxidative stress by upregulating antioxidant and anti-inflammatory agents. Our findings demonstrated that whereas ACDP treatment considerably boosted white blood cells (WBCs) and lymphocytes, it significantly lowered body weight gain (BWG), red blood cells (RBCs), hemoglobin (Hb), hematocrit (HCT), and platelets (PLT). ACDP notably reduced antioxidant enzyme activities: superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) and elevated hydrogen peroxide and malondialdehyde levels compared with other groups. ACDP remarkably raised alanine aminotransferase (ALT), aspartate amino transaminase (AST), and alkaline phosphatase (ALP) levels.Moreover, the histopathological and immunohistochemistry assays discovered a severe toxic effect on the liver and kidney following ACDP delivery. Furthermore, cyclooxygenase 2 (COX-2) + immunoexpression was enhanced after treatment with CMNEs. All of the parameters above were returned to nearly normal levels by the coadministration of CMNEs. The molecular docking of cinnamaldehyde with COX-2 also confirmed the protective potential of CMNEs against ACDP toxicity. Our findings highlighted that the coadministration of CMNEs along with ACDP diminished its toxicity by cutting down oxidative stress and enhancing antioxidant capacity, demonstrating the effectiveness of CMNEs in lessening ACDP toxicity.


Subject(s)
Cinnamomum zeylanicum , Emulsions , Insecticides , Liver , Molecular Docking Simulation , Neonicotinoids , Animals , Neonicotinoids/pharmacology , Cinnamomum zeylanicum/chemistry , Insecticides/toxicity , Rats , Emulsions/chemistry , Emulsions/pharmacology , Male , Liver/drug effects , Liver/pathology , Kidney/drug effects , Kidney/pathology , Oxidative Stress/drug effects , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Antioxidants/pharmacology , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Kidney Diseases/pathology , Rats, Sprague-Dawley
4.
Nutrients ; 16(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892617

ABSTRACT

Non-communicable diseases (NCDs) place a significant burden on global health and the healthcare systems which support it. Metabolic syndrome is a major risk factor for a large number of NCDs; however, treatments remain limited. Previous research has shown the protective benefits of edible dietary spices on key components of metabolic syndrome. Therefore we performed a 12-week double-blind, placebo-controlled, randomized, clinical trial to evaluate the effect of ginger (Zingiber officinale), cinnamon (Cinnamomum), and black seed (Nigella sativa) consumption on blood glucose, lipid profiles, and body composition in 120 participants with, or at risk of, metabolic syndrome. Each participant consumed 3 g/day of powder (spice or placebo). Data related to different parameters were collected from participants at the baseline, midpoint, and endpoint of the intervention. Over the 12-week interventions, there was an improvement in a number of biochemical indices of metabolic syndrome, including fasting blood glucose, HbA1c, LCL, and total cholesterol associated with supplementation with the spices when compared to a placebo. This study provides evidence to support the adjunct use of supplementation for those at risk of metabolic syndrome and its sequelae.


Subject(s)
Blood Glucose , Cinnamomum zeylanicum , Metabolic Syndrome , Spices , Zingiber officinale , Humans , Male , Female , Double-Blind Method , Middle Aged , Cinnamomum zeylanicum/chemistry , Blood Glucose/drug effects , Blood Glucose/metabolism , Adult , Nigella sativa/chemistry , Glycated Hemoglobin/metabolism , Glycated Hemoglobin/analysis , Body Composition/drug effects , Aged , Lipids/blood , Dietary Supplements
5.
Int J Nanomedicine ; 19: 4941-4956, 2024.
Article in English | MEDLINE | ID: mdl-38828194

ABSTRACT

Background: Due to its prevalence, recurrence, and the emergence of drug-resistance, Candida vaginitis significantly impacts the well-being of women. Although cinnamon essential oil (CEO) possesses antifungal activity, its hydrophobic properties limit its clinical application. Purpose: To overcome this challenge, a nanoemulsification technology was employed to prepare cinnamon essential oil-nanoemulsion (CEO@NE), and its therapeutic efficacy and action mechanism for Candida vaginitis was investigated in vivo and in vitro. Materials and Methods: CEO@NE, composed of 4% CEO, 78% distilled water, and 18% Tween 80, was prepared by ultrasonic nanoemulsification. The physical properties, anti-Candida activity, cytotoxicity, immunomodulatory potential and storage stability of CEO@NE were explored. Subsequently, the effect of intravaginal CEO@NE treatment on Candida vaginitis was investigated in mice. To comprehend the possible mechanism of CEO@NE, an analysis was conducted to ascertain the production of intracellular reactive oxygen species (ROS) in C. albicans. Results: CEO@NE, with the droplet size less than 100 nm and robust storage stability for up to 8 weeks, exhibited comparable anti-Candida activity with CEO. CEO@NE at the concentration lower than 400 µg/mL had no cytotoxic and immunomodulatory effects on murine splenocytes. Intravaginal treatment of CEO@NE (400 µg/mL, 20 µL/day/mouse for 5 consecutive days) curbed Candida colonization, ameliorated histopathological changes, and suppressed inflammatory cytokine production in mice intravaginally challenged with C. albicans. Notably, this treatment preserved the density of vaginal lactic acid bacteria (LAB) crucial for vaginal health. Co-culturing C. albicans with CEO@NE revealed concentration-dependent augmentation of intracellular ROS generation and ensuing cell death. In addition, co-culturing LPS-stimulated murine splenocytes with CEO@NE yielded a decrease in the generation of cytokines. Conclusion: This discovery provides insight into the conceivable antifungal and anti-inflammatory mechanisms of CEO@NE to tackle Candida vaginitis. CEO@NE offers a promising avenue to address the limitations of current treatments, providing novel strategy for treating Candida vaginitis.


Subject(s)
Antifungal Agents , Candida albicans , Candidiasis, Vulvovaginal , Cinnamomum zeylanicum , Emulsions , Oils, Volatile , Female , Animals , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/administration & dosage , Candidiasis, Vulvovaginal/drug therapy , Candida albicans/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/administration & dosage , Mice , Administration, Intravaginal , Cinnamomum zeylanicum/chemistry , Emulsions/chemistry , Reactive Oxygen Species/metabolism , Humans , Nanoparticles/chemistry , Mice, Inbred BALB C
6.
Int J Biol Macromol ; 271(Pt 2): 132336, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744371

ABSTRACT

The current study entails the encapsulation validity to enclose naturally occurring food preservatives, such as cinnamon essential oil (CM), within various wall materials. This approach has demonstrated enhanced encapsulated compounds' stability, efficiency, and bioactivity. The base carrier system consisted of a solid lipid (Berry wax, RW) individually blended with whey protein (WYN), maltodextrin (MDN), and gum Arabic (GMC) as wall materials. The resulting formulations were freeze-dried: WYN/RW/CM, MDN/RW/CM, and GMC/RW/CM. The study comprehensively analyzed encapsulation efficiency, morphology, crystallinity, thermal, and physiochemical properties. When RW was combined with WYN, MDN, and GMC, the microcapsule WYN/RW/CM showed the highest efficiency at 93.4 %, while the GMC/RW/CM exhibited the highest relative crystallinity at 46.54 %. Furthermore, the investigation assessed storage stability, release of bioactive compounds, and oxidative stability during storage at 4 °C/ 25 % RH ± 5 % and 25 °C/40 % RH ± 5 % for 55 days, revealing optimal stability in the WYN/RW/CM microcapsule. Additionally, the antimicrobial activity was assessed at various concentrations of microcapsules, revealing their inhibitory effect against Escherichia coli (gram-negative) and Staphylococcus aureus (gram-positive) bacteria. The WYN/RW/CM microcapsule exhibited the highest inhibition activity in both strains, reaching 40 mm. This study demonstrates that combining WYN with RW as a wall material has greater efficiency in encapsulation and potential uses in various industrial sectors.


Subject(s)
Antioxidants , Capsules , Cinnamomum zeylanicum , Oils, Volatile , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Cinnamomum zeylanicum/chemistry , Biopolymers/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Gum Arabic/chemistry , Drug Stability , Polysaccharides/chemistry , Polysaccharides/pharmacology , Whey Proteins/chemistry , Chemical Phenomena , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Microbial Sensitivity Tests
7.
Food Funct ; 15(12): 6217-6231, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38767618

ABSTRACT

Cinnamaldehyde (CA) is the main bioactive component extracted from the internal bark of cinnamon trees with many health benefits. In this paper, the bioavailability and biological activities of cinnamaldehyde, and the underlying molecular mechanism are reviewed and discussed, including antioxidant, cardioprotective, anti-inflammatory, anti-obesity, anticancer, and antibacterial properties. Common delivery systems that could improve the stability and bioavailability of CA are also summarized and evaluated, such as micelles, microcapsules, liposomes, nanoparticles, and nanoemulsions. This work provides a comprehensive understanding of the beneficial functions and delivery strategies of CA, which is useful for the future application of CA in the functional food industry.


Subject(s)
Acrolein , Drug Delivery Systems , Acrolein/analogs & derivatives , Acrolein/pharmacology , Acrolein/chemistry , Humans , Drug Delivery Systems/methods , Animals , Administration, Oral , Biological Availability , Nanoparticles/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Cinnamomum zeylanicum/chemistry
8.
Microb Pathog ; 192: 106670, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734323

ABSTRACT

The increasing need for pharmaceutical agents that possess attributes such as safety, cost-effectiveness, environmental sustainability, and absence of side effects has driven the advancement of nanomedicine research, which lies at the convergence of nanotechnology and medicine. AIMS AND OBJECTIVES: The study aimed to synthesize non-toxic selenium nanoparticles (SeNPs) using Gymnema sylvestre (G. sylvestre) and Cinnamon cassia (C. cassia) extracts. It also sought to develop and evaluate versatile nanomedicine formulations i.e. selenium nanoparticles of G. sylvestre and C. cassia (SeNPs), drug (lupeol) loaded SeNPs (DLSeNPs), drug-loaded and coated (PEG) SeNPs (DLCSeNPs) without side effects. METHODS: The SeNPs formulations were hydrothermally synthesized, loaded with lupeol to improve efficacy, coated with polyethylene glycol (PEG) for targeted delivery, and characterized using UV-Vis spectrophotometry, Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), zeta potential analysis, size distribution analysis, and X-ray diffraction (XRD). Hemolytic cytotoxicity, 2,2-Diphenyl-1-picrylhydzayl (DPPH), total Reducing power, and total antioxidant capacity (TAC) antioxidant assays, carrageenan-induced paw edema, and histological studies were used to estimate the acute anti-inflammatory activity of the synthesized SeNPs. RESULTS: The final form of PEGylated and drug (lupeol)-loaded selenium nanoparticles (DLCSeNPs) exhibited an average particle size ranging from 100 to 500 nm as evidenced by SEM, and Zeta potential results. These nanoparticles demonstrated no cytotoxic effects and displayed remarkable antioxidant (IC50 values 19.29) and anti-inflammatory capabilities. These results were fed into Graph-pad Prism 5 software and analyzed by one-way ANOVA, followed by Tukey's post hoc test (p < 0.001). All nano-formulations exhibited significant overall antioxidant activity, with IC50 values ≤ 386 (p < 0.05) as analyzed by ANOVA. The study's results suggest that G. sylvestre outperformed C. cassia in terms of reducing 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical, potassium ferricyanide, and ammonium molybdate in respective antioxidant assays. As far as anti-inflammatory activities are concerned drug (lupeol)-loaded and PEG-coated G. sylvestre SeNPs exhibited the highest anti-inflammatory potential from all other nano-formulations including drug (lupeol)-loaded and PEG-coated C. cassia SeNPs, as exhibited to reduce the release of pro-inflammatory signals i.e. cytokines and NF-kB, making them innovative anti-inflammatory nanomedicine. CONCLUSION: The study synthesized lupeol-loaded and PEG-coated SeNPs, showcasing the potential for biocompatible, cost-effective anti-inflammatory nanomedicines. G. Sylvester's superior antioxidant and anti-inflammatory performance than Cinnamon cassia emphasizes medicinal plant versatility.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Gymnema sylvestre , Nanoparticles , Plant Extracts , Selenium , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Selenium/chemistry , Selenium/pharmacology , Animals , Nanoparticles/chemistry , Gymnema sylvestre/chemistry , Rats , Nanomedicine , Edema/drug therapy , Edema/chemically induced , Humans , Cinnamomum zeylanicum/chemistry , Spectroscopy, Fourier Transform Infrared , Particle Size , Male , X-Ray Diffraction , Cell Survival/drug effects
9.
Microb Pathog ; 192: 106705, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761892

ABSTRACT

This study aimed to investigate the potential of cinnamon oil nanoemulsion (CONE) as an antibacterial agent against clinical strains of colistin-resistant Klebsiella pneumoniae and its anticancer activity. The prepared and characterized CONE was found to have a spherical shape with an average size of 70.6 ± 28.3 nm under TEM and a PDI value of 0.076 and zeta potential value of 6.9 mV using DLS analysis. The antibacterial activity of CONE against Klebsiella pneumoniae strains was investigated, and it was found to have higher inhibitory activity (18.3 ± 1.2-30.3 ± 0.8 mm) against the tested bacteria compared to bulk cinnamon oil (14.6 ± 0.88-20.6 ± 1.2) with MIC values ranging from 0.077 to 0.31 % v/v which equivalent to 0.2-0.82 ng/ml of CONE. CONE inhibited the growth of bacteria in a dose and time-dependent manner based on the time-kill assay in which Klebsiella pneumoniae B-9 was used as a model among the bacterial strains under investigation. The study also investigated the expression of the mcr-1 gene in the Klebsiella pneumoniae strains and found that all strains were positive for the gene expression and subsequently its presence. The level of mcr-1 gene expression among the B-2, B-4, B-9, and B-11 control strains and that treated with colistin was similar, but it was different in both B-5 and B-2. However, all strains exhibited a significant downregulation in gene expression (ranging from 3.97 to 8.7-fold) after their treatment with CONE. Additionally, the CONE-treated bacterial cells appeared with a great deformation compared with control cells under TEM. Finally, CONE exhibited selective toxicity against different cancer cell lines depending on comparison with the normal cell lines.


Subject(s)
Anti-Bacterial Agents , Cinnamomum zeylanicum , Colistin , Drug Resistance, Bacterial , Klebsiella pneumoniae , Microbial Sensitivity Tests , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Colistin/pharmacology , Humans , Anti-Bacterial Agents/pharmacology , Cinnamomum zeylanicum/chemistry , Cell Line, Tumor , Emulsions/pharmacology , Oils, Volatile/pharmacology , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Antineoplastic Agents/pharmacology , Nanoparticles/chemistry
10.
Pak J Pharm Sci ; 37(1(Special)): 235-243, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38747275

ABSTRACT

Stimulus-responsive mesoporous silica nanoparticles (MSNs) have displayed great potentiality for controlled-release and targeted drug delivery. In the current work, a supercritical fluid method was utilized to successfully prepare cinnamon oil loaded into chitosan grafted MSNs (CO@CS-MSNs). The influencing factors of drug loads, such as pressure, temperature, impregnation time and depressure time, were investigated. The structure of CO@CS-MSNs was demonstrated with Fourier-transform infrared (FT-IR) spectroscopy, transmission electron microscope (TEM), scanning electron microscopy (SEM), thermogravimetry (TG) as well as X-ray diffraction (XRD). The drug release assays in vitro at various pH conditions displayed that CO@CS-MSNs had an excellent pH-responsive release behavior, which confirmed that CO was loaded successfully into the CO@CS-MSNs. The findings indicated that the supercritical fluid approach is a non-destructive and efficient approach for stimulus-responsive MSNs, which is expected to further expand its application range.


Subject(s)
Carbon Dioxide , Chitosan , Cinnamomum zeylanicum , Drug Liberation , Nanoparticles , Silicon Dioxide , Chitosan/chemistry , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Hydrogen-Ion Concentration , Carbon Dioxide/chemistry , Porosity , Cinnamomum zeylanicum/chemistry , Drug Carriers/chemistry , Oils, Volatile/chemistry , Oils, Volatile/administration & dosage , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared , Microscopy, Electron, Scanning , Delayed-Action Preparations
11.
BMC Vet Res ; 20(1): 184, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724994

ABSTRACT

Cinnamon and star anise essential oils are extracted from natural plants and provide a theoretical basis for the development and clinical application of compound essential oil pellets. However, cinnamon oil and star anise oil have the characteristics of a pungent taste, extreme volatility, poor palatability, and unstable physical and chemical properties, which limit their clinical use in veterinary medicine. In this study, the inhibitory effects of cinnamon oil and star anise oil on Escherichia coli and Salmonella were measured. Compound essential oil pellets were successfully prepared by centrifugal granulation technology. Subsequently, the in vitro dissolution of the pellets and their pharmacokinetics in pigs were investigated. The results showd that, cinnamon and star anise oils showed synergistic or additive inhibitiory effects on Escherichia coli and Salmonella. The oil pellets had enteric characteristics in vitro and high dissolution in vitro. The pharmacokinetic results showed that the pharmacokinetic parameters Cmax and AUC were directly correlated with the dosage and showed linear pharmacokinetic characteristics, which provided a theoretical basis for the development and clinical application of compound essential oil pellets.


Subject(s)
Cinnamomum zeylanicum , Escherichia coli , Oils, Volatile , Animals , Oils, Volatile/pharmacokinetics , Oils, Volatile/administration & dosage , Cinnamomum zeylanicum/chemistry , Escherichia coli/drug effects , Swine , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Salmonella/drug effects , Satureja/chemistry , Plant Oils/pharmacokinetics , Plant Oils/chemistry , Male , Centrifugation
12.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791259

ABSTRACT

Avian pathogenic Escherichia coli (APEC) causes a variety of infections outside the intestine. The treatment of these infections is becoming increasingly difficult due to the emergence of multi-drug resistant (MDR) strains, which can also be a direct or indirect threat to humans as consumers of poultry products. Therefore, alternative antimicrobial agents are being sought, which could be essential oils, either administered individually or in interaction with antibiotics. Sixteen field isolates of E. coli (originating from 1-day-old broilers) and the ATCC 25922 reference strain were tested. Commercial cinnamon bark, clove bud, lavender flower essential oils (EOs) and enrofloxacin were selected to assess the sensitivity of the selected E. coli strains to antimicrobial agents. The checkerboard method was used to estimate the individual minimum inhibitory concentration (MIC) for each antimicrobial agent as well as to determine the interactions between the selected essential oil and enrofloxacin. In the case of enrofloxacin, ten isolates were resistant at MIC ≥ 2 µg/mL, three were classified as intermediate (0.5-1 µg/mL) and three as sensitive at ≤0.25 µg/mL. Regardless of the sensitivity to enrofloxacin, the MIC for cinnamon EO was 0.25% v/v and for clove EO was 0.125% v/v. All MDR strains had MIC values for lavender EO of 1% v/v, while drug-sensitive isolates had MIC of 0.5% v/v. Synergism between enrofloxacin and EO was noted more frequently in lavender EO (82.35%), followed by cinnamon EO (64.7%), than in clove EO (47.1%). The remaining cases exhibited additive effects. Owing to synergy, the isolates became susceptible to enrofloxacin at an MIC of ≤8 µg/mL. A time-kill study supports these observations. Cinnamon and clove EOs required for up to 1 h and lavender EO for up to 4 h to completely kill a multidrug-resistant strain as well as the ATCC 25922 reference strain of E. coli. Through synergistic or additive effects, blends with a lower than MIC concentration of enrofloxacin mixed with a lower EO content required 6 ± 2 h to achieve a similar effect.


Subject(s)
Chickens , Cinnamomum zeylanicum , Drug Resistance, Multiple, Bacterial , Enrofloxacin , Escherichia coli , Lavandula , Microbial Sensitivity Tests , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Animals , Escherichia coli/drug effects , Enrofloxacin/pharmacology , Chickens/microbiology , Drug Resistance, Multiple, Bacterial/drug effects , Cinnamomum zeylanicum/chemistry , Lavandula/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Escherichia coli Infections/veterinary , Drug Synergism , Plant Oils/pharmacology , Plant Oils/chemistry , Poultry Diseases/microbiology
13.
Food Chem ; 453: 139683, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38788649

ABSTRACT

Methylcellulose (MC)/grape pomace (GP) films, plasticized with either glycerol (GLY) or cinnamon essential oil (CEO), were prepared by thermo-compression molding and characterized. Compared to the GLY-plasticized MC50/GP50 films, a considerable increase in TS and YM values of CEO-plasticized films was observed, rising from 9.66 to 30.05 MPa, 762 to 1631 MPa, respectively. Moreover, the water vapor barrier, surface hydrophobic properties, and antioxidant/antibacterial activities of CEO-plasticized films remarkedly improved with increasing CEO content from 5 to 15% w/w. From scanning electron microscopy, phase separation between GP and the MC/GLY mixture were evident for GLY-plasticized MC/GP films. On the other hand, the CEO-plasticized films showed compact morphologies, attributable to the formation of hydrogen bonding and π-π stacking interaction. Preliminary shelf-life study on showed that fresh chicken wrapped with the CEO-plasticized MC/GP films exhibited lower TVB-N, TBARS, and TVC values than the unwrapped control samples, during 7 d storage at 4 °C.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Food Packaging , Methylcellulose , Vitis , Antioxidants/chemistry , Antioxidants/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Vitis/chemistry , Food Packaging/instrumentation , Methylcellulose/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Animals , Chickens , Cinnamomum zeylanicum/chemistry
14.
BMC Plant Biol ; 24(1): 394, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741071

ABSTRACT

Wheat is one of the essential crops for the human and animal nutrition, however, contamination with aflatoxigenic fungi, due to the improper storage conditions and high humidity, was the main global threats. So, preventing the growth of aflatoxigenic fungi in stored wheat grains, by using different essential oils was the main objective of this work. Aspergillus flavus EFBL-MU12 PP087400, EFBL-MU23 PP087401 and EFBL-MU36 PP087403 isolates were the most potent aflatoxins producers inhabiting wheat grains. The effect of storage conditions of wheat grains "humidity, temperature, incubation period, and pH" on growth of A. flavus, was assessed by the response surface methodology using Plackett-Burman design and FCCD. The highest yield of aflatoxins EFBL-MU12 B1 and B2 by A. flavus grown on wheat grains were 145.3 and 7.6 µg/kg, respectively, at incubation temperature 35°C, 16% moisture contents, initial pH 5.0, and incubated for 14 days. The tested oils had a powerful antifungal activity for the growth and aflatoxins production by A. flavus in a concentration-dependent manner. Among these oils, cinnamon oil had the highest fungicidal activity for A. flavus at 0.125%, with about 85-90 % reduction to the aflatoxins B1 and B2, conidial pigmentation and chitin contents on wheat grains. From the SEM analysis, cinnamon oils had the most deleterious effect on A. flavus with morphological aberrations to the conidial heads, vegetative mycelia, alteration in conidiophores identity, hyphae shrank, and winding. To emphasize the effect of the essential oils on the aflatoxins producing potency of A. flavus, the molecular expression of the aflatoxins biosynthetic genes was estimated by RT-qPCR. The molecular expression of nor-1, afLR, pKsA and afLJ genes was suppressed by 94-96%, due to cinnamon oil at 0.062% compared to the control. Conclusively, from the results, cinnamon oils followed by the peppermint oils displayed the most fungicidal activity for the growth and aflatoxins production by A. flavus grown on wheat grains.


Subject(s)
Aflatoxins , Aspergillus flavus , Cinnamomum zeylanicum , Oils, Volatile , Triticum , Aspergillus flavus/drug effects , Aspergillus flavus/growth & development , Triticum/microbiology , Oils, Volatile/pharmacology , Cinnamomum zeylanicum/chemistry , Antifungal Agents/pharmacology , Fungicides, Industrial/pharmacology , Food Storage , Edible Grain/microbiology
15.
Environ Sci Pollut Res Int ; 31(21): 31414-31423, 2024 May.
Article in English | MEDLINE | ID: mdl-38632195

ABSTRACT

Growing concern about the environmental effects of metal mordants and synthetic dyes is encouraging the use of bio-mordants and natural colorants. Cinnamon bark is a rich source of natural colorants such as cinnamaldehyde and tannins. The main purpose of this research was to study and compare the effect of bio-mordants versus metal mordants in terms of colorimetric parameters and color fastness properties of cinnamon bark on wool fibers. Accordingly, some bio-mordants, including date kernel, peppermint, banana peel, and artemisia, as well as some metal mordants like aluminum potassium sulphate and copper sulphate, were studied based on three conventional mordanting methods (pre-, meta-, and post-mordanting). The results indicated that the conjunction of metal mordants and polyphenolic bio-mordants with cinnamon colorants can create different hues and tones of brown. Also, the color produced by cinnamon in wool fibers has poor color fastness and low color strength. Overall, bio-mordants have presented good color properties, making the dyeing process eco-friendly and greener. Among the applied bio-mordants, peppermint has created the best color strength and color fastness.


Subject(s)
Cinnamomum zeylanicum , Coloring Agents , Cinnamomum zeylanicum/chemistry , Coloring Agents/chemistry , Animals , Wool Fiber , Plant Bark/chemistry , Metals/chemistry
16.
Medicine (Baltimore) ; 103(17): e37902, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669415

ABSTRACT

Cinnamon and motherwort are traditional Chinese medicines and are often combined to treat benign prostatic hyperplasia; however, the specific therapeutic mechanisms involved remain unclear. Therefore, in this study, we applied a network pharmacology approach to investigate the potential mechanisms of action of the drug pair cinnamon and motherwort (PCM) for the treatment of benign prostatic hyperplasia. Relevant targets for the use of PCM to treat benign prostatic hyperplasia were obtained through databases. Protein-protein interactions were then identified by the STRING database and core targets were screened. Enrichment analysis was conducted through the Metascape platform. Finally, molecular docking experiments were carried out to evaluate the affinity between the target proteins and ligands of PCM. We identified 22 active ingredients in PCM, 315 corresponding targets and 130 effective targets of PCM for the treatment of benign prostatic hyperplasia. These targets were related to the PI3K-Akt, MAPK, FoxO, TNF, and IL-17 signaling pathways. Network pharmacology was used to identify the effective components and action targets of PCM. We also identified potential mechanisms of action for PCM in the treatment of benign prostatic hyperplasia. Our results provide a foundation for expanding the clinical application of PCM and provide new ideas and directions for further research on the mechanisms of action of PCM and its components for the treatment of benign prostatic hyperplasia.


Subject(s)
Cinnamomum zeylanicum , Molecular Docking Simulation , Network Pharmacology , Prostatic Hyperplasia , Prostatic Hyperplasia/drug therapy , Male , Humans , Network Pharmacology/methods , Cinnamomum zeylanicum/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Signal Transduction/drug effects , Medicine, Chinese Traditional/methods
17.
Int J Biol Macromol ; 267(Pt 2): 131606, 2024 May.
Article in English | MEDLINE | ID: mdl-38631566

ABSTRACT

This study aimed to investigate the effect of cinnamon essential oil (CEO)-loaded metal-organic frameworks (CEO@MOF) on the properties of gelatin/pullulan (Gel/Pull)-based composite films (Gel/Pull-based films). The incorporation of CEO@MOF into Gel/Pull-based films demonstrated significant antimicrobial activity against S. aureus, S. enterica, E. coli, and L. monocytogenes. Additionally, CEO@MOF integrated film exhibited a 98.16 % ABTS radical scavenging, with no significant change in the mechanical properties of the neat Gel/Pull film. The UV blocking efficiency of the composite films increased significantly from 81.38 to 99.56 % at 280 nm with the addition of 3 wt% CEO@MOF. Additionally, Gel/Pull/CEO@MOF films effectively extended the shelf life of meat preserved at 4 °C by reducing moisture loss by 3.35 %, maintaining the pH within the threshold limit (6.2), and inhibiting bacterial growth by 99.9 %. These results propose that CEO@MOF has significant potential as an effective additive in active packaging to improve shelf life and food safety.


Subject(s)
Cinnamomum zeylanicum , Food Packaging , Gelatin , Glucans , Metal-Organic Frameworks , Oils, Volatile , Gelatin/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Cinnamomum zeylanicum/chemistry , Food Packaging/methods , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Glucans/chemistry , Glucans/pharmacology , Food Preservation/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Meat/microbiology , Animals , Microbial Sensitivity Tests
18.
Food Chem ; 448: 139176, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38574719

ABSTRACT

Using 3D printing technology, a gelatin-polyvinyl alcohol­carbon dots (GPC) layer+corn starch-polyvinyl alcohol-cinnamon essential oil (CPC) layer active bilayer film with an external barrier function and an internal controlled-release effect was successfully produced for food preservation. The GPC film was provided with potent antioxidant and UV blocking properties by the banana peel carbon dots (CDs). The cinnamon essential oil (CEO) had the strongest interaction with the film matrix at 3% (w/w), causing the CPC film having the lowest surface wettability, good integrity, and lowest crystallinity. The CEO's stability and releasing effectiveness were greatly enhanced by the creation of a bilayer film. At 60% filling rate of the CPC layer, the bilayer film showed the highest CEO retention after drying and the best CEO release performance. Finally, the created active bilayer film was found to significantly improve the sensory quality stability of the spicy essential oil microcapsule powders. It also successfully extended the mangoes' shelf life by delaying browning and rot.


Subject(s)
Cinnamomum zeylanicum , Food Packaging , Gelatin , Musa , Oils, Volatile , Printing, Three-Dimensional , Starch , Oils, Volatile/chemistry , Food Packaging/instrumentation , Cinnamomum zeylanicum/chemistry , Gelatin/chemistry , Starch/chemistry , Musa/chemistry , Carbon/chemistry , Food Preservation/instrumentation , Food Preservation/methods , Quantum Dots/chemistry , Zea mays/chemistry
19.
J Sci Food Agric ; 104(10): 6045-6052, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38445761

ABSTRACT

BACKGROUND: Papaya, a highly nutritious and economically significant fruit, is susceptible to infections caused by phytopathogenic fungi. Cinnamon essential oil, derived from Cinnamomum cassia (CC), shows promise in preserving papaya due to its antifungal properties. However, CC is volatile, sensitive to environmental factors, and carries a strong aroma. γ-Cyclodextrin (γ-CD) is known for encapsulating hydrophilic molecules, shielding them from environmental influences, reducing odor, and enabling controlled release due to its unique channel structure. This study aimed to tackle these challenges by preparing and characterizing an inclusion complex of CC with γ-CD (CC-γ-CD), and subsequently evaluating its efficacy in preserving papaya fruits. RESULTS: Analyses, including Fourier-infrared, powder X-ray diffraction, thermal gravity analysis, differential scanning calorimeter, and scanning electron microscopy, revealed successful encapsulation of CC components within the γ-CD cavity. Evaluations of the CC-γ-CD complex's impact on papaya fruit shelf life and quality showed notable enhancements. Fruits treated with CC-γ-CD inclusion complex at a dose of 10 g kg-1 exhibited a 55% extension in shelf-life, evidenced by reduced disease severity index compared with untreated fruit in the same storage conditions. Detailed physicochemical and bromatological assessments highlighted significant improvements, particularly in fruit treated with CC-γ-CD inclusion complex at a dose of 10 g kg-1. CONCLUSION: The application of CC-γ-CD inclusion complex at 10 g kg-1 extended the shelf-life of papaya fruit, significantly and markedly improved the overall quality. These findings underscore the potential of the CC-γ-CD inclusion complex as an effective preservative for papaya, offering a promising solution for its postharvest management and marketability. © 2024 Society of Chemical Industry.


Subject(s)
Carica , Cinnamomum zeylanicum , Food Preservation , Food Storage , Fruit , Oils, Volatile , gamma-Cyclodextrins , Carica/chemistry , Fruit/chemistry , Fruit/microbiology , Food Preservation/methods , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , gamma-Cyclodextrins/chemistry , gamma-Cyclodextrins/pharmacology , Cinnamomum zeylanicum/chemistry , Food Preservatives/pharmacology , Food Preservatives/chemistry
20.
Poult Sci ; 103(5): 103583, 2024 May.
Article in English | MEDLINE | ID: mdl-38471231

ABSTRACT

The effect of cinnamon powder on the quality and mitigation of off-flavor in fried chicken drumsticks made from long-term thawed Korean native chicken (Woorimatdag No. 1, WRMD1) was investigated. The WRMD1 drumsticks were categorized into 5 groups: conventional thawing (16 h, CT), long-term thawing (48 h, LT), cinnamon powder added into 'LT' as marinade (0.03%, CM) or incorporated into the batter (1.35%, CB), and long-term thawing with cinnamon powder incorporated both in the marinade and batter (0.03% + 1.35%, CMB). The crude fat content was significantly higher in the CT and CMB than that of the CB. The CM, CB, and CMB showed significantly lower levels of 2-thiobarbituric acid reactive substance compared with the CT and LT. The predominant fatty acids in all treatments were C18:1n9, C18:2n6, and C16:0. The LT displayed lower total unsaturated fatty acid content than the CT (P < 0.05). The CM effectively decreased lipid oxidative volatiles, such as 1-octanol, 1-octen-3-ol, and 2-octen-1-ol, (E), in the LT (P < 0.05). Both the CM and CB showed an inclination to increase specific pyrazines associated with pleasant notes compared with the LT, and showed higher levels of pyrazines, such as pyrazine, 2-ethyl-6-methyl-, and pyrazine, 3-ethyl-2,5-dimethyl-, than those of the CMB (P < 0.05). The CM contained higher levels of 2,3-butanedione when compared with the other groups (P < 0.05). Multivariate analysis demonstrated that cinnamon had an effect in discriminating the treatment groups with cinnamon addition from both the CT and LT, whereas the CM, CB, and CMB formed distinct clusters. The CM and CMB received significantly higher aroma scores from panelists in comparison to the other groups. These findings suggest that the CM (0.03% cinnamon powder) can be used to enhance the aroma in fried WRMD1 drumsticks by reducing or masking the off-flavor volatiles associated with long-term thawing.


Subject(s)
Chickens , Cinnamomum zeylanicum , Cooking , Animals , Cinnamomum zeylanicum/chemistry , Republic of Korea , Meat Products/analysis , Taste , Powders/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...