Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.855
Filter
1.
Environ Geochem Health ; 46(8): 275, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958819

ABSTRACT

Soil organic matter plays an important role in cadmium adsorption and immobilization. Since different organic matter components affect cadmium adsorption processes differently, selecting the right organic substrate and knowing how to apply it could improve cadmium remediation. This study compares the effects of two contrasting organic molecules; chitosan and citric acid, on cadmium adsorption and speciation in acidic Ultisol. The adsorption of chitosan to Ultisol significantly increased the soil positive charge while adsorption of citric acid increased the soil negative charge. At pH 5.0, the maximum amount of cadmium adsorbed in excess chitosan was 341% greater than that in excess citric acid. About 73-89% and 60-62% of adsorbed cadmium were bound to Fe/Mn oxides and organic matter/sulfide at pH 4.0 while this fraction was 77-100% and 57-58% for citric acid and chitosan at pH 5.0, respectively. This decrease in the complexing ability of chitosan was related to the destabilizing effect of high pH on chitosan's structure. Also, the sequence through which chitosan, citric acid, and cadmium were added into the adsorption system influenced the adsorption profile and this was different along a pH gradient. Specifically, adding chitosan and cadmium together increased adsorption compared to when chitosan was pre-adsorbed within pH 3.0-6.5. However, for citric acid, the addition sequence had no significant effect on cadmium adsorption between pH 3.0-4.0 compared to pH 6.5 and 7.5, with excess citric acid generally inhibiting adsorption. Given that the action of citric acid is short-lived in soil, chitosan could be a good soil amendment material for immobilizing cadmium.


Subject(s)
Cadmium , Chitosan , Citric Acid , Soil Pollutants , Soil , Chitosan/chemistry , Citric Acid/chemistry , Cadmium/chemistry , Adsorption , Soil Pollutants/chemistry , Soil/chemistry , Hydrogen-Ion Concentration , Environmental Restoration and Remediation/methods
2.
Environ Geochem Health ; 46(8): 282, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963450

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent organic pollutants with carcinogenic, mutagenic and teratogenic effects. The white-rot fungi in the fungal group have significant degradation ability for high molecular weight organic pollutants. However, exogenous fungi are easily antagonized by indigenous microorganisms. Low molecular weight organic acids, a small molecular organic matter secreted by plants, can provide carbon sources for soil microorganisms. Combining organic acids with white rot fungi may improve the nutritional environment of fungi. In this study, immobilized Trametes versicolor was used to degrade benzo[a]pyrene in soil, and its effect on removing benzo[a]pyrene in soil mediated by different low molecular weight organic acids was investigated. The results showed that when the degradation was 35 days, the removal effect of the experimental group with citric acid was the best, reaching 43.7%. The degradation effect of Trametes versicolor on benzo[a]pyrene was further investigated in the liquid medium when citric acid was added, and the effects of citric acid on the biomass, extracellular protein concentration and laccase activity of Trametes versicolor were investigated by controlling different concentrations of citric acid. In general, citric acid can act as a carbon source for Trametes versicolor and promote its extracellular protein secretion and laccase activity, thereby accelerating the mineralization of benzo[a]pyrene by Trametes versicolor. Therefore, citric acid can be used as a biostimulant in the remediation of PAHs contaminated soil with Trametes versicolor.


Subject(s)
Benzo(a)pyrene , Biodegradation, Environmental , Citric Acid , Soil Pollutants , Benzo(a)pyrene/toxicity , Benzo(a)pyrene/metabolism , Citric Acid/metabolism , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Laccase/metabolism , Soil Microbiology , Polyporaceae/metabolism , Trametes/metabolism , Biomass
3.
Environ Geochem Health ; 46(8): 289, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970698

ABSTRACT

Low molecular weight organic acids (LMWOAs) are important soil components and play a key role in regulating the geochemical behavior of heavy metal(loid)s. Biochar (BC) is a commonly used amendment that could change LMWOAs in soil. Here, four LMWOAs of oxalic acid (OA), tartaric acid (TA), malic acid (MA), and citric acid (CA) were evaluated for their roles in changing Cd and SB desorption behavior in contaminated soil with (S1-BC) or without BC (S1) produced from Paulownia biowaste. The results showed that OA, TA, MA, and CA reduced soil pH with rising concentrations, and biochar partially offset the pH reduction by LMWOAs. The LMWOAs reduced Cd desorption from the soil at low concentrations but increased Cd desorption at high concentrations, and CA was the most powerful in this regard. The LMWOAs had a similar effect on Sb desorption, and CA was the most effective species of LMWOAs. Adding BC to the soil affects Cd and Sb dynamics by reducing the Cd desorption but increasing Sb desorption from the soil and increasing the distribution coefficient (Kd) values of Cd but lowering the Kd values of Sb. This study helped understand the effects of LMWOAs on the geochemical behavior of Cd and Sb in the presence of biochar, as well as the potential risks of biochar amendment in enhancing Sb desorption from contaminated soil.


Subject(s)
Charcoal , Metals, Heavy , Soil Pollutants , Soil , Charcoal/chemistry , Soil Pollutants/chemistry , Metals, Heavy/chemistry , Soil/chemistry , Molecular Weight , Hydrogen-Ion Concentration , Cadmium/chemistry , Tartrates/chemistry , Malates/chemistry , Citric Acid/chemistry , Environmental Restoration and Remediation/methods , Oxalic Acid/chemistry , Adsorption , Oryza/chemistry
4.
BMC Plant Biol ; 24(1): 618, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38937693

ABSTRACT

In acidic soils, aluminum (Al) toxicity inhibits the growth and development of plant roots and affects nutrient and water absorption, leading to reduced yield and quality. Therefore, it is crucial to investigate and identify candidate genes for Al tolerance and elucidate their physiological and molecular mechanisms under Al stress. In this study, we identified a new gene OsAlR3 regulating Al tolerance, and analyzed its mechanism from physiological, transcriptional and metabolic levels. Compared with the WT, malondialdehyde (MDA) and hydrogen peroxide (H2O2) content were significantly increased, superoxide dismutase (SOD) activity and citric acid (CA) content were significantly decreased in the osalr3 mutant lines when exposed to Al stress. Under Al stress, the osalr3 exhibited decreased expression of antioxidant-related genes and lower organic acid content compared with WT. Integrated transcriptome and metabolome analysis showed the phenylpropanoid biosynthetic pathway plays an important role in OsAlR3-mediated Al tolerance. Exogenous CA and oxalic acid (OA) could increase total root length and enhance the antioxidant capacity in the mutant lines under Al stress. Conclusively, we found a new gene OsAlR3 that positively regulates Al tolerance by promoting the chelation of Al ions through the secretion of organic acids, and increasing the expression of antioxidant genes.


Subject(s)
Aluminum , Antioxidants , Gene Expression Regulation, Plant , Oryza , Aluminum/toxicity , Oryza/genetics , Oryza/metabolism , Oryza/drug effects , Oryza/physiology , Antioxidants/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Citric Acid/metabolism , Plant Roots/genetics , Plant Roots/drug effects , Plant Roots/metabolism , Genes, Plant
5.
Arch Oral Biol ; 165: 106013, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38833772

ABSTRACT

OBJECTIVE: Saliva serves multiple important functions crucial for maintaining a healthy oral and systemic environment. Among them, the pH buffering effect, which is primarily mediated by bicarbonate ions, helps maintain oral homeostasis by neutralizing acidity from ingested foods. Therefore, higher buffering capacity, reflecting the ability to neutralize oral acidity, may influence taste sensitivity, especially for sour taste since it involves sensing H+ ions. This study aims to explore the relationship between salivary buffering capacity and taste sensitivities to the five basic tastes in healthy adult humans. DESIGN: Eighty seven healthy adult students participated in this study. Resting saliva volume was measured using the spitting method. The liquid colorimetric test was used to assess salivary buffering capacity. The whole-mouth taste testing method was employed to determine the recognition threshold for each tastant (NaCl, sucrose, citric acid, quinine-HCl, monosodium glutamate). RESULTS: Taste recognition thresholds for sour taste as well as sweet, salty, and bitter tastes showed no correlation with salivary buffering capacity. Interestingly, a negative relationship was observed between recognition threshold for umami taste and salivary buffering capacity. Furthermore, a positive correlation between salivary buffering capacity and resting saliva volume was observed. CONCLUSIONS: Salivary buffering capacity primarily influences sensitivity to umami taste, but not sour and other tastes.


Subject(s)
Saliva , Taste Threshold , Humans , Saliva/chemistry , Saliva/metabolism , Female , Male , Adult , Taste Threshold/physiology , Japan , Buffers , Hydrogen-Ion Concentration , Taste/physiology , Healthy Volunteers , Citric Acid , Young Adult , Taste Perception/physiology , Colorimetry , East Asian People
6.
Int J Mol Sci ; 25(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928215

ABSTRACT

Citrate, which is obtained from oxaloacetate and acetyl-CoA by citrate synthase in mitochondria, plays a key role in both normal and cancer cell metabolism. In this work, we investigated the effect of 10 mM extracellular citrate supplementation on HepG2 cells. Gene expression reprogramming was evaluated by whole transcriptome analysis using gene set enrichment analysis (GSEA). The transcriptomic data were validated through analyzing changes in the mRNA levels of selected genes by qRT-PCR. Citrate-treated cells exhibited the statistically significant dysregulation of 3551 genes; 851 genes were upregulated and 822 genes were downregulated. GSEA identified 40 pathways affected by differentially expressed mRNAs. The most affected biological processes were related to lipid and RNA metabolism. Several genes of the cytochrome P450 family were upregulated in treated cells compared to controls, including the CYP3A5 gene, a tumor suppressor in hepatocellular carcinoma (HCC) that plays an important protective role in HCC metastasis. The citrate-induced dysregulation of cytochromes could both improve the effectiveness of chemotherapeutics used in combination and reduce the aggressiveness of tumors by diminishing cell migration and invasion.


Subject(s)
Cell Movement , Citric Acid , Gene Expression Regulation, Neoplastic , Humans , Cell Movement/drug effects , Cell Movement/genetics , Hep G2 Cells , Gene Expression Regulation, Neoplastic/drug effects , Citric Acid/pharmacology , Citric Acid/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Neoplasm Invasiveness , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/drug therapy , Transcriptome , Gene Expression Profiling
7.
Sci Rep ; 14(1): 14658, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918518

ABSTRACT

Previous published data have confirmed that the addition of a citric acid meal improves the accuracy of the 13C-urea breath test (13C-UBT). However, some studies have suggested that a citric acid test meal may not be necessary. Thus, the aim of this study was to evaluate the combination of a 13C-UBT with a citric acid meal for the diagnosis of Helicobacter pylori (Hp) infection in a Chinese population, particularly for patients with results in the gray zone. In this paired self-controlled study, all subjects had previously undergone 13C-UBTs without citric acid meals and were randomly divided into two groups based on different doses of citric acid (a low-dose citric acid group and a high-dose citric acid group, comprising meals with 0.68 g and 3.84 g citric acid powder, respectively). Positive rapid urease test (CLO) test and histology results were considered the 'gold standard'. The mean delta over baseline (DOB) value, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy were compared between the two groups, particularly for patients with results in the gray zone. In total, 285 patients were tested. Of these patients, 189 were included in the low-dose citric acid group, and 96 were included in the high-dose citric acid group. Among patients with a positive 13C-UBT result without citric acid [delta over baseline (DOB) value ≥ 4‰, n = 174] and a negative 13C-UBT result without citric acid (DOB value < 4‰, n = 111), 8.0% (14/174) were false positive, and 0.9% (1/111) was false negative as determined by gold standard. Of 14 patients with false positive, 78.6% (11/14) false positive were in the gray zone of 4-10‰. However, there were no false positive 13C-UBT results with citric acid in the the gray zone of 4-10‰. In the comparison of the commercial 13C-UBT with the 13C-UBT in the low-dose citric acid group, the sensitivity, specificity, PPV, NPV and accuracy at 15 min were as follows: 99.1% vs. 99.1%, 97.5% vs. 88.9%, 98.2% vs. 92.2%, 98.8% vs. 98.6% and 98.4% vs. 94.7%, respectively. In the the gray zone of 4.0-10.0‰, the comparison of the commercial 13C-UBT with the 13C-UBT in the low-dose citric acid group, the sensitivity, specificity, PPV, and accuracy at 15 min were as follows: 94.4% vs. 100.0%, 100.0% vs. 0%, 100.0% vs. 75.0% and 95.8% vs. 75.0%, respectively. No significant difference was observed between the 15-min and 30-min measurement intervals in the low- and high-dose citric acid groups, including patients with results in the gray zone. The low-dose citric acid test, with an optimal measurement interval of 15 min, was highly accurate in the diagnosis of Hp infection in the Chinese population, especially for individuals with results in the gray zone.


Subject(s)
Breath Tests , Carbon Isotopes , Citric Acid , Helicobacter Infections , Helicobacter pylori , Urea , Humans , Breath Tests/methods , Helicobacter Infections/diagnosis , Helicobacter Infections/microbiology , Male , Female , Urea/analysis , Middle Aged , Adult , China , Aged , Sensitivity and Specificity , East Asian People
8.
Adv Rheumatol ; 64(1): 45, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38831360

ABSTRACT

INTRODUCTION: Sjögren's disease (SD) is an immune-mediated chronic inflammatory disease that affects epithelial tissues, mainly salivary and lacrimal glands. It also presents extraglandular manifestations. The main renal manifestation is tubulointerstitial nephritis (TIN), which can manifest as renal tubular acidosis (RTA). Urinary citrate may be a biomarker of RTA in these patients. The objective of this study was to evaluate whether hypocitraturia is a predictive biomarker of RTA in a sample of patients with SD in a tertiary hospital in southern Brazil. METHODS: All patients with SD who met the inclusion criteria and who participated in the rheumatology outpatient clinic of the Irmandade Santa Casa de Misericórdia de Porto Alegre were included. Demographic, SD, serological and urinary data were obtained. RTA was considered in those patients who persistently presented urinary pH above 5.5 and serum pH below 7.35. Patients who persistently had urinary pH above 5.5 underwent a urinary acidification test with furosemide and fludrocortisone. These patients received 1 mg of fludrocortisone and 40 mg of furosemide and had their urine samples tested 2, 4 and 6 h after taking the medications. The test was stopped at any urine sample with pH 5.5 or less. The variables were expressed as mean and standard deviation or interquartile range. The association between hypocitraturia and RTA was assessed using the chi-square. RESULTS: Forty-two patients were included, 95.2% female with a median age of 61.73 years. The prevalence of complete distal RTA was 4.88%. Twenty-eight patients underwent urine acidification testing. Five patients had hypocitraturia, and two of them had complete distal RTA. The association between hypocitraturia and RTA was statistically significant (p < 0.012), with a sensitivity of 100%, specificity of 91.2% and accuracy of 91.7%. The negative predictive value was 100%. The global renal assessment of the population demonstrated two patients with RTA, one patient with decreased renal function and six patients with proteinuria greater than 0.5 g/24 h. CONCLUSION: The prevalence of RTA in the studied population was 4.88%. Hypocitraturia had high sensitivity and accuracy for the diagnosis of RTA.


Subject(s)
Acidosis, Renal Tubular , Biomarkers , Citric Acid , Furosemide , Sjogren's Syndrome , Humans , Acidosis, Renal Tubular/diagnosis , Acidosis, Renal Tubular/urine , Acidosis, Renal Tubular/etiology , Sjogren's Syndrome/complications , Sjogren's Syndrome/urine , Sjogren's Syndrome/diagnosis , Female , Biomarkers/urine , Middle Aged , Male , Furosemide/therapeutic use , Furosemide/administration & dosage , Citric Acid/urine , Fludrocortisone/therapeutic use , Adult , Hydrogen-Ion Concentration , Aged , Brazil
9.
J Agric Food Chem ; 72(26): 14601-14609, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38900413

ABSTRACT

Although γ-methacryloxypropyltrimethoxysilane (MPS) was proved to be an effective reagent for improving the dimensional stability of wood, a bottleneck in ASE value (around 50%) existed. The reason was that MPS with low polarity opened few hydrogen bonds in the amorphous region of cellulose, while these hydrogen bonds could be reopened by water. Therefore, citric acid (CA) is chosen to cooperate with MPS to further enhance the dimensional stability of wood. In this paper, MPS and CA were used to modify wood individually (MW and CW) or with different combinations, that is, one-step modification (M/CW) and two-step modification with MPS first (M-CW) or CA first (C-MW). CA and MPS concentrations were optimized at 5 wt%. The ASE value for M/CW was only 25.74% at a weight percent gain (WPG) of 6.43%, which was only 0.6 times to MW or 0.7 times to CW. For M-CW, the ASE value gradually decreased with the soaking cycles, from 65.64% at a WPG of 9.05% to 51.20%. The C-MW had the best dimensional stability, with the ASE value 75.35% at a WPG of 11.50%. Although it decreased during the first soaking cycle, it stabilized at 62.20% at last. SEM and EDS images showed that the polymer mainly distributed in cell walls and few in cell lumen in C-MW. Thus, the enhanced dimensional stability of C-MW could be explained by CA opening the hydrogen bonds in the amorphous region of cellulose first, which provided more binding sites for MPS.


Subject(s)
Cell Wall , Cellulose , Wood , Wood/chemistry , Cellulose/chemistry , Cell Wall/chemistry , Citric Acid/chemistry , Hydrogen Bonding , Silanes/chemistry , Indicators and Reagents/chemistry
10.
Environ Geochem Health ; 46(7): 224, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849581

ABSTRACT

This study aimed to evaluate the effect of modified nanoscale zero-valent iron (SAS-nZVI) on chemical leaching of lead and cadmium composite contaminated soil by citric acid (CA). The synthesized SAS-nZVI was used as a leaching aid to improve the removal rate of soil heavy metals (HMs) by CA chemical leaching. The effects of various factors such as SAS-nZVI dosage, elution temperature and elution time were studied. At the same time, the effect of chemical leaching on the basic physical and chemical properties of soil and the morphology of HMs was evaluated. The results show that when the SAS-nZVI dosage is 2.0 g/L, the leaching temperature is 25 °C, and the leaching time is 720 min, the maximum removal rates of Pb and Cd in the soil are 77.64% and 97.15% respectively. The experimental results were evaluated using elution and desorption kinetic models (Elovich model, double constant model, diffusion model). The elution and desorption process of Pb and Cd in soil by SAS-nZVI-CA fitted well with the double-constant model, indicating that the desorption kinetic process of Pb and Cd is a heterogeneous diffusion process, and the elution process is controlled by diffusion factors. After leaching with SAS-nZVI-CA, the physical and chemical properties of the soil changed little, the mobility and toxicity of HMs in the soil were reduced, and the HMs content in the leaching waste liquid was reduced. It can be concluded that SAS-nZVI enhances the efficiency of CA in extracting Pb and Cd from soil, minimizes soil damage resulting from chemical leaching technology, and alleviates the challenges associated with treating leaching waste liquid.


Subject(s)
Cadmium , Citric Acid , Iron , Lead , Soil Pollutants , Soil Pollutants/chemistry , Citric Acid/chemistry , Iron/chemistry , Cadmium/chemistry , Lead/chemistry , Environmental Restoration and Remediation/methods , Metal Nanoparticles/chemistry , Metals, Heavy/chemistry , Kinetics , Soil/chemistry , Temperature
11.
Int J Biol Macromol ; 273(Pt 1): 132783, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38825285

ABSTRACT

In this study, a brand-new, easy, and environmentally friendly approach for chemically functionalizing 2,2,6,6-tetramethylpiperidinyloxyl radical (TEMPO)-oxidized cellulose nanofiber (TOCNF) to produce modified cellulose nanofiber (octadecylamine-citric acid-CNF) was proposed. Effects of octadecylamine (ODA)/TOCNF mass ratio on the chemical structure, morphology, surface hydrophobicity and oleophobicity were studied. According to Fourier transform infrared spectroscopy (FTIR) analysis, ODA was successfully grafted onto the TOCNF by simple citric acid (CA) esterification and amidation reactions. Scanning electron microscopy (SEM) showed that a new rough structure was formed on the ODA-CA-CNF surface. The water contact angle (WCA) and the castor oil contact angle (OCA) of the ODA-CA-CNF reached 139.6° and 130.6°, respectively. The high-grafting-amount ODA-CA-CNF was sprayed onto paper, and the OCA reached 118.4°, which indicated good oil-resistance performance. The low-grafting-amount ODA-CNF was applied in a pH-responsive indicator film, exhibiting a colour change in response to the pH level, which can be applied in smart food packaging. The ODA-CA-CNF with excellent water/oil-resistance properties and fluorine-free properties can replace petrochemical materials and can be used in the fields of fluorine-free oil-proof paper.


Subject(s)
Cellulose , Cyclic N-Oxides , Hydrophobic and Hydrophilic Interactions , Nanofibers , Nanofibers/chemistry , Cellulose/chemistry , Cyclic N-Oxides/chemistry , Amines/chemistry , Citric Acid/chemistry , Water/chemistry , Spectroscopy, Fourier Transform Infrared , Fluorine/chemistry , Surface Properties
12.
Sci Rep ; 14(1): 13504, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866989

ABSTRACT

There remains no optimal anticoagulation protocol for continuous renal replacement therapy (CRRT) with regional citrate anticoagulation (RCA) in pediatric patients with elevated D-dimer levels. We aimed to assess the effects of different anticoagulation strategies on the risk of CRRT filter clotting in these patients. Pediatric patients undergoing CRRT were retrospectively grouped based on pre-CRRT D-dimer levels and anticoagulant: D-RCA group (normal D-dimer, RCA only, n = 22), D+ RCA group (elevated D-dimer, RCA only, n = 50), and D+ RCA+ systemic heparin anticoagulation (SHA) group (elevated D-dimer, RCA combined with SHA, n = 55). The risk of filter clotting and incidence of bleeding were compared among the groups. Among the groups, the D+ RCA+ SHA group had the longest filter lifespan; further, the incidence of bleeding was not increased by concurrent use of low-dose heparin for anticoagulation. Moreover, concurrent heparin anticoagulation was associated with a decreased risk of filter clotting. Contrastingly, high pre-CRRT hemoglobin and D-dimer levels and post-filter ionized calcium level > 0.4 mmol/L were associated with an increased risk of filter clotting. RCA combined with low-dose heparin anticoagulation could reduce the risk of filter clotting and prolong filter lifespan without increasing the risk of bleeding in patients with elevated D-dimer levels undergoing CRRT.


Subject(s)
Anticoagulants , Citric Acid , Continuous Renal Replacement Therapy , Fibrin Fibrinogen Degradation Products , Heparin , Humans , Anticoagulants/administration & dosage , Heparin/administration & dosage , Continuous Renal Replacement Therapy/methods , Male , Female , Citric Acid/administration & dosage , Child , Fibrin Fibrinogen Degradation Products/analysis , Fibrin Fibrinogen Degradation Products/metabolism , Child, Preschool , Retrospective Studies , Infant , Hemorrhage/prevention & control , Hemorrhage/etiology , Blood Coagulation/drug effects , Adolescent , Renal Replacement Therapy/methods
13.
BMC Oral Health ; 24(1): 680, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867181

ABSTRACT

BACKGROUND: To investigate the effect of a 50% ascorbic acid with 50% citric acid solution on the immediate shear bond strength (SBS) of metallic brackets after tooth bleaching. The enamel etching pattern and the required quantity of these combined acids as antioxidants following 35% hydrogen peroxide (HP) bleaching were also determined. METHODS: The stability of the solution at room temperature was assessed at various time intervals. Fifty teeth were randomly divided into five groups: non-bleached (G1), bleached then acid etched (G2), bleached followed by a 10-minute treatment with 10% sodium ascorbate and acid etched (G3), 5-minute treatment with 50% ascorbic acid (G4), and 5-minute treatment with a combination of 50% ascorbic acid and 50% citric acid (G5). Groups G2, G3, G4 and G5 were bleached by 35% HP gel for a total of 32 min. Acid etching in groups G1, G2, and G3 was performed using 37% phosphoric acid (Ormco®, Orange, CA, USA) for 15 s. In all groups, metal brackets were immediately bonded using Transbond™ XT primer and Transbond™ PLUS adhesive, with light curing for 40 s. The SBS was tested with a universal testing machine, and statistical analysis was conducted using one-way ANOVA followed by Tukey's HSD test. The level of significance was set at p < 0.05 for all statistical tests. RESULTS: Stability tests demonstrated that the combined acids remained effective for up to 21 days. Group G5 significantly increased the SBS of bleached teeth to the level of G1 (p < 0.05), while G3 did not achieve the same increase in SBS (p > 0.05). SEM analysis revealed enamel etching patterns similar to those of both control groups (G1 and G2). Kinetic studies at 6 min indicated that the antioxidation in G5 reacted 0.2 mmole lower than in G3 and G4. CONCLUSION: 5-minute application of the combined acids enhanced the SBS of bleached teeth comparable to unbleached teeth. The combined acids remain stable over two weeks, presenting a time-efficient, single-step solution for antioxidant application and enamel etching in orthodontic bracket bonding.


Subject(s)
Ascorbic Acid , Citric Acid , Dental Bonding , Dental Enamel , Orthodontic Brackets , Shear Strength , Tooth Bleaching , Ascorbic Acid/pharmacology , Citric Acid/pharmacology , Citric Acid/chemistry , Tooth Bleaching/methods , Humans , Pilot Projects , Dental Enamel/drug effects , Dental Bonding/methods , Acid Etching, Dental , Antioxidants/pharmacology , Surface Properties , Time Factors , Hydrogen Peroxide/chemistry , Tooth Bleaching Agents/chemistry , Phosphoric Acids , Dental Stress Analysis
14.
Eur J Sport Sci ; 24(6): 721-731, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38874966

ABSTRACT

It has been assumed that exercise intensity variation throughout a cycling time trial (TT) occurs in alignment of various metabolic changes to prevent premature task failure. However, this assumption is based on target metabolite responses, which limits our understanding of the complex interconnection of metabolic responses during exercise. The current study characterized the metabolomic profile, an untargeted metabolic analysis, after specific phases of a cycling 4-km TT. Eleven male cyclists performed three separated TTs in a crossover counterbalanced design, which were interrupted at the end of the fast-start (FS, 600 ± 205 m), even-pace (EP, 3600 ± 190 m), or end-spurt (ES, 4000 m) phases. Blood samples were taken before any exercise and 5 min after exercise cessation, and the metabolomic profile characterization was performed using Nuclear Magnetic Resonance metabolomics. Power output (PO) was also continually recorded. There were higher PO values during the FS and ES compared to the EP (all p < 0.05), which were accompanied by distinct metabolomic profiles. FS showed high metabolite expression in TCA cycle and its related pathways (e.g., glutamate, citric acid, and valine metabolism); whereas, the EP elicited changes associated with antioxidant effects and oxygen delivery adjustment. Finally, ES was related to pathways involved in NAD turnover and serotonin metabolism. These findings suggest that the specific phases of a cycling TT are accompanied by distinct metabolomic profiles, providing novel insights regarding the relevance of specific metabolic pathways on the process of exercise intensity regulation.


Subject(s)
Bicycling , Cross-Over Studies , Metabolome , Humans , Male , Metabolome/physiology , Adult , Bicycling/physiology , Citric Acid Cycle , Serotonin/blood , NAD/blood , NAD/metabolism , Young Adult , Glutamic Acid/blood , Glutamic Acid/metabolism , Metabolomics , Valine/blood , Citric Acid/blood
15.
Molecules ; 29(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38893387

ABSTRACT

The extraction of cannabinoids from the inflorescence and leaves of Cannabis sativa L. is gaining interest from researchers, in addition to addressing the under-utilization of the by-products in the stems and roots of the trees. The present study investigated the recovery of pectin from the left-over parts of hemp tress using an eco-friendly method with the aid of organic acids. Different cannabis cultivars-Chalotte's Angels (CHA) and Hang-Krarog (HKR)-were used as plant materials. The stems of both cannabis cultivars contained more pectin than the roots, and tartaric acid-aided extraction provided higher yields than from citric acid. Extracting the acid solution affected some characteristics, thereby differentiating the functional properties of the derived pectin. Extraction using tartaric acid provided pectin with a higher galacturonic acid content, whereas pectin with a higher methylation degree could be prepared using citric acid. The pectin samples extracted from the stems of CHA (P-CHA) and HKR (P-HKR) had low methoxyl pectin. P-CHA had better free radical scavenging capability, whereas P-HKR showed more potent reducibility. Considering the functional properties, P-CHA showed greater emulsion formability and foaming activity, whereas P-HKR possessed a better thickening effect. The present work suggests the feasible utilization of P-CHA and P-HKR as food additives with bioactivity.


Subject(s)
Cannabis , Pectins , Plant Extracts , Pectins/chemistry , Pectins/isolation & purification , Cannabis/chemistry , Plant Extracts/chemistry , Citric Acid/chemistry , Plant Leaves/chemistry , Plant Stems/chemistry , Tartrates/chemistry , Plant Roots/chemistry , Hexuronic Acids/chemistry , Hexuronic Acids/analysis
16.
Molecules ; 29(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38893561

ABSTRACT

The application of chemical operations in food processing, in which pure chemical compounds are used to modify food ingredients, often raises social concerns. One of the most frequently modified dietary substances is starch, e.g., E1401-E1404, E1412-E1414, E1420, E1422, E1440, E1442, and E1450-E1452. An alternative solution to chemical treatments seems to be the use of raw materials naturally containing substrates applied for starch modification. Heating starch with a lemon juice concentrate can be considered a novel and effective method for producing starch citrate, which is part of the so-called "green chemistry". The modified preparations obtained as a result of potato starch esterification with natural lemon juice had a comparable degree of esterification to that of the esters produced with pure citric acid. In addition, the use of the juice doubled their resistance to amylolytic enzymes compared to the preparations made with pure acid. Replacing citric acid with lemon juice can facilitate the esterification process, and the analyzed properties of both types of modified preparations indicate that starch esters produced with pure citric acid can be successfully replaced by those produced using natural lemon juice, which may increase the social acceptance of these modified preparations.


Subject(s)
Citric Acid , Citrus , Fruit and Vegetable Juices , Solanum tuberosum , Starch , Esterification , Citric Acid/chemistry , Starch/chemistry , Citrus/chemistry , Fruit and Vegetable Juices/analysis , Solanum tuberosum/chemistry , Food Handling/methods
17.
Sensors (Basel) ; 24(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38894440

ABSTRACT

Quasi-bound state in the continuum (QBIC) can effectively enhance the interaction of terahertz (THz) wave with matter due to the tunable high-Q property, which has a strong potential application in the detection of low-concentration biological samples in the THz band. In this paper, a novel THz metamaterial sensor with a double-chain-separated resonant cavity structure based on QBIC is designed and fabricated. The process of excitation of the QBIC mode is verified and the structural parameters are optimized after considering the ohmic loss by simulations. The simulated refractive index sensitivity of the sensor is up to 544 GHz/RIU, much higher than those of recently reported THz metamaterial sensors. The sensitivity of the proposed metamaterial sensor is confirmed in an experiment by detecting low-concentration lithium citrate (LC) and bovine serum albumin (BSA) solutions. The limits of detection (LoDs) are obtained to be 0.0025 mg/mL (12 µM) for LC and 0.03125 mg/mL (0.47 µM) for BSA, respectively, both of which excel over most of the reported results in previous studies. These results indicate that the proposed THz metamaterial sensor has excellent sensing performances and can well be applied to the detection of low-concentration biological samples.


Subject(s)
Biosensing Techniques , Serum Albumin, Bovine , Serum Albumin, Bovine/chemistry , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Limit of Detection , Animals , Terahertz Radiation , Cattle , Terahertz Spectroscopy/methods , Refractometry , Lithium Compounds/chemistry , Citric Acid/chemistry
18.
Sci Adv ; 10(23): eadk3081, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848367

ABSTRACT

Clinical outcomes for total-pancreatectomy followed by intraportal islet autotransplantation (TP-IAT) to treat chronic pancreatitis (CP) are suboptimal due to pancreas inflammation, oxidative stress during islet isolation, and harsh engraftment conditions in the liver's vasculature. We describe a thermoresponsive, antioxidant macromolecule poly(polyethylene glycol citrate-co-N-isopropylacrylamide) (PPCN) to protect islet redox status and function and to enable extrahepatic omentum islet engraftment. PPCN solution transitions from a liquid to a hydrogel at body temperature. Islets entrapped in PPCN and exposed to oxidative stress remain functional and support long-term euglycemia, in contrast to islets entrapped in a plasma-thrombin biologic scaffold. In the nonhuman primate (NHP) omentum, PPCN is well-tolerated and mostly resorbed without fibrosis at 3 months after implantation. In NHPs, autologous omentum islet transplantation using PPCN restores normoglycemia with minimal exogenous insulin requirements for >100 days. This preclinical study supports TP-IAT with PPCN in patients with CP and highlights antioxidant properties as a mechanism for islet function preservation.


Subject(s)
Islets of Langerhans Transplantation , Islets of Langerhans , Omentum , Oxidative Stress , Islets of Langerhans Transplantation/methods , Omentum/metabolism , Animals , Islets of Langerhans/metabolism , Islets of Langerhans/drug effects , Oxidative Stress/drug effects , Citric Acid/pharmacology , Humans , Antioxidants/pharmacology , Pancreatitis, Chronic/metabolism , Pancreatitis, Chronic/surgery , Pancreatitis, Chronic/pathology , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Male , Phase Transition
19.
Braz Oral Res ; 38: e053, 2024.
Article in English | MEDLINE | ID: mdl-38922213

ABSTRACT

To evaluate the effect of acidic challenge on erosion depth and topographic characteristics of different materials used as occlusal sealants. Two hundred specimens of five sealant materials (Fuji IX, Ketac Molar, Fuji II, Equia and Clinpro) and forty bovine teeth enamel samples (control) were prepared and exposed to acidic challenge. The specimens were immersed in four different solutions (orange juice, coke drink, citric acid or distilled water) under mildly shaken conditions for 3 days. The erosion depth profiles were measured using a profilometer and Scanning Electron Microscope (SEM). Two-way ANOVA with Tukey post-hoc test was performed to evaluate the interactions. Sealant material and acidic challenge had significant effects on erosion depth. Among the materials, Fuji II presented the highest mean of erosion depth after immersion in orange juice, coke drink, and citric acid. All materials groups presented higher erosion depth values after immersion in the citric acid solution, except Clinpro. Bovine enamel presented higher erosion depth values compared to all materials when submitted to erosive challenge. Sealant materials submitted to the acidic challenge presented different degrees of erosion and topographic modification; however, they are less susceptible to erosion than bovine teeth enamel.


Subject(s)
Citric Acid , Dental Enamel , Materials Testing , Microscopy, Electron, Scanning , Pit and Fissure Sealants , Surface Properties , Tooth Erosion , Cattle , Animals , Tooth Erosion/prevention & control , Tooth Erosion/chemically induced , Dental Enamel/drug effects , Pit and Fissure Sealants/chemistry , Analysis of Variance , Time Factors , Surface Properties/drug effects , Glass Ionomer Cements/chemistry , Glass Ionomer Cements/therapeutic use , Reproducibility of Results , Carbonated Beverages/adverse effects , Reference Values , Hydrogen-Ion Concentration , Composite Resins/chemistry
20.
PLoS One ; 19(6): e0303377, 2024.
Article in English | MEDLINE | ID: mdl-38875249

ABSTRACT

INTRODUCTION: In this study, we aimed to compare the effectiveness of various chelating agents, ethilenediaminetetraacetic acid (EDTA), citric acid (CA), and etidronic acid (HEDP) mixed in two different forms, in removing the smear layer and promoting the penetration of an endodontic sealer into the dentinal tubules of extracted single-rooted teeth. METHODS: The study used 75 teeth divided into five groups: 17% EDTA, 10% CA, 9% HEDP + NaOCl, 9% HEDP + distilled water (DW), and a control (DW) group. Scanning electron microscopy was used to assess smear layer removal and confocal laser microscopy was used to evaluate tubular sealer penetration at different depths from the apical tip. RESULTS: Sealer penetration was highest with 17% EDTA and 10% CA as compared with the other agents (p<0.001). At the cervical third, the sealer penetration for EDTA, HEDP + NaOCl, and HEDP + DW groups were significantly different than those in DW (p = 0.020). For the middle third, EDTA, CA, and HEDP + NaOCl groups were significantly higher than those of the DW group (p<0.001). Cervical-level values were significantly higher than apical-level values for HEDP + NaOCl, HEDP + DW, and DW (p<0.001). Smear layer removal was lower with 9% HEDP + DW than with 17% EDTA and 10% CA at all depths (p<0.001). A significancy in smear layer removal was observed between 10% CA and control (p = 0.015) in middle depth. CONCLUSION: Within the limitations of this study, highest values were seen in EDTA and CA in terms of sealer penetration and smear layer removal. In the light of these findings, the use of strong chelating agents highlights better clinical efficiency than dual-rinse or single HEDP irrigation.


Subject(s)
Chelating Agents , Edetic Acid , Root Canal Filling Materials , Humans , Chelating Agents/chemistry , Root Canal Filling Materials/chemistry , Edetic Acid/chemistry , Smear Layer , Citric Acid/chemistry , Root Canal Irrigants/chemistry , Microscopy, Electron, Scanning , Dentin/drug effects , Dentin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...