Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 426
Filter
1.
Oncoimmunology ; 13(1): 2364958, 2024.
Article in English | MEDLINE | ID: mdl-38872753

ABSTRACT

We have recently demonstrated that inhibiting VPS34 enhances T-cell-recruiting chemokines through the activation of the cGAS/STING pathway using the STING agonist ADU-S100. Combining VPS34 inhibitors with ADU-S100 increased cytokine release and improved tumor control in mouse models, suggesting a potential synergy between VPS34 inhibition and therapies based on STING agonists.


Subject(s)
Autophagy , Class III Phosphatidylinositol 3-Kinases , Membrane Proteins , Neoplasms , Animals , Membrane Proteins/agonists , Membrane Proteins/metabolism , Humans , Mice , Autophagy/drug effects , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Class III Phosphatidylinositol 3-Kinases/metabolism , Class III Phosphatidylinositol 3-Kinases/antagonists & inhibitors
2.
Int J Mol Sci ; 25(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928226

ABSTRACT

Cell death-inducing p53-target protein 1 (CDIP1) is a proapoptotic protein that is normally expressed at low levels and is upregulated by genotoxic and endoplasmic reticulum stresses. CDIP1 has been reported to be localized to endosomes and to interact with several proteins, including B-cell receptor-associated protein 31 (BAP31) and apoptosis-linked gene 2 (ALG-2). However, the cellular and molecular mechanisms underlying CDIP1 expression-induced apoptosis remain unclear. In this study, we first demonstrated that CDIP1 was upregulated after treatment with the anticancer drug adriamycin in human breast cancer MCF-7 cells but was degraded rapidly in the lysosomal pathway. We also demonstrated that treatment with the cyclin-dependent kinase 5 (CDK5) inhibitor roscovitine led to an increase in the electrophoretic mobility of CDIP1. In addition, a phosphomimetic mutation at Ser-32 in CDIP1 resulted in an increase in CDIP1 expression-induced apoptosis. We also found that CDIP1 expression led to the induction of autophagy prior to apoptosis. Treatment of cells expressing CDIP1 with SAR405, an inhibitor of the class III phosphatidylinositol 3-kinase VPS34, caused a reduction in autophagy and promoted apoptosis. Therefore, autophagy is thought to be a defense mechanism against CDIP1 expression-induced apoptosis.


Subject(s)
Apoptosis , Autophagy , Breast Neoplasms , Female , Humans , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Autophagy/drug effects , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Class III Phosphatidylinositol 3-Kinases/metabolism , Class III Phosphatidylinositol 3-Kinases/genetics , Cytoprotection/drug effects , Doxorubicin/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , MCF-7 Cells
3.
Biochem Biophys Res Commun ; 718: 149981, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38735134

ABSTRACT

In animal cells, vacuoles are absent, but can be induced by diseases and drugs. While phosphoinositides are critical for membrane trafficking, their role in the formation of these vacuoles remains unclear. The immunosuppressive KRP203/Mocravimod, which antagonizes sphingosine-1-phosphate receptors, has been identified as having novel multimodal activity against phosphoinositide kinases. However, the impact of this novel KRP203 activity is unknown. Here, we show that KRP203 disrupts the spatial organization of phosphoinositides and induces extensive vacuolization in tumor cells and immortalized fibroblasts. The KRP203-induced vacuoles are primarily from endosomes, and augmented by inhibition of PIKFYVE and VPS34. Conversely, overexpression of PTEN decreased KRP203-induced vacuole formation. Furthermore, V-ATPase inhibition completely blunted KRP203-induced vacuolization, pointing to a critical requirement of the endosomal maturation process. Importantly, nearly a half of KRP203-induced vacuoles are significantly decorated with PI4P, a phosphoinositide typically enriched at the plasma membrane and Golgi. These results suggest a model that noncanonical spatial reorganization of phosphoinositides by KRP203 alters the endosomal maturation process, leading to vacuolization. Taken together, this study reveals a previously unrecognized bioactivity of KRP203 as a vacuole-inducing agent and its unique mechanism of phosphoinositide modulation, providing a new insight of phosphoinositide regulation into vacuolization-associated diseases and their molecular pathologies.


Subject(s)
Endosomes , PTEN Phosphohydrolase , Phosphatidylinositols , Vacuoles , Vacuoles/metabolism , Vacuoles/drug effects , Endosomes/metabolism , Endosomes/drug effects , Humans , Phosphatidylinositols/metabolism , Animals , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/metabolism , Class III Phosphatidylinositol 3-Kinases/metabolism , Class III Phosphatidylinositol 3-Kinases/genetics , Mice , Morpholines/pharmacology , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/antagonists & inhibitors , Vacuolar Proton-Translocating ATPases/genetics , Cytoplasm/metabolism , HeLa Cells , Aminopyridines , Heterocyclic Compounds, 3-Ring
4.
Hum Immunol ; 85(3): 110801, 2024 May.
Article in English | MEDLINE | ID: mdl-38609772

ABSTRACT

BACKGROUND: The role of autophagy in coronaviruses infection and replication has a lot of debate. Autophagy involves the catalytic breakdown of intracellular components to be subsequently recycled by the lysosome. The aim of the study was to evaluate autophagy genes; PIK3C3 and RAB7A expressions in COVID-19 patients, and identify if PIK3C3 and RAB7A can be used as markers for monitoring COVID-19 patients. METHODS: A case-control study was carried out on 50 patients and 50 healthy controls. Genes expression was performed using quantitative real-time polymerase chain reaction. RESULTS: Compared to controls, PIK3C3 and RAB7A gene expression levels were significantly lower in patients (p < 0.001) with approximately with 9.4 and 2.3 decreased fold in PIK3C3 and RAB7A respectively. The ROC curve of PIK3C3 and RAB7A expressions showed sensitivity of 84 % and 74 % and specificity of 98 % and 78 % respectively. There was a positive correlation between PIK3C3 expression and WBCs, absolute neutrophil count, interleukin-6, D-dimer, and ALT among patients and between RAB7A expression and WBCs, CRP, IL-6, D-dimer and ALT in patients. CONCLUSIONS: The study showed reduction of PIK3C3 and RAB7A expressions in COVID-19 patients. However, further studies are recommended to clarify their roles in the disease pathogenies as autophagy genes.


Subject(s)
Autophagy , COVID-19 , Class III Phosphatidylinositol 3-Kinases , SARS-CoV-2 , rab GTP-Binding Proteins , rab7 GTP-Binding Proteins , Humans , COVID-19/genetics , rab GTP-Binding Proteins/genetics , Male , Female , Autophagy/genetics , Class III Phosphatidylinositol 3-Kinases/genetics , Class III Phosphatidylinositol 3-Kinases/metabolism , Middle Aged , SARS-CoV-2/physiology , Case-Control Studies , Adult , Biomarkers , Aged
5.
Microb Pathog ; 190: 106638, 2024 May.
Article in English | MEDLINE | ID: mdl-38574829

ABSTRACT

Autophagy plays an important role in the lifecycle of viruses. However, there is currently a lack of systematic research on the relationship between Infectious Bronchitis Virus (IBV) and autophagy. This study aims to investigate the impact of IBV on autophagy and the role of autophagy in viral replication. We observed that IBV infection increased the expression of microtubule-associated protein 1 light chain 3, a marker of autophagy, decreased the expression of sequestosome 1, and led to elevated intracellular LC3 puncta levels. These findings suggest that IBV infection activates the autophagic process in cells. To investigate the impact of autophagy on the replication of IBV, we utilized rapamycin as an autophagy activator and 3-methyladenine as an autophagy inhibitor. Our results indicate that IBV promotes viral replication by inducing autophagy. Further investigation revealed that IBV induces autophagosome formation by inhibiting the mTOR-ULK1 pathway and activating the activity of vacuolar protein sorting 34 (VPS34), autophagy-related gene 14, and the Beclin-1 complex. VPS34 plays a crucial role in this process, as inhibiting VPS34 protein activity enhances cell proliferation after IBV infection. Additionally, inhibiting VPS34 significantly improves the survival rate of IBV-infected chicks, suppresses IBV replication in the kidney, and alleviates tracheal, lung, and kidney damage caused by IBV infection. In summary, IBV infection can induce autophagy by modulating the mTOR/ULK1 signaling pathway and activating the VPS34 complex, while autophagy serves to promote virus replication.


Subject(s)
Autophagy , Chickens , Class III Phosphatidylinositol 3-Kinases , Infectious bronchitis virus , Virus Replication , Infectious bronchitis virus/physiology , Animals , Class III Phosphatidylinositol 3-Kinases/metabolism , Chickens/virology , Coronavirus Infections/virology , Coronavirus Infections/metabolism , Sirolimus/pharmacology , Beclin-1/metabolism , Beclin-1/genetics , TOR Serine-Threonine Kinases/metabolism , Signal Transduction , Cell Line , Poultry Diseases/virology , Autophagosomes/metabolism , Autophagosomes/virology , Chlorocebus aethiops , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics
6.
Sci Rep ; 14(1): 6435, 2024 03 18.
Article in English | MEDLINE | ID: mdl-38499600

ABSTRACT

Hyperparathyroidism (HPT) manifests as a complex condition with a substantial disease burden. While advances have been made in surgical interventions and non-surgical pharmacotherapy for the management of hyperparathyroidism, radical options to halt underlying disease progression remain lacking. Identifying putative genetic drivers and exploring novel drug targets that can impede HPT progression remain critical unmet needs. A Mendelian randomization (MR) analysis was performed to uncover putative therapeutic targets implicated in hyperparathyroidism pathology. Cis-expression quantitative trait loci (cis-eQTL) data serving as genetic instrumental variables were obtained from the eQTLGen Consortium and Genotype-Tissue Expression (GTEx) portal. Hyperparathyroidism summary statistics for single nucleotide polymorphism (SNP) associations were sourced from the FinnGen study (5590 cases; 361,988 controls). Colocalization analysis was performed to determine the probability of shared causal variants underlying SNP-hyperparathyroidism and SNP-eQTL links. Five drug targets (CMKLR1, FSTL1, IGSF11, PIK3C3 and SLC40A1) showed significant causation with hyperparathyroidism in both eQTLGen and GTEx cohorts by MR analysis. Specifically, phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3) and solute carrier family 40 member 1 (SLC40A1) showed strong evidence of colocalization with HPT. Multivariable MR and Phenome-Wide Association Study analyses indicated these two targets were not associated with other traits. Additionally, drug prediction analysis implies the potential of these two targets for future clinical applications. This study identifies PIK3C3 and SLC40A1 as potential genetically proxied druggable genes and promising therapeutic targets for hyperparathyroidism. Targeting PIK3C3 and SLC40A1 may offer effective novel pharmacotherapies for impeding hyperparathyroidism progression and reducing disease risk. These findings provide preliminary genetic insight into underlying drivers amenable to therapeutic manipulation, though further investigation is imperative to validate translational potential from preclinical models through clinical applications.


Subject(s)
Follistatin-Related Proteins , Hyperparathyroidism , Humans , Mendelian Randomization Analysis , Quantitative Trait Loci/genetics , Class III Phosphatidylinositol 3-Kinases , Cost of Illness , Genome-Wide Association Study
7.
Adv Sci (Weinh) ; 11(21): e2309315, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38544346

ABSTRACT

Vps34 is the unique member of the class III phosphoinositide 3-kinase family that performs both vesicular transport and autophagy. Its role in natural killer (NK) cells remains uncertain. In this study, a model without Vps34 (Vps34fl/fl/CD122Cre/+) is generated, deleting Vps34 during and after NK-cell commitment. These mice exhibit a nearly 90% decrease in NK cell count and impaired differentiation. A mechanistic study reveals that the absence of Vps34 disrupts the transport of IL-15 receptor subunit alpha CD122 to the cell membrane, resulting in reduced responsiveness of NK cells to IL-15. In mice lacking Vps34 at the terminal stage of NK-cell development (Vps34fl/fl/Ncr1Cre/+), NK cells gradually diminish during aging. This phenotype is associated with autophagy deficiency and the stress induced by reactive oxygen species (ROS). Therefore, terminally differentiated NK cells lacking Vps34 display an accelerated senescence phenotype, while the application of antioxidants effectively reverses the senescence caused by Vps34 deletion by neutralizing ROS. In summary, this study unveils the dual and unique activity of Vps34 in NK cells. Vps34-mediated vesicular transport is crucial for CD122 membrane trafficking during NK cell commitment, whereas Vps34-mediated autophagy can delay NK cell senescence.


Subject(s)
Cell Differentiation , Cellular Senescence , Class III Phosphatidylinositol 3-Kinases , Killer Cells, Natural , Animals , Mice , Autophagy/physiology , Autophagy/genetics , Cell Differentiation/genetics , Cellular Senescence/genetics , Cellular Senescence/physiology , Class III Phosphatidylinositol 3-Kinases/metabolism , Class III Phosphatidylinositol 3-Kinases/genetics , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism
8.
Autophagy ; 20(3): 707-708, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37992308

ABSTRACT

Macroautophagy/autophagy research often involves overexpressing proteins to investigate their localization, function and activity. However, this approach can disturb the inherent balance of cellular components, potentially affecting the integrity of the autophagy process. With the advent of genome-editing techniques like CRISPR-Cas9, it is now possible to tag endogenous proteins with fluorescent markers, enabling the study of their behaviors under more physiologically relevant conditions. Nevertheless, conventional microscopy methods have limitations in characterizing the behaviors of proteins expressed at endogenous levels. This challenge can be overcome by single-molecule localization microscopy (SMLM) methods, which provide single-molecule sensitivity and super-resolution imaging capabilities. In our recent study, we used SMLM in combination with genome editing to explore the behavior of endogenous ULK1 during autophagy initiation, yielding unprecedented insights into the autophagy initiation process.Abbreviation: ATG13: autophagy related 13; ATG14: autophagy related 14; ATG16L1: autophagy related 16 like 1; BECN1: beclin 1; ER: endoplasmic reticulum; GABARAPL1: GABA type A receptor associated protein like 1; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MTORC1: mechanistic target of rapamycin kinase complex 1; PALM: photo-activated localization microscopy; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4/VPS15: phosphoinositide-3-kinase regulatory subunit 4; PtdIns3P: phosphatidylinositol-3-phosphate; SMLM: single-molecule localization microscopy; ULK1: unc-51 like autophagy activating kinase 1; WIPI2: WD repeat domain, phosphoinositide interacting 2.


Subject(s)
Autophagy , Class III Phosphatidylinositol 3-Kinases , Autophagy/physiology , Autophagy-Related Proteins/metabolism , Beclin-1/metabolism , Autophagy-Related Protein-1 Homolog/metabolism , Class III Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositols
9.
Bioorg Chem ; 143: 107039, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38134519

ABSTRACT

Autophagy is a ubiquitous pathological/physiological antioxidant cellular reaction in eukaryotic cells. Vacuolar protein sorting 34 (Vps34 or PIK3C3), which plays a crucial role in autophagy, has received much attention. As the only Class III phosphatidylinositol-3 kinase in mammals, Vps34 participates in vesicular transport, nutrient signaling and autophagy. Dysfunctionality of Vps34 induces carcinogenesis, and abnormal autophagy mediated by dysfunction of Vps34 is closely related to the pathological progression of various human diseases, which makes Vps34 a novel target for tumor immunotherapy. In this review, we summarize the molecular mechanisms underlying macroautophagy, and further discuss the structure-activity relationship of Vps34 inhibitors that have been reported in the past decade as well as their potential roles in anticancer immunotherapy to better understand the antitumor mechanism underlying the effects of these inhibitors.


Subject(s)
Autophagy , Class III Phosphatidylinositol 3-Kinases , Animals , Humans , Class III Phosphatidylinositol 3-Kinases/metabolism , Protein Transport , Autophagy-Related Proteins/metabolism , Signal Transduction , Mammals/metabolism
10.
J Virol ; 97(9): e0102523, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37668367

ABSTRACT

Human astrovirus is a positive-sense, single-stranded RNA virus. Astrovirus infection causes gastrointestinal symptoms and can lead to encephalitis in immunocompromised patients. Positive-strand RNA viruses typically utilize host intracellular membranes to form replication organelles, which are potential antiviral targets. Many of these replication organelles are double-membrane vesicles (DMVs). Here, we show that astrovirus infection leads to an increase in DMV formation through a replication-dependent mechanism that requires some early components of the autophagy machinery. Results indicate that the upstream class III phosphatidylinositol 3-kinase (PI3K) complex, but not LC3 conjugation machinery, is utilized in DMV formation. Both chemical and genetic inhibition of the PI3K complex lead to significant reduction in DMVs, as well as viral replication. Elucidating the role of autophagy machinery in DMV formation during astrovirus infection reveals a potential target for therapeutic intervention for immunocompromised patients. IMPORTANCE These studies provide critical new evidence that astrovirus replication requires formation of double-membrane vesicles, which utilize class III phosphatidylinositol 3-kinase (PI3K), but not LC3 conjugation autophagy machinery, for biogenesis. These results are consistent with replication mechanisms for other positive-sense RNA viruses suggesting that targeting PI3K could be a promising therapeutic option for not only astrovirus, but other positive-sense RNA virus infections.


Subject(s)
Mamastrovirus , Phosphatidylinositol 3-Kinase , Virus Replication , Humans , Autophagy , Class III Phosphatidylinositol 3-Kinases/metabolism , Intracellular Membranes/metabolism , Organelles , Phosphatidylinositol 3-Kinase/metabolism , RNA Viruses , Mamastrovirus/physiology , Signal Transduction
11.
Autophagy ; 19(12): 3240-3241, 2023 12.
Article in English | MEDLINE | ID: mdl-37565742

ABSTRACT

Lactate is a glycolysis product that is produced from pyruvate by LDH (lactate dehydrogenase) and plays an important role in physiological and pathological processes. However, whether lactate regulates autophagy is still unknown. We recently reported that LDHA is phosphorylated at serine 196 by ULK1 (unc-51 like kinase 1) under nutrient-deprivation conditions, promoting lactate production. Then, lactate mediates PIK3C3/VPS34 lactylation at lysine 356 and lysine 781 via acyltransferase KAT5/TIP60. PIK3C3/VPS34 lactylation enhances the association of PIK3C3/VPS34 with BECN1 (beclin 1, autophagy related), ATG14 and UVRAG, increases PIK3C3/VPS34 lipid kinase activity, promotes macroautophagy/autophagy and facilitates the endolysosomal degradation pathway. PIK3C3/VPS34 hyperlactylation induces autophagy and plays an essential role in skeletal muscle homeostasis and cancer progression. Overall, this study describes an autophagy regulation mechanism and the integration of two highly conserved life processes: glycolysis and autophagy.


Subject(s)
Autophagy , Lactic Acid , Autophagy/physiology , Autophagy-Related Proteins/metabolism , Lysine/metabolism , Beclin-1/metabolism , Class III Phosphatidylinositol 3-Kinases/metabolism , Glycolysis
12.
Autophagy ; 19(10): 2800-2806, 2023 10.
Article in English | MEDLINE | ID: mdl-37482676

ABSTRACT

Nearly fifty million older people suffer from neurodegenerative diseases, including Alzheimer (AD) and Parkinson (PD) disease, a global burden expected to triple by 2050. Such an imminent "neurological pandemic" urges the identification of environmental risk factors that are hopefully avoided to fight the disease. In 2022, strong evidence in mouse models incriminated defective lysosomal acidification and impairment of the autophagy pathway as modifiable risk factors for dementia. To date, the most prescribed lysosomotropic drugs are proton pump inhibitors (PPIs), chloroquine (CQ), and the related hydroxychloroquine (HCQ), which belong to the group of disease-modifying antirheumatic drugs (DMARDs). This commentary aims to open the discussion on the possible mechanisms connecting the long-term prescribing of these drugs to the elderly and the incidence of neurodegenerative diseases.Abbreviations: AD: Alzheimer disease; APP-ßCTF: amyloid beta precursor protein-C-terminal fragment; BACE1: beta-secretase 1; BBB: brain blood barrier; CHX: Ca2+/H+ exchanger; CMI: cognitive mild impairment; CQ: chloroquine; DMARD: disease-modifying antirheumatic drugs; GBA1: glucosylceramidase beta 1; HCQ: hydroxychloroquine; HPLC: high-performance liquid chromatography; LAMP: lysosomal associated membrane protein; MAPK/JNK: mitogen-activated protein kinase; MAPT: microtubule associated protein tau; MCOLN1/TRPML1: mucolipin TRP cation channel 1; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; NRBF2: nuclear receptor binding factor 2; PANTHOS: poisonous flower; PD: Parkinson disease; PIK3C3: phosphatIdylinositol 3-kinase catalytic subunit type 3; PPI: proton pump inhibitor; PSEN1: presenilin 1, RUBCN: rubicon autophagy regulator; RUBCNL: rubicon like autophagy enhancer; SQSTM1: sequestosome 1; TMEM175: transmembrane protein 175; TPCN2: two pore segment channel 2; VATPase: vacuolar-type H+-translocating ATPase; VPS13C: vacuolar protein sorting ortholog 13 homolog C; VPS35: VPS35 retromer complex component; WDFY3: WD repeat and FYVE domain containing 3; ZFYVE1: zinc finger FYVE-type containing 1.


Subject(s)
Alzheimer Disease , Antirheumatic Agents , Neurodegenerative Diseases , Parkinson Disease , Mice , Animals , Autophagy/physiology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Antirheumatic Agents/pharmacology , Amyloid beta-Peptides/metabolism , Hydroxychloroquine/adverse effects , Aspartic Acid Endopeptidases/metabolism , Aspartic Acid Endopeptidases/pharmacology , Neurodegenerative Diseases/metabolism , Lysosomes/metabolism , Class III Phosphatidylinositol 3-Kinases/metabolism , Chloroquine/pharmacology , Hydrogen-Ion Concentration
13.
Autophagy ; 19(11): 2934-2957, 2023 11.
Article in English | MEDLINE | ID: mdl-37450577

ABSTRACT

Sertoli cells are highly polarized testicular cells that provide a nurturing environment for germ cell development and maturation during spermatogenesis. The class III phosphatidylinositol 3-kinase (PtdIns3K) plays core roles in macroautophagy in various cell types; however, its role in Sertoli cells remains unclear. Here, we generated a mouse line in which the gene encoding the catalytic subunit, Pik3c3, was specifically deleted in Sertoli cells (cKO) and found that after one round of normal spermatogenesis, the cKO mice quickly became infertile and showed disruption of Sertoli cell polarity and impaired spermiogenesis. Subsequent proteomics and phosphoproteomics analyses enriched the F-actin cytoskeleton network involved in the disorganized Sertoli-cell structure in cKO testis which we identified a significant increase of the F-actin negative regulator SCIN (scinderin) and the reduced phosphorylation of HDAC6, an α-tubulin deacetylase. Our results further demonstrated that the accumulation of SCIN in cKO Sertoli cells caused the disorder and disassembly of the F-actin cytoskeleton, which was related to the failure of SCIN degradation through the autophagy-lysosome pathway. Additionally, we found that the phosphorylation of HDAC6 at site S59 by PIK3C3 was essential for its degradation through the ubiquitin-proteasome pathway. As a result, the HDAC6 that accumulated in cKO Sertoli cells deacetylated SCIN at site K189 and led to a disorganized F-actin cytoskeleton. Taken together, our findings elucidate a new mechanism for PIK3C3 in maintaining the polarity of Sertoli cells, in which both its autophagy regulation or protein kinase activities are required for the stabilization of the actin cytoskeleton.Abbreviations: ACTB: actin, beta; AR: androgen receptor; ATG14: autophagy related 14; BafA1: bafilomycin A1; BECN1: beclin 1, autophagy related; BTB: blood-testis barrier; CASP3: caspase 3; CDC42: cell division cycle 42; CDH2: cadherin 2; CHX: cycloheximide; CTNNA1: catenin (cadherin associated protein), alpha 1; CYP11A1: cytochrome P450, family 11, subfamily A, polypeptide 1; EBSS: Earle's balanced salt solution; ES: ectoplasmic specialization; FITC: fluorescein isothiocyanate; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GCNA: germ cell nuclear acidic protein; GJA1: gap junction protein, alpha 1; H2AX: H2A.X variant histone; HDAC6: histone deacetylase 6; KIT: KIT proto-oncogene, receptor tyrosine kinase; LAMP1: lysosomal associated membrane protein 1; MAP3K5: mitogen-activated protein kinase kinase kinase 5; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; OCLN: occludin; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PNA: arachis hypogaea lectin; RAC1: Rac family small GTPase 1; SCIN: scinderin; SQSTM1/p62: sequestosome 1; SSC: spermatogonia stem cell; STK11: serine/threonine kinase 11; TJP1: tight junction protein 1; TubA: tubastatin A; TUBB3: tubulin beta 3 class III; TUNEL: TdT-mediated dUTP nick-end labeling; UB: ubiquitin; UVRAG: UV radiation resistance associated gene; VIM: vimentin; WT1: WT1 transcription factor; ZBTB16: zinc finger and BTB domain containing 16.


Subject(s)
Autophagy , Sertoli Cells , Male , Animals , Mice , Autophagy/genetics , Phosphorylation , Cell Polarity , Ubiquitin/metabolism , Protein Serine-Threonine Kinases/metabolism , Class III Phosphatidylinositol 3-Kinases/metabolism
14.
Sci Adv ; 9(22): eadg4993, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37267363

ABSTRACT

Autophagy and glycolysis are highly conserved biological processes involved in both physiological and pathological cellular programs, but the interplay between these processes is poorly understood. Here, we show that the glycolytic enzyme lactate dehydrogenase A (LDHA) is activated upon UNC-51-like kinase 1 (ULK1) activation under nutrient deprivation. Specifically, ULK1 directly interacts with LDHA, phosphorylates serine-196 when nutrients are scarce and promotes lactate production. Lactate connects autophagy and glycolysis through Vps34 lactylation (at lysine-356 and lysine-781), which is mediated by the acyltransferase KAT5/TIP60. Vps34 lactylation enhances the association of Vps34 with Beclin1, Atg14L, and UVRAG, and then increases Vps34 lipid kinase activity. Vps34 lactylation promotes autophagic flux and endolysosomal trafficking. Vps34 lactylation in skeletal muscle during intense exercise maintains muscle cell homeostasis and correlates with cancer progress by inducing cell autophagy. Together, our findings describe autophagy regulation mechanism and then integrate cell autophagy and glycolysis.


Subject(s)
Class III Phosphatidylinositol 3-Kinases , Lysine , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Proteins/metabolism , Class III Phosphatidylinositol 3-Kinases/genetics , Class III Phosphatidylinositol 3-Kinases/metabolism , Lipids
15.
Eur J Med Chem ; 256: 115467, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37178482

ABSTRACT

VPS34 is well-known to be the unique member of the class III phosphoinositide 3-kinase (PI3K) family, forming VPS34 complex 1 and complex 2, which are involved in several key physiological processes. Of note, VPS34 complex 1 is an important node of autophagosome generation, which controls T cell metabolism and maintains cellular homeostasis through the autophagic pathway. And, VPS34 complex 2 is involved in endocytosis as well as vesicular transport, and is closely related to neurotransmission, antigen presentation and brain development. Due to the two important biological functions of VPS34, its dysregulation can lead to the development of cardiovascular disease, cancer, neurological disorders, and many types of human diseases by altering normal human physiology. Thus, in this review, we not only summarize the molecular structure and function of VPS34, but demonstrate the relationships between VPS34 and human diseases. Moreover, we further discuss the current small molecule inhibitors targeting VPS34 based upon the structure and function of VPS34, which may provide an insight into the future targeted drug development.


Subject(s)
Autophagy , Class III Phosphatidylinositol 3-Kinases , Humans , Class III Phosphatidylinositol 3-Kinases/metabolism , Autophagosomes/metabolism , T-Lymphocytes
16.
Autophagy ; 19(8): 2398-2400, 2023 08.
Article in English | MEDLINE | ID: mdl-36629752

ABSTRACT

Adipose tissue, or body fat, plays a critical role in the maintenance of health and the development of metabolic diseases. The pathological expansion of adipose tissue during obesity and the pathological reduction of adipose tissue during lipodystrophy can lead to a similar array of metabolic diseases that include diabetes, but mechanisms remain to be fully defined. In our recent studies, we explored the contribution of the lipid kinase PIK3C3/VPS34 to adipose tissue health and metabolic disease. We found that adipocyte-specific PIK3C3/VPS34 deficiency causes defects in the differentiation, survival and functional properties of adipocytes, resulting in reduced adipose tissue mass, altered blood lipid levels, fatty liver disease, diabetes, and defective body temperature control. These abnormalities mirror those observed in patients with lipodystrophy. These findings identify adipocyte PIK3C3/VPS34 as a potential target for therapeutic intervention in metabolic diseases.


Subject(s)
Autophagy , Lipodystrophy , Humans , Adipocytes/metabolism , Adipose Tissue, Brown/metabolism , Lipodystrophy/metabolism , Obesity/metabolism , Class III Phosphatidylinositol 3-Kinases/metabolism
17.
mBio ; 14(1): e0322122, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36656016

ABSTRACT

Rapid phagosomal escape mediated by listeriolysin O (LLO) is a prerequisite for Listeria monocytogenes intracellular replication and pathogenesis. Escape takes place within minutes after internalization from vacuoles that are negative to the early endosomal Rab5 GTPase and positive to the late endosomal Rab7. Using mutant analysis, we found that the listerial invasin InlB was required for optimal intracellular proliferation of L. monocytogenes. Starting from this observation, we determined in HeLa cells that InlB promotes early phagosomal escape and efficient Rab7 acquisition by the Listeria-containing vacuole (LCV). Recruitment of the class III phosphoinositide 3-kinase (PI3K) Vps34 to the LCV and accumulation of its lipid product, phosphatidylinositol 3-phosphate (PI3P), two key endosomal maturation mediators, were also dependent on InlB. Small interfering RNA (siRNA) knockdown experiments showed that Vps34 was required for Rab7 recruitment and early (LLO-mediated) escape and supported InlB-dependent intracellular proliferation. Together, our data indicate that InlB accelerates LCV conversion into an escape-favorable Rab7 late phagosome via subversion of class III PI3K/Vps34 signaling. Our findings uncover a new function for the InlB invasin in Listeria pathogenesis as an intracellular proliferation-promoting virulence factor. IMPORTANCE Avoidance of lysosomal killing by manipulation of the endosomal compartment is a virulence mechanism assumed to be largely restricted to intravacuolar intracellular pathogens. Our findings are important because they show that cytosolic pathogens like L. monocytogenes, which rapidly escape the phagosome after internalization, can also extensively subvert endocytic trafficking as part of their survival strategy. They also clarify that, instead of delaying phagosome maturation (to allow time for LLO-dependent disruption, as currently thought), via InlB L. monocytogenes appears to facilitate the rapid conversion of the phagocytic vacuole into an escape-conducive late phagosome. Our data highlight the multifunctionality of bacterial virulence factors. At the cell surface, the InlB invasin induces receptor-mediated phagocytosis via class I PI3K activation, whereas after internalization it exploits class III PI3K (Vsp34) to promote intracellular survival. Systematically elucidating the mechanisms by which Listeria interferes with PI3K signaling all along the endocytic pathway may lead to novel anti-infective therapies.


Subject(s)
Listeria monocytogenes , Listeria , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Proliferation , HeLa Cells , Hemolysin Proteins/genetics , Phosphatidylinositol 3-Kinases/metabolism , Vacuoles/metabolism , Class III Phosphatidylinositol 3-Kinases
18.
Autophagy ; 19(2): 379-387, 2023 02.
Article in English | MEDLINE | ID: mdl-35435793

ABSTRACT

Post-translational modifications, such as phosphorylation, ubiquitination and acetylation, play crucial roles in the regulation of autophagy. Acetylation has emerged as an important regulatory mechanism for autophagy. Acetylation regulates autophagy initiation and autophagosome formation by targeting core components of the ULK1 complex, the BECN1-PIK3C3 complex, and the LC3 lipidation system. Recent studies have shown that acetylation occurs on the key proteins participating in autophagic cargo assembly and autophagosome-lysosome fusion, such as SQSTM1/p62 and STX17. In addition, acetylation controls autophagy at the transcriptional level by targeting histones and the transcription factor TFEB. Here, we review the current knowledge on acetylation of autophagy proteins and their regulations and functions in the autophagy pathway with focus on recent findings.Abbreviations : ACAT1: acetyl-CoA acetyltransferase 1; ACSS2: acyl-CoA synthetase short chain family member 2; AMPK: AMP-activated protein kinase; ATG: autophagy-related; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CCAR2/DBC1: cell cycle and apoptosis regulator 2; BECN1: beclin 1; CMA: chaperone-mediated autophagy; CREBBP/CBP: CREB binding protein; EP300/p300: E1A binding protein p300; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GSK3: glycogen synthase kinase 3; HDAC6: histone deacetylase 6; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; KAT2A/GCN5: lysine acetyltransferase 2A; KAT2B/PCAF: lysine acetyltransferase 2B; KAT5/TIP60: lysine acetyltransferase 5; KAT8/MOF: lysine acetyltransferase 8; LAMP2A: lysosomal associated membrane protein 2A; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; PD: Parkinson disease; PE: phosphatidylethanolamine; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PKM2: pyruvate kinase M1/2; PtdIns3P: phosphatidylinositol-3-phosphate; PTM: post-translational modification; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RUBCN/Rubicon: rubicon autophagy regulator; RUBCNL/Pacer: rubicon like autophagy enhancer; SIRT1: sirtuin 1; SNAP29: synaptosome associated protein 29; SNARE: soluble N-ethylamide-sensitive factor attachment protein receptor; SQSTM1/p62: sequestosome 1; STX17: syntaxin 17; TFEB: transcription factor EB; TP53/p53: tumor protein p53; TP53INP2/DOR: tumor protein p53 inducible nuclear protein 2; UBA: ubiquitin-associated; ULK1: unc-51 like autophagy activating kinase 1; VAMP8: vesicle associated membrane protein 8; WIPI2: WD repeat domain, phosphoinositide interacting 2.


Subject(s)
Lysine Acetyltransferases , Neoplasms , Humans , Autophagy/physiology , Sequestosome-1 Protein/metabolism , Tumor Suppressor Protein p53/metabolism , Glycogen Synthase Kinase 3/metabolism , Acetylation , Protein Processing, Post-Translational , Class III Phosphatidylinositol 3-Kinases/metabolism , Transcription Factors/metabolism , Lysine Acetyltransferases/metabolism , Nuclear Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism
19.
Proc Natl Acad Sci U S A ; 120(1): e2214874120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36574710

ABSTRACT

Adequate mass and function of adipose tissues (ATs) play essential roles in preventing metabolic perturbations. The pathological reduction of ATs in lipodystrophy leads to an array of metabolic diseases. Understanding the underlying mechanisms may benefit the development of effective therapies. Several cellular processes, including autophagy and vesicle trafficking, function collectively to maintain AT homeostasis. Here, we investigated the impact of adipocyte-specific deletion of the lipid kinase phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3) on AT homeostasis and systemic metabolism in mice. We report that PIK3C3 functions in all ATs and that its absence disturbs adipocyte autophagy and hinders adipocyte differentiation, survival, and function with differential effects on brown and white ATs. These abnormalities cause loss of white ATs, whitening followed by loss of brown ATs, and impaired "browning" of white ATs. Consequently, mice exhibit compromised thermogenic capacity and develop dyslipidemia, hepatic steatosis, insulin resistance, and type 2 diabetes. While these effects of PIK3C3 largely contrast previous findings with the autophagy-related (ATG) protein ATG7 in adipocytes, mice with a combined deficiency in both factors reveal a dominant role of the PIK3C3-deficient phenotype. We have also found that dietary lipid excess exacerbates AT pathologies caused by PIK3C3 deficiency. Surprisingly, glucose tolerance is spared in adipocyte-specific PIK3C3-deficient mice, a phenotype that is more evident during dietary lipid excess. These findings reveal a crucial yet complex role for PIK3C3 in ATs, with potential therapeutic implications.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Mice , Class III Phosphatidylinositol 3-Kinases/genetics , Class III Phosphatidylinositol 3-Kinases/metabolism , Diabetes Mellitus, Type 2/metabolism , Adipocytes/metabolism , Lipids , Adipose Tissue, Brown/metabolism , Adipocytes, Brown/metabolism
20.
Autophagy ; 19(5): 1533-1550, 2023 05.
Article in English | MEDLINE | ID: mdl-36300799

ABSTRACT

The quadrilateral reassortant IAV A/(H1N1) pdm09 is the pathogen responsible for the first influenza pandemic of the 21st century. The virus spread rapidly among hosts causing high mortality within human population. Efficient accumulation of virions is known to be important for the rapid transmission of virus. However, the mechanism by which A/(H1N1) pdm09 promotes its rapid replication has not been fully studied. Here, we found the NS1 of A/(H1N1) pdm09 mediated complete macroautophagy/autophagy, and then facilitated self-replication, which may be associated with the more rapid spread of this virus compared with H1N1WSN and H3N8JL89. We found that the promotion of self-replication could be mainly attributed to NS1pdm09 strongly antagonizing the inhibitory effect of LRPPRC on autophagy. The interaction between NS1pdm09 and LRPPRC competitively blocked the interaction of LRPPRC with BECN1/Beclin1, resulting in increased recruitment of BECN1 for PIK3C3 (phosphatidylinositol 3-kinase catalytic subunit type 3) and induction of the initiation of autophagy. In conclusion, we uncover the unique molecular mechanism by which A/(H1N1) pdm09 utilizes autophagy to promote self-replication, and we provide theoretical basics for the analysis of the etiological characteristics of the A/(H1N1) pdm09 pandemic and the development of anti-influenza drugs and vaccines.Abbreviations: 293T: human embryonic kidney 293 cells; 293T_LRPPRC: stable LRPPRC expression 293T cells; 3-MA: 3-methyladenine; A549 cells: human non-small cell lung cancer cells; AA: amino acid; ACTB: actin beta; BECN1: beclin 1; BECN1 KO: BECN1 knockout 293T cells; Cal: calyculin A; Co-IP: co-immunoprecipitation; CQ: chloroquine; DC: dendritic cell; Eug: eugenol; GFP: green fluorescent protein; HA: hemagglutinin; HIV: human immunodeficiency virus; IAVs: Influenza A viruses; IFN: interferon; JL89: A/equine/Jilin/1/1989 (H3N8); LAMP2: lysosomal associated membrane protein 2; LRPPRC: leucine rich pentatriicopeptide repeat containing; LRPPRC KO: LRPPRC knockout 293T cells; M2: matrix 2; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MDCK: Madin-Darby canine kidney cells; MOI: multiplicity of infection; MS: mass spectrometry; NP: nucleoprotein; NS1: non-structural protein 1; NS1JL89: non-structural protein 1 of A/equine/Jilin/1/1989 (H3N8); NS1pdm09: non-structural protein 1 of A/(H1N1) pdm09; NS1SC09: non-structural protein 1 of A/Sichuan/2009 (H1N1); NS1WSN: non-structural protein 1 of A/WSN/1933 (H1N1); PB1: polymerase basic protein 1; PB1-F2: alternate reading frame discovered in PB1 gene segment; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PR8: A/PR/8/34 (H1N1); Rapa: rapamycin; RFP: red fluorescent protein; SC09: A/Sichuan/2009 (H1N1); SQSTM1/p62: sequestosome 1; STK4/MST1: serine/threonine kinase 4; TEM: transmission electron microscopy; TOMM20: translocase of outer mitochondrial membrane 20; WHO: World Health Organization; WSN: A/WSN/1933 (H1N1); WSN-NS1JL89: WSN recombinant strain in which NS1 was replaced with that of JL89; WSN-NS1SC09: WSN recombinant strain in which NS1 was replaced with that of SC09.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N8 Subtype , Lung Neoplasms , Animals , Dogs , Horses , Humans , Autophagy/genetics , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H3N8 Subtype/metabolism , Virus Replication , Beclin-1/metabolism , Madin Darby Canine Kidney Cells , Class III Phosphatidylinositol 3-Kinases/metabolism , Neoplasm Proteins , Protein Serine-Threonine Kinases , Intracellular Signaling Peptides and Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...