Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 645
Filter
1.
Acta Neuropathol Commun ; 12(1): 127, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39127699

ABSTRACT

The two types of craniopharyngioma, adamantinomatous (ACP) and papillary (PCP), are clinically relevant tumours in children and adults. Although the biology of primary craniopharyngioma is starting to be unravelled, little is known about the biology of recurrence. To fill this gap in knowledge, we have analysed through methylation array, RNA sequencing and pERK1/2 immunohistochemistry a cohort of paired primary and recurrent samples (32 samples from 14 cases of ACP and 4 cases of PCP). We show the presence of copy number alterations and clonal evolution across recurrence in 6 cases of ACP, and analysis of additional whole genome sequencing data from the Children's Brain Tumour Network confirms chromosomal arm copy number changes in at least 7/67 ACP cases. The activation of the MAPK/ERK pathway, a feature previously shown in primary ACP, is observed in all but one recurrent cases of ACP. The only ACP without MAPK activation is an aggressive case of recurrent malignant human craniopharyngioma harbouring a CTNNB1 mutation and loss of TP53. Providing support for a functional role of this TP53 mutation, we show that Trp53 loss in a murine model of ACP results in aggressive tumours and reduced mouse survival. Finally, we characterise the tumour immune infiltrate showing differences in the cellular composition and spatial distribution between ACP and PCP. Together, these analyses have revealed novel insights into recurrent craniopharyngioma and provided preclinical evidence supporting the evaluation of MAPK pathway inhibitors and immunomodulatory approaches in clinical trials in against recurrent ACP.


Subject(s)
Clonal Evolution , Craniopharyngioma , MAP Kinase Signaling System , Neoplasm Recurrence, Local , Pituitary Neoplasms , Tumor Suppressor Protein p53 , Humans , Craniopharyngioma/genetics , Craniopharyngioma/pathology , Craniopharyngioma/metabolism , Pituitary Neoplasms/genetics , Pituitary Neoplasms/pathology , Pituitary Neoplasms/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/physiology , Male , Female , Clonal Evolution/genetics , Child , Animals , Adolescent , Adult , Disease Progression , beta Catenin/genetics , beta Catenin/metabolism , Mice , Child, Preschool , Young Adult
2.
Sci Rep ; 14(1): 15906, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38987297

ABSTRACT

Most of essential thrombocythemia (ET) patients have the clone harboring a mutation in one of the JAK2, CALR, or MPL gene, and these clones generally acquire additional mutations at transformation to acute myeloid leukemia (AML). However, the proliferation of triple-negative clones has sometimes been observed at AML transformation. To clarify the clonal evolution of ET to AML, we analyzed paired samples at ET and AML transformation in eight patients. We identified that JAK2-unmutated AML clones proliferated at AML transformation in three patients in whom the JAK2-mutated clone was dominant at ET. In two patients, TET2-mutated, but not JAK2-mutated, clones might be common initiating clones for ET and transformed AML. In a patient with JAK2-mutated ET, SMARCC2, UBR4, and ZNF143, but not JAK2, -mutated clones proliferated at AML transformation. Precise analysis using single-cell sorted CD34+/CD38- fractions suggested that ET clone with JAK2-mutated and AML clone with TP53 mutation was derived from the common clone with these mutations. Although further study is required to clarify the biological significance of SMARCC2, UBR4, and ZNF143 mutations during disease progression of ET and AML transformation, the present results demonstrate the possibility of a common initial clone involved in both ET and transformed AML.


Subject(s)
Janus Kinase 2 , Leukemia, Myeloid, Acute , Mutation , Thrombocythemia, Essential , Humans , Thrombocythemia, Essential/genetics , Thrombocythemia, Essential/complications , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Male , Female , Janus Kinase 2/genetics , Middle Aged , Aged , Adult , Aged, 80 and over , Cell Transformation, Neoplastic/genetics , Dioxygenases , Clonal Evolution/genetics , DNA-Binding Proteins
3.
Nagoya J Med Sci ; 86(2): 326-332, 2024 May.
Article in English | MEDLINE | ID: mdl-38962422

ABSTRACT

We previously reported the Marimo cell line, which was established from the bone marrow cells of a patient with essential thrombocythemia (ET) at the last stage after transformation to acute myeloid leukemia (AML). This cell line is widely used for the biological analysis of ET because it harbors CALR mutation. However, genetic processes during disease progression in the original patient were not analyzed. We sequentially analyzed the genetic status in the original patient samples during disease progression. The ET clone had already acquired CALR and MPL mutations, and TP53 and NRAS mutations affected the disease progression from ET to AML in this patient. Particularly, the variant allele frequency of the NRAS mutation increased along with the disease progression after transformation, and the NRAS-mutated clone selectively proliferated in vitro, resulting in the establishment of the Marimo cell line. Although CALR and MPL mutations co-existed, MPL was not expressed in Marimo cells or any clinical samples. Furthermore, mitogen-activated protein kinase (MAPK) but not the JAK2-STAT pathway was activated. These results collectively indicate that MAPK activation is mainly associated with the proliferation ability of Marimo cells.


Subject(s)
Calreticulin , Clonal Evolution , Leukemia, Myeloid, Acute , Mutation , Receptors, Thrombopoietin , Thrombocythemia, Essential , Humans , Thrombocythemia, Essential/genetics , Thrombocythemia, Essential/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Calreticulin/genetics , Calreticulin/metabolism , Receptors, Thrombopoietin/genetics , Clonal Evolution/genetics , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , GTP Phosphohydrolases/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Male , Disease Progression , Female , Cell Line, Tumor , Aged , Middle Aged
4.
Pharmacol Res ; 206: 107302, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39004242

ABSTRACT

Bladder cancer stands as a prevalent global malignancy, exhibiting notable sex-based variations in both incidence and prognosis. Despite substantial strides in therapeutic approaches, the formidable challenge of drug resistance persists. The genomic landscape of bladder cancer, characterized by intricate clonal heterogeneity, emerges as a pivotal determinant in fostering this resistance. Clonal evolution, encapsulating the dynamic transformations within subpopulations of tumor cells over time, is implicated in the emergence of drug-resistant traits. Within this review, we illuminate contemporary insights into the role of clonal evolution in bladder cancer, elucidating its influence as a driver in tumor initiation, disease progression, and the formidable obstacle of therapy resistance.


Subject(s)
Clonal Evolution , Drug Resistance, Neoplasm , Genomics , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/drug therapy , Humans , Drug Resistance, Neoplasm/genetics , Clonal Evolution/genetics , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
5.
Nature ; 632(8024): 419-428, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39020166

ABSTRACT

The tumour evolution model posits that malignant transformation is preceded by randomly distributed driver mutations in cancer genes, which cause clonal expansions in phenotypically normal tissues. Although clonal expansions can remodel entire tissues1-3, the mechanisms that result in only a small number of clones transforming into malignant tumours remain unknown. Here we develop an in vivo single-cell CRISPR strategy to systematically investigate tissue-wide clonal dynamics of the 150 most frequently mutated squamous cell carcinoma genes. We couple ultrasound-guided in utero lentiviral microinjections, single-cell RNA sequencing and guide capture to longitudinally monitor clonal expansions and document their underlying gene programmes at single-cell transcriptomic resolution. We uncover a tumour necrosis factor (TNF) signalling module, which is dependent on TNF receptor 1 and involving macrophages, that acts as a generalizable driver of clonal expansions in epithelial tissues. Conversely, during tumorigenesis, the TNF signalling module is downregulated. Instead, we identify a subpopulation of invasive cancer cells that switch to an autocrine TNF gene programme associated with epithelial-mesenchymal transition. Finally, we provide in vivo evidence that the autocrine TNF gene programme is sufficient to mediate invasive properties and show that the TNF signature correlates with shorter overall survival of patients with squamous cell carcinoma. Collectively, our study demonstrates the power of applying in vivo single-cell CRISPR screening to mammalian tissues, unveils distinct TNF programmes in tumour evolution and highlights the importance of understanding the relationship between clonal expansions in epithelia and tumorigenesis.


Subject(s)
Carcinoma, Squamous Cell , Epithelial-Mesenchymal Transition , Single-Cell Analysis , Animals , Mice , Humans , Epithelial-Mesenchymal Transition/genetics , Female , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Signal Transduction/genetics , Macrophages/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Male , CRISPR-Cas Systems/genetics , Carcinogenesis/genetics , Carcinogenesis/pathology , Mutation , Gene Expression Regulation, Neoplastic , Clonal Evolution/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Cell Transformation, Neoplastic/genetics , Transcriptome/genetics , Clone Cells/metabolism , Tumor Necrosis Factors/genetics , Tumor Necrosis Factors/metabolism , Neoplasm Invasiveness/genetics
7.
Cells ; 13(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38891074

ABSTRACT

Glioblastoma (GBM) is the most common yet uniformly fatal adult brain cancer. Intra-tumoral molecular and cellular heterogeneities are major contributory factors to therapeutic refractoriness and futility in GBM. Molecular heterogeneity is represented through molecular subtype clusters whereby the proneural (PN) subtype is associated with significantly increased long-term survival compared to the highly resistant mesenchymal (MES) subtype. Furthermore, it is universally recognized that a small subset of GBM cells known as GBM stem cells (GSCs) serve as reservoirs for tumor recurrence and progression. The clonal evolution of GSC molecular subtypes in response to therapy drives intra-tumoral heterogeneity and remains a critical determinant of GBM outcomes. In particular, the intra-tumoral MES reprogramming of GSCs using current GBM therapies has emerged as a leading hypothesis for therapeutic refractoriness. Preventing the intra-tumoral divergent evolution of GBM toward the MES subtype via new treatments would dramatically improve long-term survival for GBM patients and have a significant impact on GBM outcomes. In this review, we examine the challenges of the role of MES reprogramming in the malignant clonal evolution of glioblastoma and provide future perspectives for addressing the unmet therapeutic need to overcome resistance in GBM.


Subject(s)
Brain Neoplasms , Cellular Reprogramming , Clonal Evolution , Glioblastoma , Humans , Glioblastoma/pathology , Glioblastoma/genetics , Clonal Evolution/genetics , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Cellular Reprogramming/genetics , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology
8.
Ann Hematol ; 103(8): 3229-3233, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38879649

ABSTRACT

Erdheim-Chester disease (ECD) is a rare histiocytosis that tends to co-exist with other myeloid malignancies. Here, we use genetic and transcriptomic sequencing to delineate a case of co-occurring BRAFV600E-mutated ECD and acute myeloid leukemia (AML), followed by AML remission and relapse. The AML relapse involved the extinction of clones with KMT2A-AFDN and FLT3-ITD, and the predominance of PTPN11-mutated subclones with distinct transcriptomic features. This case report has highlighted the screening for other myeloid malignancies at the diagnosis of ECD and the clinical significance of PTPN11-mutated AML subclones that require meticulous monitoring.


Subject(s)
Erdheim-Chester Disease , Leukemia, Myeloid, Acute , Mutation , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , fms-Like Tyrosine Kinase 3 , Humans , Erdheim-Chester Disease/genetics , Erdheim-Chester Disease/complications , Erdheim-Chester Disease/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/diagnosis , fms-Like Tyrosine Kinase 3/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Male , Clonal Evolution/genetics , Female , Proto-Oncogene Proteins B-raf/genetics , Middle Aged
9.
Mol Cancer ; 23(1): 87, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702773

ABSTRACT

BACKGROUND: Intratumoral heterogeneity (ITH) and tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) play important roles in tumor evolution and patient outcomes. However, the precise characterization of diverse cell populations and their crosstalk associated with PDAC progression and metastasis is still challenging. METHODS: We performed single-cell RNA sequencing (scRNA-seq) of treatment-naïve primary PDAC samples with and without paired liver metastasis samples to understand the interplay between ITH and TME in the PDAC evolution and its clinical associations. RESULTS: scRNA-seq analysis revealed that even a small proportion (22%) of basal-like malignant ductal cells could lead to poor chemotherapy response and patient survival and that epithelial-mesenchymal transition programs were largely subtype-specific. The clonal homogeneity significantly increased with more prevalent and pronounced copy number gains of oncogenes, such as KRAS and ETV1, and losses of tumor suppressor genes, such as SMAD2 and MAP2K4, along PDAC progression and metastasis. Moreover, diverse immune cell populations, including naïve SELLhi regulatory T cells (Tregs) and activated TIGIThi Tregs, contributed to shaping immunosuppressive TMEs of PDAC through cellular interactions with malignant ductal cells in PDAC evolution. Importantly, the proportion of basal-like ductal cells negatively correlated with that of immunoreactive cell populations, such as cytotoxic T cells, but positively correlated with that of immunosuppressive cell populations, such as Tregs. CONCLUSION: We uncover that the proportion of basal-like subtype is a key determinant for chemotherapy response and patient outcome, and that PDAC clonally evolves with subtype-specific dosage changes of cancer-associated genes by forming immunosuppressive microenvironments in its progression and metastasis.


Subject(s)
Clonal Evolution , Liver Neoplasms , Pancreatic Neoplasms , Tumor Microenvironment , Female , Humans , Male , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Biomarkers, Tumor/genetics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Clonal Evolution/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Liver Neoplasms/secondary , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Prognosis , Single-Cell Gene Expression Analysis , Transcriptome , Tumor Microenvironment/genetics
10.
Clin Cancer Res ; 30(15): 3316-3328, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38787533

ABSTRACT

PURPOSE: The study of cell-free DNA (cfDNA) enables sequential analysis of tumor cell-specific genetic alterations in patients with neuroblastoma. EXPERIMENTAL DESIGN: Eighteen patients with relapsing neuroblastoma having received lorlatinib, a third-generation ALK inhibitor, were identified (SACHA national registry and/or in the institution). cfDNA was analyzed at relapse for nine patients and sequentially for five patients (blood/bone marrow plasma) by performing whole-genome sequencing library construction followed by ALK-targeted ddPCR of the hotspot mutations [F1174L, R1275Q, and I1170N; variant allele fraction (VAF) detection limit 0.1%] and whole-exome sequencing (WES) to evaluate disease burden and clonal evolution, following comparison with tumor/germline WES. RESULTS: Overall response rate to lorlatinib was 33% (CI, 13%-59%), with response observed in 6/10 cases without versus 0/8 cases with MYCN amplification (MNA). ALK VAFs correlated with the overall clinical disease status, with a VAF < 0.1% in clinical remission, versus higher VAFs (>30%) at progression. Importantly, sequential ALK ddPCR detected relapse earlier than clinical imaging. cfDNA WES revealed new SNVs, not seen in the primary tumor, in all instances of disease progression after lorlatinib treatment, indicating clonal evolution, including alterations in genes linked to tumor aggressivity (TP53) or novel targets (EGFR). Gene pathway analysis revealed an enrichment for genes targeting cell differentiation in emerging clones, and cell adhesion in persistent clones. Evidence of clonal hematopoiesis could be observed in follow-up samples. CONCLUSIONS: We demonstrate the clinical utility of combining ALK cfDNA ddPCR for disease monitoring and cfDNA WES for the study of clonal evolution and resistance mechanisms in patients with neuroblastoma receiving ALK-targeted therapy.


Subject(s)
Anaplastic Lymphoma Kinase , Cell-Free Nucleic Acids , Clonal Evolution , Mutation , Neuroblastoma , Humans , Neuroblastoma/genetics , Neuroblastoma/drug therapy , Neuroblastoma/pathology , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Clonal Evolution/genetics , Male , Female , Child , Child, Preschool , Cell-Free Nucleic Acids/genetics , Aminopyridines/therapeutic use , Pyrazoles/therapeutic use , Lactams , Infant , Adolescent , Exome Sequencing , Protein Kinase Inhibitors/therapeutic use , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Molecular Targeted Therapy/methods , Biomarkers, Tumor/genetics , Whole Genome Sequencing/methods
11.
Nat Commun ; 15(1): 4074, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744814

ABSTRACT

Esophageal adenocarcinoma is a prominent example of cancer characterized by frequent amplifications in oncogenes. However, the mechanisms leading to amplicons that involve breakage-fusion-bridge cycles and extrachromosomal DNA are poorly understood. Here, we use 710 esophageal adenocarcinoma cases with matched samples and patient-derived organoids to disentangle complex amplicons and their associated mechanisms. Short-read sequencing identifies ERBB2, MYC, MDM2, and HMGA2 as the most frequent oncogenes amplified in extrachromosomal DNAs. We resolve complex extrachromosomal DNA and breakage-fusion-bridge cycles amplicons by integrating of de-novo assemblies and DNA methylation in nine long-read sequenced cases. Complex amplicons shared between precancerous biopsy and late-stage tumor, an enrichment of putative enhancer elements and mobile element insertions are potential drivers of complex amplicons' origin. We find that patient-derived organoids recapitulate extrachromosomal DNA observed in the primary tumors and single-cell DNA sequencing capture extrachromosomal DNA-driven clonal dynamics across passages. Prospectively, long-read and single-cell DNA sequencing technologies can lead to better prediction of clonal evolution in esophageal adenocarcinoma.


Subject(s)
Adenocarcinoma , Esophageal Neoplasms , Humans , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Organoids/pathology , Gene Amplification , DNA Methylation , Oncogenes/genetics , Male , Sequence Analysis, DNA/methods , Clonal Evolution/genetics , Female
12.
J Mol Diagn ; 26(7): 563-573, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38588769

ABSTRACT

Clonal hematopoiesis of indeterminate potential (CHIP) is a common age-related phenomenon in which hematopoietic stem cells acquire mutations in a select set of genes commonly mutated in myeloid neoplasia which then expand clonally. Current sequencing assays to detect CHIP mutations are not optimized for the detection of these variants and can be cost-prohibitive when applied to large cohorts or to serial sequencing. In this study, an affordable (approximately US $8 per sample), accurate, and scalable sequencing assay for CHIP is introduced and validated. The efficacy of the assay was demonstrated by identifying CHIP mutations in a cohort of 456 individuals with DNA collected at multiple time points in Vanderbilt University's biobank and quantifying clonal expansion rates over time. A total of 101 individuals with CHIP/clonal cytopenia of undetermined significance were identified, and individual-level clonal expansion rate was calculated using the variant allele fraction at both time points. Differences in clonal expansion rate by driver gene were observed, but there was also significant individual-level heterogeneity, emphasizing the multifactorial nature of clonal expansion. Additionally, mutation co-occurrence and clonal competition between multiple driver mutations were explored.


Subject(s)
Clonal Hematopoiesis , Mutation , Humans , Clonal Hematopoiesis/genetics , Male , Female , Aged , Middle Aged , Adult , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/economics , Cost-Benefit Analysis , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Clonal Evolution/genetics , Aged, 80 and over , Hematopoiesis/genetics
13.
Leukemia ; 38(6): 1299-1306, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38609496

ABSTRACT

Growing evidence suggests that gain or amplification [gain/amp(1q)] accumulates during disease progression of multiple myeloma (MM). Previous investigations have indicated that small gain/amp(1q) subclones present at the time of diagnosis may evolve into dominant clones upon MM relapse. However, the influence of a minor clone of gain/amp(1q) on MM survival, as well as the correlation between different clonal sizes of gain/amp(1q) and the chromosomal instability (CIN) of MM, remains poorly understood. In this study, we analyzed fluorescence in situ hybridization (FISH) results of 998 newly diagnosed MM (NDMM) patients. 513 patients were detected with gain/amp(1q) at diagnosis. Among these 513 patients, 55 had a minor clone (≤20%) of gain/amp(1q). Patients with a minor clone of gain/amp(1q) displayed similar survival outcomes compared to those without gain/amp(1q). Further analysis demonstrated patients with a minor clone of gain/amp(1q) exhibited a clonal architecture similar to those without gain/amp(1q). Lastly, our results showed a significant increase in the clonal size of the minor clone of gain/amp(1q), frequently observed in MM. These findings suggested that a minor clone of gain/amp(1q) might represent an earlier stage in the pathogenesis of gain/amp(1q) and propose a "two-step" process in the clonal size changes of gain/amp(1q) in MM.


Subject(s)
In Situ Hybridization, Fluorescence , Multiple Myeloma , Humans , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Multiple Myeloma/mortality , In Situ Hybridization, Fluorescence/methods , Male , Female , Middle Aged , Aged , Prognosis , Chromosomes, Human, Pair 1/genetics , Adult , Clonal Evolution/genetics , Aged, 80 and over , Chromosomal Instability , Chromosome Aberrations , Disease Progression
14.
Nat Commun ; 15(1): 3031, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589411

ABSTRACT

Hepatoblastomas (HB) display heterogeneous cellular phenotypes that influence the clinical outcome, but the underlying mechanisms are poorly understood. Here, we use a single-cell multiomic strategy to unravel the molecular determinants of this plasticity. We identify a continuum of HB cell states between hepatocytic (scH), liver progenitor (scLP) and mesenchymal (scM) differentiation poles, with an intermediate scH/LP population bordering scLP and scH areas in spatial transcriptomics. Chromatin accessibility landscapes reveal the gene regulatory networks of each differentiation pole, and the sequence of transcription factor activations underlying cell state transitions. Single-cell mapping of somatic alterations reveals the clonal architecture of each tumor, showing that each genetic subclone displays its own range of cellular plasticity across differentiation states. The most scLP subclones, overexpressing stem cell and DNA repair genes, proliferate faster after neo-adjuvant chemotherapy. These results highlight how the interplay of clonal evolution and epigenetic plasticity shapes the potential of HB subclones to respond to chemotherapy.


Subject(s)
Hepatoblastoma , Liver Neoplasms , Humans , Hepatoblastoma/genetics , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Cell Plasticity/genetics , Multiomics , Clonal Evolution/genetics
15.
Blood Cancer Discov ; 5(3): 139-141, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38651690

ABSTRACT

SUMMARY: The spatial distribution of cells carrying clonal hematopoiesis mutations in the bone marrow and the potential role of interactions with the microenvironment are largely unknown. This study takes clonal evolution to the spatial level by describing a novel technique examining the spatial location of mutated clones in the bone marrow and the first evidence that mutated hematopoietic clones are spatially constrained and have heterogenous locations within millimeters of distance. See related article by Young et al., p. 153 (10).


Subject(s)
Clonal Evolution , Clonal Hematopoiesis , Mutation , Clonal Evolution/genetics , Humans , Clonal Hematopoiesis/genetics , Bone Marrow , Hematopoiesis/genetics , Hematopoietic Stem Cells/cytology
17.
Cells ; 13(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38667272

ABSTRACT

Clonal hematopoiesis of indeterminate potential (CHIP) refers to the phenomenon where a hematopoietic stem cell acquires fitness-increasing mutation(s), resulting in its clonal expansion. CHIP is frequently observed in multiple myeloma (MM) patients, and it is associated with a worse outcome. High-throughput amplicon-based single-cell DNA sequencing was performed on circulating CD34+ cells collected from twelve MM patients before autologous stem cell transplantation (ASCT). Moreover, in four MM patients, longitudinal samples either before or post-ASCT were collected. Single-cell sequencing and data analysis were assessed using the MissionBio Tapestri® platform, with a targeted panel of 20 leukemia-associated genes. We detected CHIP pathogenic mutations in 6/12 patients (50%) at the time of transplant. The most frequently mutated genes were TET2, EZH2, KIT, DNMT3A, and ASXL1. In two patients, we observed co-occurring mutations involving an epigenetic modifier (i.e., DNMT3A) and/or a gene involved in splicing machinery (i.e., SF3B1) and/or a tyrosine kinase receptor (i.e., KIT) in the same clone. Longitudinal analysis of paired samples revealed a positive selection of mutant high-fitness clones over time, regardless of their affinity with a major or minor sub-clone. Copy number analysis of the panel of all genes did not show any numerical alterations present in stem cell compartment. Moreover, we observed a tendency of CHIP-positive patients to achieve a suboptimal response to therapy compared to those without. A sub-clone dynamic of high-fitness mutations over time was confirmed.


Subject(s)
Clonal Hematopoiesis , Multiple Myeloma , Mutation , Single-Cell Analysis , Humans , Multiple Myeloma/genetics , Single-Cell Analysis/methods , Mutation/genetics , Male , Middle Aged , Female , Clonal Hematopoiesis/genetics , Aged , Hematopoietic Stem Cell Transplantation , Sequence Analysis, DNA/methods , Adult , Clonal Evolution/genetics
18.
Leukemia ; 38(7): 1501-1510, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38467769

ABSTRACT

Acute myeloid leukemia (AML) has a poor prognosis and a heterogeneous mutation landscape. Although common mutations are well-studied, little research has characterized how the sequence of mutations relates to clinical features. Using published, single-cell DNA sequencing data from three institutions, we compared clonal evolution patterns in AML to patient characteristics, disease phenotype, and outcomes. Mutation trees, which represent the order of select mutations, were created for 207 patients from targeted panel sequencing data using 1 639 162 cells, 823 mutations, and 275 samples. In 224 distinct orderings of mutated genes, mutations related to DNA methylation typically preceded those related to cell signaling, but signaling-first cases did occur, and had higher peripheral cell counts, increased signaling mutation homozygosity, and younger patient age. Serial sample analysis suggested that NPM1 and DNA methylation mutations provide an advantage to signaling mutations in AML. Interestingly, WT1 mutation evolution shared features with signaling mutations, such as WT1-early being proliferative and occurring in younger individuals, trends that remained in multivariable regression. Some mutation orderings had a worse prognosis, but this was mediated by unfavorable mutations, not mutation order. These findings add a dimension to the mutation landscape of AML, identifying uncommon patterns of leukemogenesis and shedding light on heterogeneous phenotypes.


Subject(s)
Clonal Evolution , DNA Methylation , Leukemia, Myeloid, Acute , Mutation , Nucleophosmin , Phenotype , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Prognosis , Clonal Evolution/genetics , Male , Genetic Heterogeneity , Female , Middle Aged , Adult , Aged
20.
Semin Hematol ; 61(2): 73-82, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368146

ABSTRACT

Clonal expansion of B-cells, from the early stages of monoclonal B-cell lymphocytosis through to chronic lymphocytic leukemia (CLL), and then in some cases to Richter's syndrome (RS) provides a comprehensive model of cancer evolution, notable for the marked morphological transformation and distinct clinical phenotypes. High-throughput sequencing of large cohorts of patients and single-cell studies have generated a molecular map of CLL and more recently, of RS, yielding fundamental insights into these diseases and of clonal evolution. A selection of CLL driver genes have been functionally interrogated to yield novel insights into the biology of CLL. Such findings have the potential to impact patient care through risk stratification, treatment selection and drug discovery. However, this molecular map remains incomplete, with extant questions concerning the origin of the B-cell clone, the role of the TME, inter- and intra-compartmental heterogeneity and of therapeutic resistance mechanisms. Through the application of multi-modal single-cell technologies across tissues, disease states and clinical contexts, these questions can now be addressed with the answers holding great promise of generating translatable knowledge to improve patient care.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Clonal Evolution/genetics , High-Throughput Nucleotide Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL