Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.193
Filter
1.
Genes (Basel) ; 15(6)2024 May 26.
Article in English | MEDLINE | ID: mdl-38927623

ABSTRACT

HELIX syndrome (Hypohidrosis-Electrolyte disturbances-hypoLacrimia-Ichthyosis-Xerostomia) (MIM#617671) (ORPHA:528105), described in 2017, is due to an abnormal claudin 10 b protein, secondary to pathogenic CLDN10 variants. So far, only ten families have been described. We aim to describe the phenotype in the first Spanish family identified, highlight the skin anomalies as an important clue, and expand the genotypic spectrum. Two adult brothers from consanguineous parents with suspected ectodermal dysplasia (ED) since early childhood were re-evaluated. A comprehensive phenotypic exam and an aCGH + SNP4 × 180 K microarray followed by Sanger sequencing of the CLDN10 gene were performed. They presented hypohidrosis, xerosis, mild ichthyosis, plantar keratosis, palm hyperlinearity, alacrima, and xerostomia. In adulthood, they also developed a salt-losing nephropathy with hypokalemia and hypermagnesemia. The molecular study in both patients revealed a novel pathogenic homozygous deletion of 8 nucleotides in exon 2 of the CLDN10 gene [CLDN10 (NM_0006984.4): c.322_329delGGCTCCGA, p.Gly108fs*] leading to a premature truncation of the protein. Both parents were heterozygous carriers. Hypohidrosis, ichthyosis, and plantar keratosis associated with alacrima and xerostomia should raise suspicion for HELIX syndrome, which also includes nephropathy and electrolyte disturbances in adults. Given the potential for ED misdiagnosis in infancy, it is important to include the CLDN10 gene in a specific genodermatosis next-generation sequencing (NGS) panel to provide early diagnosis, accurate management, and genetic counseling.


Subject(s)
Claudins , Humans , Male , Claudins/genetics , Adult , Ichthyosis/genetics , Ichthyosis/pathology , Hypohidrosis/genetics , Ectodermal Dysplasia/genetics , Ectodermal Dysplasia/pathology , Pedigree , Phenotype
2.
Mol Pharm ; 21(7): 3447-3458, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38843446

ABSTRACT

Zolbetuximab (IMAB362), a monoclonal antibody targeting Claudin18.2 (CLDN 18.2), demonstrates a significant clinical benefit in patients with advanced gastroesophageal cancers. The noninvasive assessment of CLDN18.2 expression through molecular imaging offers a potential avenue for expedited monitoring and the stratification of patients into risk groups. This study elucidates that CLDN18.2 is expressed at a noteworthy frequency in primary gastric cancers and their metastases. The iodogen method was employed to label IMAB362 with 123I/131I. The results demonstrated the efficient and reproducible synthesis of 123I-IMAB362, with a specific binding affinity to CLDN18.2. Immuno-single-photon emission computed tomography (SPECT) imaging revealed the rapid accumulation of 123I-IMAB362 in gastric cancer xenografts at 12 h, remaining stable for 3 days in patient-derived tumor xenograft models. Additionally, tracer uptake of 123I-IMAB362 in MKN45 cells surpassed that in MKN28 cells at each time point, with tumor uptake correlating significantly with CLDN18.2 expression levels. Positron emission tomography/computed tomography imaging indicated that tumor uptake of 18F-FDG and the functional/viable tumor volume in the 131I-IMAB362 group were significantly lower than those in the 123I-IMAB362 group on day 7. In conclusion, 123I-IMAB362 immuno-SPECT imaging offers an effective method for direct, noninvasive, and whole-body quantitative assessment of tumor CLDN18.2 expression in vivo. This approach holds promise for accelerating the monitoring and stratification of patients with gastric cancer.


Subject(s)
Claudins , Stomach Neoplasms , Stomach Neoplasms/diagnostic imaging , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Humans , Animals , Mice , Claudins/metabolism , Cell Line, Tumor , Single Photon Emission Computed Tomography Computed Tomography/methods , Xenograft Model Antitumor Assays , Iodine Radioisotopes , Female , Mice, Nude , Antibodies, Monoclonal , Male , Tomography, Emission-Computed, Single-Photon/methods , Antibodies, Monoclonal, Humanized/pharmacokinetics
3.
PLoS One ; 19(6): e0304686, 2024.
Article in English | MEDLINE | ID: mdl-38837998

ABSTRACT

Microplastics, which are tiny plastic particles less than 5 mm in diameter, are widely present in the environment, have become a serious threat to aquatic life and human health, potentially causing ecosystem disorders and health problems. The present study aimed to investigate the effects of microplastics, specifically microplastics-polystyrene (MPs-PS), on the structural integrity, gene expression related to tight junctions, and gut microbiota in mice. A total of 24 Kunming mice aged 30 days were randomly assigned into four groups: control male (CM), control female (CF), PS-exposed male (PSM), and PS-exposed female (PSF)(n = 6). There were significant differences in villus height, width, intestinal surface area, and villus height to crypt depth ratio (V/C) between the PS group and the control group(C) (p <0.05). Gene expression analysis demonstrated the downregulation of Claudin-1, Claudin-2, Claudin-15, and Occludin, in both duodenum and jejunum of the PS group (p < 0.05). Analysis of microbial species using 16S rRNA sequencing indicated decreased diversity in the PSF group, as well as reduced diversity in the PSM group at various taxonomic levels. Beta diversity analysis showed a significant difference in gut microbiota distribution between the PS-exposed and C groups (R2 = 0.113, p<0.01), with this difference being more pronounced among females exposed to MPs-PS. KEGG analysis revealed enrichment of differential microbiota mainly involved in seven signaling pathways, such as nucleotide metabolism(p<0.05). The relative abundance ratio of transcriptional pathways was significantly increased for the PSF group (p<0.01), while excretory system pathways were for PSM group(p<0.05). Overall findings suggest that MPs-PS exhibit a notable sex-dependent impact on mouse gut microbiota, with a stronger effect observed among females; reduced expression of tight junction genes may be associated with dysbiosis, particularly elevated levels of Prevotellaceae.


Subject(s)
Gastrointestinal Microbiome , Microplastics , Polystyrenes , Tight Junctions , Animals , Gastrointestinal Microbiome/drug effects , Microplastics/toxicity , Polystyrenes/toxicity , Mice , Male , Female , Tight Junctions/drug effects , Tight Junctions/metabolism , RNA, Ribosomal, 16S/genetics , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Occludin/metabolism , Occludin/genetics , Claudins/genetics , Claudins/metabolism , Claudin-1/genetics , Claudin-1/metabolism , Tight Junction Proteins/metabolism , Tight Junction Proteins/genetics
5.
Immunity ; 57(6): 1187-1189, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38865963

ABSTRACT

A major barrier to antitumor immunity in solid tumors is T cell exclusion. In this issue of Immunity, De Sanctis et al.1 elucidate how CLDN18 on pancreatic and lung cancer cells enhances infiltration, immunological synapse formation, and activation of cytotoxic T lymphocytes.


Subject(s)
Claudins , Humans , Claudins/metabolism , Claudins/immunology , Claudins/genetics , Neoplasms/immunology , Animals , T-Lymphocytes, Cytotoxic/immunology , Pancreatic Neoplasms/immunology , Lung Neoplasms/immunology , Lymphocyte Activation/immunology , Immunological Synapses/immunology , Immunological Synapses/metabolism
6.
Sci Rep ; 14(1): 13474, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866822

ABSTRACT

Esophageal adenocarcinoma (EAC) is one of the deadliest tumor entities worldwide, with a 5-year survival rate of less than 25%. Unlike other tumor entities, personalized therapy options are rare, partly due to the lack of knowledge about specific subgroups. In this publication, we demonstrate a subgroup of patients with EAC in a large screening cohort of 826 patients, characterized by specific morphological and immunohistochemical features. This subgroup represents approximately 0.7% (6/826) of the total cohort. Morphological features of this subgroup show a striking clear cytoplasm of the tumour cells and the parallel existence of rare growth patterns like yolk sac-like differentiation and enteroblastic differentiation. Immunohistochemistry reveals expression of the fetal gut cell-like proteins Sal-like protein 4 (SALL4), claudin-6, and glypican 3. Interestingly, we find a correlation with alterations of SWI/SNF-complex associated genes, which are supposed to serve as tumor suppressor genes in various tumour entities. Our results suggest a possible implication of rare tumour subtypes in the WHO classification for EACs according to the classification for gastric cancer. Furthermore, claudin-6 positive tumors have shown promising efficacy of CAR T cell therapy in the recently published BNT-211-01 trial (NCT04503278). This represents a personalized therapeutic option for this tumor subtype.


Subject(s)
Adenocarcinoma , Cell Differentiation , Esophageal Neoplasms , Humans , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Adenocarcinoma/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Female , Male , Aged , Claudins/metabolism , Claudins/genetics , Middle Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics
7.
Biol Pharm Bull ; 47(6): 1209-1217, 2024.
Article in English | MEDLINE | ID: mdl-38925921

ABSTRACT

A major site for the absorption of orally administered drugs is the intestinal tract, where the mucosal epithelium functions as a barrier separating the inside body from the outer environment. The intercellular spaces between adjacent epithelial cells are sealed by bicellular and tricellular tight junctions (TJs). Although one strategy for enhancing intestinal drug absorption is to modulate these TJs, comprehensive gene (mRNA) expression analysis of the TJs components has never been fully carried out in humans. In this study, we used human biopsy samples of normal-appearing mucosa showing no endoscopically visible inflammation collected from the duodenum, jejunum, ileum, colon, and rectum to examine the mRNA expression profiles of TJ components, including occludin and tricellulin and members of the claudin family, zonula occludens family, junctional adhesion molecule (JAM) family, and angulin family. Levels of claudin-3, -4, -7, -8, and -23 expression became more elevated in each segment along the intestinal tract from the upper segments to the lower segments, as did levels of angulin-1 and -2 expression. In contrast, expression of claudin-2 and -15 was decreased in the large intestine compared to the small intestine. Levels of occludin, tricellulin, and JAM-B and -C expression were unchanged throughout the intestine. Considering their segment specificity, claudin-8, claudin-15, and angulin-2 appear to be targets for the development of permeation enhancers in the rectum, small intestine, and large intestine, respectively. These data on heterogenous expression profiles of intestinal TJ components will be useful for the development of safe and efficient intestinal permeation enhancers.


Subject(s)
Claudins , Intestinal Mucosa , MARVEL Domain Containing 2 Protein , Occludin , Tight Junctions , Humans , Tight Junctions/metabolism , Intestinal Mucosa/metabolism , MARVEL Domain Containing 2 Protein/metabolism , MARVEL Domain Containing 2 Protein/genetics , Claudins/genetics , Claudins/metabolism , Occludin/metabolism , Occludin/genetics , Male , Adult , Middle Aged , Female , RNA, Messenger/metabolism , RNA, Messenger/genetics , Gene Expression , Aged
8.
Genes (Basel) ; 15(5)2024 05 06.
Article in English | MEDLINE | ID: mdl-38790217

ABSTRACT

Hearing impairment, a rare inherited condition, is notably prevalent in populations with high rates of consanguinity. The most common form observed globally is autosomal recessive non-syndromic hearing loss. Despite its prevalence, this genetic disorder is characterized by a substantial genetic diversity, making diagnosis and screening challenging. The emergence of advanced next-generation sequencing (NGS) technologies has significantly advanced the discovery of genes and variants linked to various conditions, such as hearing loss. In this study, our objective was to identify the specific variant causing hearing loss in a family from Syria using clinical exome sequencing. The proband in the family exhibited profound deafness as shown by pure-tone audiometry results. The analysis of the different variants obtained by NGS revealed the presence of a nonsense mutation within the CLDN14 gene. Through Sanger sequencing, we verified that this variant segregates with the disease and was not present in the control population. Moreover, we conducted a comprehensive review of all reported deafness-related CLDN14 mutations and their associated phenotypes. Furthermore, we endeavored to carry out a comparative analysis between the CLDN14 and GJB2 genes, with the objective of identifying potential factors that could explain the notable discrepancy in mutation frequency between these two genes.


Subject(s)
Claudins , Connexin 26 , Deafness , Pedigree , Adult , Female , Humans , Male , Claudins/genetics , Codon, Nonsense/genetics , Connexin 26/genetics , Connexins/genetics , Deafness/genetics , Exome Sequencing , Mutation , Phenotype , Syria
9.
Genesis ; 62(3): e23599, 2024 06.
Article in English | MEDLINE | ID: mdl-38764323

ABSTRACT

BACKGROUND: Increasing evidence suggests that circular RNA (circRNA) plays a regulatory role in the progression of renal cell carcinoma (RCC). However, the precise function and underlying mechanism of circSCNN1A in RCC progression still remain unclear. METHODS: The expression levels of circSCNN1A, microRNA-590-5p (miR-590-5p), claudin 8 (CLDN8), cyclin D1, matrix metalloprotein 2 (MMP2), MMP9, E-cadherin, N-cadherin and vimentin were detected by a quantitative real-time polymerase chain reaction and Western blotting analysis. Immunohistochemistry assay was performed to analyze the positive expression rate of CLDN8. Cell proliferation was investigated by cell colony formation, 5-Ethynyl-2'-deoxyuridine and DNA content quantitation assays. Cell migration and invasion were assessed by wound-healing and transwell invasion assays. Interactions among circSCNN1A, miR-590-5p and CLDN8 were identified by dual-luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay. Xenograft mouse model assay was conducted to verify the effect of circSCNN1A on tumor formation in vivo. RESULTS: CircSCNN1A and CLDN8 expression were significantly downregulated, while miR-590-5p was upregulated in both RCC tissues and cells. CircSCNN1A overexpression inhibited RCC cell proliferation, migration and invasion, accompanied by decreases of cyclin D1, MMP2, MMP9, N-cadherin and vimentin expression and an increase of E-cadherin expression. CircSCNN1A acted as a miR-590-5p sponge and regulated RCC cell processes by binding to miR-590-5p. CLDN8, a target gene of miR-590-5p, was involved in the regulation of the biological behaviors of RCC cells by miR-590-5p. In addition, circSCNN1A induced CLDN8 production by interacting with miR-590-5p. Further, circSCNN1A suppressed tumor formation in vivo. CONCLUSION: CircSCNN1A inhibited RCC cell proliferation, migration and invasion by regulating the miR-590-5p/CLDN8 pathway.


Subject(s)
Carcinoma, Renal Cell , Cell Movement , Cell Proliferation , Claudins , Gene Expression Regulation, Neoplastic , Kidney Neoplasms , MicroRNAs , Neoplasm Invasiveness , RNA, Circular , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Animals , Cell Movement/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Mice , Cell Line, Tumor , RNA, Circular/genetics , RNA, Circular/metabolism , Claudins/genetics , Claudins/metabolism , Mice, Nude , Female , Male
10.
JCO Precis Oncol ; 8: e2300543, 2024 May.
Article in English | MEDLINE | ID: mdl-38781542

ABSTRACT

PURPOSE: Claudin 18 isoform 2 (CLDN18.2) is an emerging biomarker and therapeutic target in gastric and gastroesophageal junction (G/GEJ) adenocarcinoma. This study aimed to obtain deeper understanding of CLDN18.2 positivity patterns, prognostic implications, and associations with various demographic, clinical, and molecular characteristics in G/GEJ adenocarcinoma. METHODS: Archived tumor tissue samples from 304 patients with G/GEJ adenocarcinoma in the United States were assessed for CLDN18.2 positivity by immunohistochemistry. CLDN18.2 positivity was defined as ≥50% or ≥75% of tumor cells with CLDN18 staining intensity ≥2+. CLDN18.2 positivity patterns were analyzed for association with prognosis and clinicopathologic/demographic characteristics. Where possible, CLDN18.2 positivity was analyzed for matched tissue samples to assess concordance between primary and metastatic tumors and concordance before and after chemotherapy. RESULTS: The overall prevalence of CLDN18.2-positive tumors (with ≥75% cutoff) was 44.4% (n = 135 of 304). CLDN18.2-positive tumors had a prevalence of 51.4% (n = 91 of 177) in gastric and 34.6% (n = 44 of 127) in GEJ adenocarcinoma. With a ≥50% cutoff, the prevalence of CLDN18.2-positive tumors was 64.4% (n = 114 of 177) in gastric adenocarcinoma and 44.9% (n = 57 of 127) in GEJ adenocarcinoma. There was no association between overall survival and CLDN18.2 positivity using either threshold. Statistically significant associations were noted between CLDN18.2 positivity and sex, histologic type of G/GEJ adenocarcinoma, and adenocarcinoma subtype (≥75% cutoff), and metastasis site and tumor grade (≥50% cutoff). The overall concordance of CLDN18.2 positivity (≥75% cutoff) was 73% (27 of 37) for matched primary versus metastatic tumor samples and 74% (29 of 39) for matched samples before and after chemotherapy. CONCLUSION: This study demonstrated that CLDN18.2 positivity did not correlate with survival in G/GEJ adenocarcinoma, consistent with published data. On the basis of matched sample analysis, CLDN18.2 appears to demonstrate >70% concordance as a biomarker. Observed correlations with certain patient/tumor characteristics warrant further study.


Subject(s)
Adenocarcinoma , Claudins , Esophageal Neoplasms , Esophagogastric Junction , Stomach Neoplasms , Humans , Male , Stomach Neoplasms/pathology , Stomach Neoplasms/epidemiology , Adenocarcinoma/pathology , Female , Esophagogastric Junction/pathology , Middle Aged , Aged , Prognosis , Retrospective Studies , Esophageal Neoplasms/pathology , Protein Isoforms , Adult , Aged, 80 and over , Prevalence
11.
J Pharmacol Sci ; 155(3): 84-93, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797537

ABSTRACT

The development of targeted cancer therapies based on monoclonal antibodies against tumor-associated antigens has progressed markedly over recent decades. This approach is dependent on the identification of tumor-specific, normal tissue-sparing antigenic targets. The transmembrane protein claudin-18 splice variant 2 (CLDN18.2) is frequently and preferentially displayed on the surface of primary gastric adenocarcinomas, making it a promising monoclonal antibody target. Phase 3 studies of zolbetuximab, a chimeric immunoglobulin G1 monoclonal antibody targeting CLDN18.2, combined with 5-fluorouracil/leucovorin plus oxaliplatin (modified FOLFOX6) or capecitabine plus oxaliplatin (CAPOX) in advanced or metastatic first-line gastric or gastroesophageal junction (G/GEJ) adenocarcinoma have demonstrated favorable clinical results with zolbetuximab. In studies using xenograft or syngeneic models with gastric cancer cell lines, zolbetuximab mediated death of CLDN18.2-positive human cancer cell lines via antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity in vitro and demonstrated anti-tumor efficacy as monotherapy and combined with chemotherapy in vivo. Mice treated with zolbetuximab plus chemotherapy displayed a significantly higher frequency of tumor-infiltrating CD8+ T cells versus vehicle/isotype control-treated mice. Furthermore, zolbetuximab combined with an anti-mouse programmed cell death-1 antibody more potently inhibited tumor growth compared with either agent alone. These results support the potential of zolbetuximab as a novel treatment option for G/GEJ adenocarcinoma.


Subject(s)
Antibodies, Monoclonal , Antineoplastic Combined Chemotherapy Protocols , Claudins , Stomach Neoplasms , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Stomach Neoplasms/immunology , Animals , Humans , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line, Tumor , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Mice , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Disease Models, Animal , Xenograft Model Antitumor Assays , Antibody-Dependent Cell Cytotoxicity/drug effects
12.
Curr Opin Nephrol Hypertens ; 33(4): 433-440, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38690798

ABSTRACT

PURPOSE OF REVIEW: Activation of the calcium-sensing receptor (CASR) in the parathyroid gland suppresses the release of parathyroid hormone (PTH). Furthermore, activation of the renal CASR directly increases the urinary excretion of calcium, by inhibiting transepithelial calcium transport in the nephron. Gain-of-function mutations in the CASR gene lead to autosomal dominant hypocalcemia 1 (ADH1), with inappropriately low PTH levels and hypocalcemia, indicative of excessive activation of the parathyroid CASR. However, hypercalciuria is not always observed. The reason why the manifestation of hypercalciuria is not uniform among ADH1 patients is not well understood. RECENT FINDINGS: Direct activation of the CASR in the kidney has been cumbersome to study, and an indirect measure to effectively estimate the degree of CASR activation following chronic hypercalcemia or genetic gain-of-function CASR activation has been lacking. Studies have shown that expression of the pore-blocking claudin-14 is strongly stimulated by the CASR in a dose-dependent manner. This stimulatory effect is abolished after renal Casr ablation in hypercalcemic mice, suggesting that claudin-14 abundance may gauge renal CASR activation. Using this marker has led to unexpected discoveries regarding renal CASR activation. SUMMARY: These new studies have informed on renal CASR activation thresholds and the downstream CASR-regulated calcium transport mechanisms.


Subject(s)
Kidney , Receptors, Calcium-Sensing , Receptors, Calcium-Sensing/metabolism , Receptors, Calcium-Sensing/genetics , Humans , Animals , Kidney/metabolism , Hypercalciuria/metabolism , Hypercalciuria/genetics , Calcium/metabolism , Hypercalcemia/metabolism , Hypercalcemia/genetics , Claudins/metabolism , Claudins/genetics , Hypocalcemia , Hypoparathyroidism/congenital
13.
Biomed Res Int ; 2024: 8544837, 2024.
Article in English | MEDLINE | ID: mdl-38803515

ABSTRACT

The loss of RAB25 expression-RAS superfamily of GTPase characteristic of numerous breast cancers-corresponds with H-RAS point mutations, particularly in triple-negative breast cancers (TNBC), a subtype associated with a poor prognosis. To address the poorly understood factors dictating the progression of TNBC tumors, we examine the cooperative effects that loss of RAB25 expression in human mammary epithelial cell (HMEC) lines with H-RAS mutations confers in tumorigenesis. HMECs were immortalized by transduction with LXSN CDK4 R24C, a mutant form of cyclin-dependent kinase, followed by transduction with hTERT, a catalytic subunit of the telomerase enzyme. We found that with the loss of RAB25 and overexpression of mutant H-RAS61L, immortal HMECs transformed toward anchorage-independent growth and acquired an increased ability to migrate. Furthermore, cells express low CD24, high CD44, and low claudin levels, indicating stem-like properties upon transformation. Besides, loss of RAB25 and overexpression of H-RAS61L resulted in increased expression of transcription factors Snail and Slug that drive these cells to lose E-cadherin and undergo epithelial-mesenchymal transition (EMT). This study confirms that loss of RAB25 and overexpression of mutant H-RAS can drive HMECs toward a mesenchymal stem-like state. Our findings reveal that RAB25 functions as a tumor suppressor gene, and loss of RAB25 could serve as a novel biomarker of the claudin-low type of TNBC.


Subject(s)
Cell Transformation, Neoplastic , Claudins , Epithelial Cells , Epithelial-Mesenchymal Transition , rab GTP-Binding Proteins , Humans , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/genetics , Claudins/genetics , Claudins/metabolism , Female , Mammary Glands, Human/metabolism , Mammary Glands, Human/pathology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Oncogenes/genetics , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , Mutation/genetics
14.
Curr Opin Oncol ; 36(4): 308-312, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38726797

ABSTRACT

PURPOSE OF REVIEW: Claudins, components of tight cell junctions in epithelial and endothelial cells, have emerged as a therapeutic target in gastrointestinal (GI) malignancies, particularly claudin 18.2 (CLDN18.2). RECENT FINDINGS: Zolbetuximab, a chimeric anti-CLDN18.2 monoclonal antibody (mAb), is currently under FDA review and may emerge as the first claudin targeted therapy approved. Phase 3 trials show that zolbetuximab in combination with front-line fluoropyrimidine plus oxaliplatin improves survival in advanced CLDN18.2 positive (≥75% of tumor cells) gastric adenocarcinoma (GAC) patients. Many other therapies (mAbs; CART; bispecific; ADCs) are under investigation. SUMMARY: CLDN18.2 will be an important target in GAC. Early understanding of how to target CLDN18.2 based on the level of expression (high, moderate, low) will be the key to success in this area. Studying these as separate entities should be considered. Resistance patterns, loss of CLDN18.2 expression, role in the refractory setting, and if any role in localized disease are questions that remain. Other targets for claudin that target claudin six and four are under investigation. Their role in GI malignancies will soon be further clarified.


Subject(s)
Claudins , Gastrointestinal Neoplasms , Humans , Claudins/antagonists & inhibitors , Claudins/metabolism , Clinical Trials, Phase III as Topic , Gastrointestinal Neoplasms/drug therapy , Molecular Targeted Therapy
15.
Biosens Bioelectron ; 259: 116388, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38761744

ABSTRACT

Claudin18.2 (CLDN18.2) is a tight junction protein often overexpressed in various solid tumors, including gastrointestinal and esophageal cancers, serving as a promising target and potential biomarker for tumor diagnosis, treatment assessment, and prognosis. Despite its significance, no biosensor has been reported to date for the detection of CLDN18.2. Here, we present the inaugural immunosensor for CLDN18.2. In this study, an amine-rich conducting polymer of polymelamine (PM) was electrografted onto different carbon nanomaterial-based screen-printed electrodes (SPEs), including carbon (C), graphene (Gr), graphene oxide (GO), carbon nanotube (CNT), and carbon nanofiber (CNF) via cyclic voltammetry. A comparative study was performed to explore the best material for the preparation of the PM-modified electrodes to be used as in-situ redox substrate for the immunosensor fabrication. The surface chemistry and structural features of pristine and PM-deposited electrodes were analyzed using Raman and scanning electron microscopy (SEM) techniques. Our results showed that the PM deposited on Gr and CNT/SPEs exhibited the most significant and stable redox behavior in PBS buffer. The terminal amine moieties on the PM-modified electrode surfaces were utilized for immobilizing anti-CLDN18.2 monoclonal antibodies via N-ethyl-N'-(3-(dimethylamino)propyl)carbodiimide/N-hydroxysuccinimide chemistry to construct the electrochemical immunosensor platform. Differential pulse voltammetry-based immunosensing of CLDN18.2 protein on BSA/anti-CLDN18.2/PM-Gr/SPE and BSA/anti-CLDN18.2/PM-CNT/SPE exhibited excellent selectivity against other proteins such as CD1, PDCD1, and ErBb2. The limits of detection of these two immunosensor platforms were calculated to be 7.9 pg/mL and 0.104 ng/mL for the CNT and Gr immunosensors, respectively. This study demonstrated that the PM-modified Gr and CNT electrodes offer promising platforms not only for the reagentless signaling but also for covalent immobilization of biomolecules. Moreover, these platforms offer excellent sensitivity and selectivity for the detection of CLDN18.2 due to its enhanced stable redox activity. The immunosensor demonstrated promising results for the sensitive detection of CLDN18.2 in biological samples, addressing the critical need for early gastric cancer diagnosis.


Subject(s)
Antibodies, Immobilized , Biosensing Techniques , Claudins , Electrochemical Techniques , Electrodes , Graphite , Nanotubes, Carbon , Biosensing Techniques/methods , Humans , Electrochemical Techniques/methods , Nanotubes, Carbon/chemistry , Immunoassay/methods , Antibodies, Immobilized/chemistry , Graphite/chemistry , Limit of Detection , Carbon/chemistry , Nanostructures/chemistry
16.
Gastric Cancer ; 27(4): 802-810, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38724721

ABSTRACT

BACKGROUND: Gastric cancer with peritoneal dissemination (PD) has a dismal prognosis, and current treatments have shown little efficacy. CLDN18.2-targeted therapies have shown promising efficacy against gastric cancers that express high levels of CLDN18. Because of the limited information regarding CLDN18.2 status in PD, we analyzed PD-positive gastric cancers for CLDN18 status in both primary and PD, along with HER2 and PD-L1 combined positive score (CPS). METHODS: Immunohistochemical analyses were performed on 84 gastric cancer cases using paired primary and PD tissue samples. RESULTS: At 40% cut-off, CLDN18 was positive in 57% (48/84) primary tumors and in 44% (37/84) PDs. At 75% cut-off, 28.6% (24/84) primary tumors and 20.2% (17/84) PDs were CLDN18-positive. The concordance rate between primary tumors and PD was 79.8% at 40% cut-off and 75% at 75% cut-off. When comparing biopsy and surgical specimens, the concordance rates were 87.5% at 40% cut-off and 81.3% at 75% cut-off. Within a tumor, the superficial area tended to have a higher CLDN18-positive rate than the invasive front (P = 0.001). Although HER2 -positivity was only 11.9% in this cohort, CLDN18 positivity in HER2-negative tumors (n = 74) was relatively high: 60.8% at 40% cut-off and 28.4% at 75% cut-off. Among double-negative (HER2 - and PD-L1 CPS < 1) tumors, CLDN18 positivity was 67.6% at 40% cut-off and 26.5% at 75% cut-off. CONCLUSIONS: CLDN18 expression is generally maintained in PD and is relatively high even in double-negative tumors, making it a promising therapeutic target for PD-positive gastric cancer.


Subject(s)
B7-H1 Antigen , Biomarkers, Tumor , Claudins , Peritoneal Neoplasms , Receptor, ErbB-2 , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Receptor, ErbB-2/metabolism , Female , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/metabolism , Claudins/metabolism , B7-H1 Antigen/metabolism , Male , Aged , Middle Aged , Biomarkers, Tumor/metabolism , Adult , Aged, 80 and over , Prognosis
17.
Immunity ; 57(6): 1378-1393.e14, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38749447

ABSTRACT

Tumors weakly infiltrated by T lymphocytes poorly respond to immunotherapy. We aimed to unveil malignancy-associated programs regulating T cell entrance, arrest, and activation in the tumor environment. Differential expression of cell adhesion and tissue architecture programs, particularly the presence of the membrane tetraspanin claudin (CLDN)18 as a signature gene, demarcated immune-infiltrated from immune-depleted mouse pancreatic tumors. In human pancreatic ductal adenocarcinoma (PDAC) and non-small cell lung cancer, CLDN18 expression positively correlated with more differentiated histology and favorable prognosis. CLDN18 on the cell surface promoted accrual of cytotoxic T lymphocytes (CTLs), facilitating direct CTL contacts with tumor cells by driving the mobilization of the adhesion protein ALCAM to the lipid rafts of the tumor cell membrane through actin. This process favored the formation of robust immunological synapses (ISs) between CTLs and CLDN18-positive cancer cells, resulting in increased T cell activation. Our data reveal an immune role for CLDN18 in orchestrating T cell infiltration and shaping the tumor immune contexture.


Subject(s)
Carcinoma, Pancreatic Ductal , Claudins , Lymphocyte Activation , Pancreatic Neoplasms , T-Lymphocytes, Cytotoxic , Animals , Humans , Mice , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Claudins/metabolism , Claudins/genetics , Gene Expression Regulation, Neoplastic/immunology , Immunological Synapses/metabolism , Immunological Synapses/immunology , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lymphocyte Activation/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Membrane Microdomains/metabolism , Membrane Microdomains/immunology , Mice, Inbred C57BL , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , T-Lymphocytes, Cytotoxic/immunology , Tumor Microenvironment/immunology
18.
Sci Transl Med ; 16(748): eadl2720, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776391

ABSTRACT

We present the preclinical pharmacology of BNT142, a lipid nanoparticle (LNP)-formulated RNA (RNA-LNP) encoding a T cell-engaging bispecific antibody that monovalently binds the T cell marker CD3 and bivalently binds claudin 6 (CLDN6), an oncofetal antigen that is absent from normal adult tissue but expressed on various solid tumors. Upon BNT142 RNA-LNP delivery in cell culture, mice, and cynomolgus monkeys, RNA is translated, followed by self-assembly into and secretion of the functional bispecific antibody RiboMab02.1. In vitro, RiboMab02.1 mediated CLDN6 target cell-specific activation and proliferation of T cells, and potent target cell killing. In mice and cynomolgus monkeys, intravenously administered BNT142 RNA-LNP maintained therapeutic serum concentrations of the encoded antibody. Concentrations of RNA-encoded RiboMab02.1 were maintained longer in circulation in mice than concentrations of directly injected, sequence-identical protein. Weekly injections of mice with BNT142 RNA-LNP in the 0.1- to 1-µg dose range were sufficient to eliminate CLDN6-positive subcutaneous human xenograft tumors and increase survival over controls. Tumor regression was associated with an influx of T cells and depletion of CLDN6-positive cells. BNT142 induced only transient and low cytokine production in CLDN6-positive tumor-bearing mice humanized with peripheral blood mononuclear cells (PBMCs). No signs of adverse effects from BNT142 RNA-LNP administration were observed in mice or cynomolgus monkeys. On the basis of these and other findings, a phase 1/2 first-in-human clinical trial has been initiated to assess the safety and preliminary efficacy of BNT142 RNA-LNP in patients with CLDN6-positive advanced solid tumors (NCT05262530).


Subject(s)
Antibodies, Bispecific , Claudins , Macaca fascicularis , T-Lymphocytes , Animals , Humans , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/pharmacokinetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Claudins/metabolism , Mice , RNA/metabolism , Female , Cell Line, Tumor , Xenograft Model Antitumor Assays , Liposomes , Nanoparticles
19.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(4): 377-380, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38813631

ABSTRACT

OBJECTIVE: To investigate the effect of nuclear factor E2-related factor 2 (Nrf2) on the cellular tight junction protein Claudin-18 in endotoxin-induced acute lung injury (ALI). METHODS: Eighteen healthy male C57BL/6 mice were divided into control group, endotoxin-induced ALI model group (ALI group) and Nrf2 activator tert-butylhydroquinone (tBHQ) pretreatment group (tBHQ+ALI group) according to random number table method, with 6 mice in each group. Mice endotoxin-induced ALI model was reproduced by intraperitoneal injection of lipopolysaccharide (LPS, 15 mg/kg), and the mice in the control group was injected with an equal amount of phosphate buffer solution (PBS). The mice in the tBHQ+ALI group received three intraperitoneal injections of tBHQ (a total of 50 mg/kg) at an interval of 1 hour before molding. The last injection of tBHQ was accompanied by LPS of 15 mg/kg. The mice in the control group and model group were given equal amounts of PBS, and PBS or LPS was given at the last injection. The mice were sacrificed at 12 hours after LPS injection to take lung tissues. After the lung tissue was stained with hematoxylin-eosin (HE) staining, the pathological changes were observed under light microscopy, and the lung injury score was calculated. The lung wet/dry ratio (W/D) was determined. Nrf2 protein expression in the lung tissue was detected by Western blotting. Positive expression of Claudin-18 in the lung tissue was determined by immunohistochemistry. RESULTS: The lung tissue showed normal structure, without significant pathological change in the control group. Compared with the control group, the alveolar septum widened accompanied by inflammatory cell infiltration, capillary hyperemia and tissue edema in the ALI group, the lung injury score and lung W/D ratio were significantly increased (lung injury score: 6.50±1.05 vs. 1.83±0.75, lung W/D ratio: 3.79±0.22 vs. 3.20±0.14, both P < 0.01), and the Nrf2 protein expression and Claudin-18 positive expression in the lung tissue were significantly lowered [Nrf2 protein (Nrf2/ß-actin): 0.41±0.33 vs. 1.22±0.33, Claudin-18 (A value): 0.28±0.07 vs. 0.44±0.10, both P < 0.05]. After tBHQ pretreatment, the degree of lung histopathological injury was significantly reduced compared with the ALI group, the alveolar space slightly abnormal, inflammatory cell infiltration and tissue edema reduced, the lung injury score and lung W/D ratio were significantly decreased (lung injury score: 3.00±0.89 vs. 6.50±1.05, lung W/D ratio: 3.28±0.19 vs. 3.79±0.22, both P < 0.01), and Nrf2 protein expression and Claudin-18 positive expression in the lung tissue were significantly increased [Nrf2 protein (Nrf2/ß-actin): 1.26±0.09 vs. 0.41±0.33, Claudin-18 (A valure): 0.45±0.04 vs. 0.28±0.07, both P < 0.05]. CONCLUSIONS: Nrf2 alleviated pulmonary edema and improved endotoxin-induced ALI by up-regulating Claudin-18 expression.


Subject(s)
Acute Lung Injury , Claudins , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Animals , Acute Lung Injury/metabolism , Acute Lung Injury/chemically induced , Male , NF-E2-Related Factor 2/metabolism , Mice , Claudins/metabolism , Endotoxins/adverse effects , Endotoxins/toxicity , Disease Models, Animal , Lipopolysaccharides/adverse effects , Lipopolysaccharides/toxicity , Lung/metabolism , Lung/pathology , Up-Regulation , Tight Junctions/metabolism , Hydroquinones
20.
Cell Mol Life Sci ; 81(1): 240, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806818

ABSTRACT

The pulmonary endothelium is a dynamic and metabolically active monolayer of endothelial cells. Dysfunction of the pulmonary endothelial barrier plays a crucial role in the acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), frequently observed in the context of viral pneumonia. Dysregulation of tight junction proteins can lead to the disruption of the endothelial barrier and subsequent leakage. Here, the highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) served as an ideal model for studying ALI and ARDS. The alveolar lavage fluid of pigs infected with HP-PRRSV, and the supernatant of HP-PRRSV infected pulmonary alveolar macrophages were respectively collected to treat the pulmonary microvascular endothelial cells (PMVECs) in Transwell culture system to explore the mechanism of pulmonary microvascular endothelial barrier leakage caused by viral infection. Cytokine screening, addition and blocking experiments revealed that proinflammatory cytokines IL-1ß and TNF-α, secreted by HP-PRRSV-infected macrophages, disrupt the pulmonary microvascular endothelial barrier by downregulating claudin-8 and upregulating claudin-4 synergistically. Additionally, three transcription factors interleukin enhancer binding factor 2 (ILF2), general transcription factor III C subunit 2 (GTF3C2), and thyroid hormone receptor-associated protein 3 (THRAP3), were identified to accumulate in the nucleus of PMVECs, regulating the transcription of claudin-8 and claudin-4. Meanwhile, the upregulation of ssc-miR-185 was found to suppress claudin-8 expression via post-transcriptional inhibition. This study not only reveals the molecular mechanisms by which HP-PRRSV infection causes endothelial barrier leakage in acute lung injury, but also provides novel insights into the function and regulation of tight junctions in vascular homeostasis.


Subject(s)
Claudins , Endothelial Cells , Lung , Porcine respiratory and reproductive syndrome virus , Animals , Swine , Porcine respiratory and reproductive syndrome virus/physiology , Lung/metabolism , Lung/virology , Lung/pathology , Lung/blood supply , Endothelial Cells/metabolism , Endothelial Cells/virology , Claudins/metabolism , Claudins/genetics , Porcine Reproductive and Respiratory Syndrome/metabolism , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/pathology , Claudin-4/metabolism , Claudin-4/genetics , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/virology , Endothelium, Vascular/metabolism , Endothelium, Vascular/virology , Endothelium, Vascular/pathology , Cells, Cultured , Capillary Permeability , Acute Lung Injury/metabolism , Acute Lung Injury/virology , Acute Lung Injury/pathology , Cytokines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...