Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.478
Filter
1.
Microb Biotechnol ; 17(6): e14478, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38850267

ABSTRACT

Clostridioides difficile (CD) infections are defined by toxins A (TcdA) and B (TcdB) along with the binary toxin (CDT). The emergence of the 'hypervirulent' (Hv) strain PR 027, along with PR 176 and 181, two decades ago, reshaped CD infection epidemiology in Europe. This study assessed MALDI-TOF mass spectrometry (MALDI-TOF MS) combined with machine learning (ML) and Deep Learning (DL) to identify toxigenic strains (producing TcdA, TcdB with or without CDT) and Hv strains. In total, 201 CD strains were analysed, comprising 151 toxigenic (24 ToxA+B+CDT+, 22 ToxA+B+CDT+ Hv+ and 105 ToxA+B+CDT-) and 50 non-toxigenic (ToxA-B-) strains. The DL-based classifier exhibited a 0.95 negative predictive value for excluding ToxA-B- strains, showcasing accuracy in identifying this strain category. Sensitivity in correctly identifying ToxA+B+CDT- strains ranged from 0.68 to 0.91. Additionally, all classifiers consistently demonstrated high specificity (>0.96) in detecting ToxA+B+CDT+ strains. The classifiers' performances for Hv strain detection were linked to high specificity (≥0.96). This study highlights MALDI-TOF MS enhanced by ML techniques as a rapid and cost-effective tool for identifying CD strain virulence factors. Our results brought a proof-of-concept concerning the ability of MALDI-TOF MS coupled with ML techniques to detect virulence factor and potentially improve the outbreak's management.


Subject(s)
Clostridioides difficile , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Virulence Factors , Clostridioides difficile/genetics , Clostridioides difficile/classification , Clostridioides difficile/chemistry , Clostridioides difficile/pathogenicity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Virulence Factors/genetics , Virulence Factors/analysis , Humans , Clostridium Infections/microbiology , Clostridium Infections/diagnosis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/genetics , Machine Learning , Deep Learning , Sensitivity and Specificity , Enterotoxins/analysis , Enterotoxins/genetics
2.
Toxins (Basel) ; 16(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38922136

ABSTRACT

Clostridioides difficile, a Gram-positive anaerobic bacterium, is the leading cause of hospital-acquired antibiotic-associated diarrhea worldwide. The severity of C. difficile infection (CDI) varies, ranging from mild diarrhea to life-threatening conditions such as pseudomembranous colitis and toxic megacolon. Central to the pathogenesis of the infection are toxins produced by C. difficile, with toxin A (TcdA) and toxin B (TcdB) as the main virulence factors. Additionally, some strains produce a third toxin known as C. difficile transferase (CDT). Toxins damage the colonic epithelium, initiating a cascade of cellular events that lead to inflammation, fluid secretion, and further tissue damage within the colon. Mechanistically, the toxins bind to cell surface receptors, internalize, and then inactivate GTPase proteins, disrupting the organization of the cytoskeleton and affecting various Rho-dependent cellular processes. This results in a loss of epithelial barrier functions and the induction of cell death. The third toxin, CDT, however, functions as a binary actin-ADP-ribosylating toxin, causing actin depolymerization and inducing the formation of microtubule-based protrusions. In this review, we summarize our current understanding of the interaction between C. difficile toxins and host cells, elucidating the functional consequences of their actions. Furthermore, we will outline how this knowledge forms the basis for developing innovative, toxin-based strategies for treating and preventing CDI.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Host Microbial Interactions , Clostridioides difficile/genetics , Clostridioides difficile/pathogenicity , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Bacterial Toxins/immunology , Clostridium Infections/drug therapy , Clostridium Infections/microbiology , Clostridium Infections/pathology , Gene Order , Inflammation/pathology , Humans , Animals
3.
Microbiol Spectr ; 12(6): e0035424, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38709085

ABSTRACT

Paeniclostridium sordellii hemorrhagic toxin (TcsH) and Clostridioides difficile toxin A (TcdA) are two major members of the large clostridial toxin (LCT) family. These two toxins share ~87% similarity and are known to cause severe hemorrhagic pathology in animals. Yet, the pathogenesis of their hemorrhagic toxicity has been mysterious for decades. Here, we examined the liver injury after systemic exposure to different LCTs and found that only TcsH and TcdA induce overt hepatic hemorrhage. By investigating the chimeric and truncated toxins, we demonstrated that the enzymatic domain of TcsH alone is not sufficient to determine its potent hepatic hemorrhagic toxicity in mice. Likewise, the combined repetitive oligopeptide (CROP) domain of TcsH/TcdA alone also failed to explain their strong hemorrhagic activity in mice. Lastly, we showed that disrupting the first two short repeats of CROPs in TcsH and TcdA impaired hemorrhagic toxicity without causing overt changes in cytotoxicity and lethality. These findings lead to a deeper understanding of toxin-induced hemorrhage and the pathogenesis of LCTs and could be insightful in developing therapeutic avenues against clostridial infections. IMPORTANCE: Paeniclostridium sordellii and Clostridioides difficile infections often cause hemorrhage in the affected tissues and organs, which is mainly attributed to their hemorrhagic toxins, TcsH and TcdA. In this study, we demonstrate that TcsH and TcdA, but not other related toxins. including Clostridioides difficile toxin B and TcsL, induce severe hepatic hemorrhage in mice. We further determine that a small region in TcsH and TcdA is critical for the hemorrhagic toxicity but not cytotoxicity or lethality of these toxins. Based on these results, we propose that the hemorrhagic toxicity of TcsH and TcdA is due to an uncharacterized mechanism, such as the presence of an unknown receptor, and future studies to identify the interactive host factors are warranted.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Enterotoxins , Hemorrhage , Animals , Mice , Bacterial Toxins/toxicity , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Clostridioides difficile/genetics , Clostridioides difficile/pathogenicity , Enterotoxins/toxicity , Enterotoxins/genetics , Enterotoxins/metabolism , Liver/pathology , Clostridium Infections/microbiology , Humans , Female
4.
Microbiol Spectr ; 12(6): e0400523, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38709045

ABSTRACT

Clostridioides difficile infection (CDI) with high morbidity and high mortality is an urgent threat to public health, and C. difficile pathogenesis studies are eagerly required for CDI therapy. The major surface layer protein, SlpA, was supposed to play a key role in C. difficile pathogenesis; however, a lack of isogenic slpA mutants has greatly hampered analysis of SlpA functions. In this study, the whole slpA gene was successfully deleted for the first time via CRISPR-Cas9 system. Deletion of slpA in C. difficile resulted in smaller, smother-edged colonies, shorter bacterial cell size, and aggregation in suspension. For life cycle, the mutant demonstrated lower growth (changes of optical density at 600 nm, OD600) but higher cell density (colony-forming unit, CFU), decreased toxins production, and inhibited sporulation. Moreover, the mutant was more impaired in motility, more sensitive to vancomycin and Triton X-100-induced autolysis, releasing more lactate dehydrogenase. In addition, SlpA deficiency led to robust biofilm formation but weak adhesion to human host cells.IMPORTANCEClostridioides difficile infection (CDI) has been the most common hospital-acquired infection, with a high rate of antibiotic resistance and recurrence incidences, become a debilitating public health threat. It is urgently needed to study C. difficile pathogenesis for developing efficient strategies as CDI therapy. SlpA was indicated to play a key role in C. difficile pathogenesis. However, analysis of SlpA functions was hampered due to lack of isogenic slpA mutants. Surprisingly, the first slpA deletion C. difficile strain was generated in this study via CRISPR-Cas9, further negating the previous thought about slpA being essential. Results in this study will provide direct proof for roles of SlpA in C. difficile pathogenesis, which will facilitate future investigations for new targets as vaccines, new therapeutic agents, and intervention strategies in combating CDI.


Subject(s)
Bacterial Proteins , Biofilms , Clostridioides difficile , Clostridium Infections , Gene Deletion , Clostridioides difficile/genetics , Clostridioides difficile/pathogenicity , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Humans , Clostridium Infections/microbiology , Biofilms/growth & development , Anti-Bacterial Agents/pharmacology , Virulence/genetics , CRISPR-Cas Systems , Bacterial Adhesion/genetics , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism
5.
PLoS Pathog ; 20(5): e1012224, 2024 May.
Article in English | MEDLINE | ID: mdl-38739653

ABSTRACT

Spore formation is required for environmental survival and transmission of the human enteropathogenic Clostridioides difficile. In all bacterial spore formers, sporulation is regulated through activation of the master response regulator, Spo0A. However, the factors and mechanisms that directly regulate C. difficile Spo0A activity are not defined. In the well-studied Bacillus species, Spo0A is directly inactivated by Spo0E, a small phosphatase. To understand Spo0E function in C. difficile, we created a null mutation of the spo0E ortholog and assessed sporulation and physiology. The spo0E mutant produced significantly more spores, demonstrating Spo0E represses C. difficile sporulation. Unexpectedly, the spo0E mutant also exhibited increased motility and toxin production, and enhanced virulence in animal infections. We uncovered that Spo0E interacts with both Spo0A and the toxin and motility regulator, RstA. Direct interactions between Spo0A, Spo0E, and RstA constitute a previously unknown molecular switch that coordinates sporulation with motility and toxin production. Reinvestigation of Spo0E function in B. subtilis revealed that Spo0E induced motility, demonstrating Spo0E regulation of motility and sporulation among divergent species. Further, 3D structural analyses of Spo0E revealed specific and exclusive interactions between Spo0E and binding partners in C. difficile and B. subtilis that provide insight into the conservation of this regulatory mechanism among different species.


Subject(s)
Bacterial Proteins , Clostridioides difficile , Gene Expression Regulation, Bacterial , Spores, Bacterial , Clostridioides difficile/pathogenicity , Clostridioides difficile/genetics , Clostridioides difficile/metabolism , Spores, Bacterial/genetics , Virulence , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Animals , Mice , Clostridium Infections/microbiology
6.
Cell Rep ; 43(5): 114245, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38761377

ABSTRACT

Recurrent Clostridioides difficile infection (CDI) results in significant morbidity and mortality. We previously established that CDI in mice does not protect against reinfection and is associated with poor pathogen-specific B cell memory (Bmem), recapitulating our observations with human Bmem. Here, we demonstrate that the secreted toxin TcdB2 is responsible for subversion of Bmem responses. TcdB2 from an endemic C. difficile strain delayed immunoglobulin G (IgG) class switch following vaccination, attenuated IgG recall to a vaccine booster, and prevented germinal center formation. The mechanism of TcdB2 action included increased B cell CXCR4 expression and responsiveness to its ligand CXCL12, accounting for altered cell migration and a failure of germinal center-dependent Bmem. These results were reproduced in a C. difficile infection model, and a US Food and Drug Administration (FDA)-approved CXCR4-blocking drug rescued germinal center formation. We therefore provide mechanistic insights into C. difficile-associated pathogenesis and illuminate a target for clinical intervention to limit recurrent disease.


Subject(s)
Bacterial Proteins , Bacterial Toxins , Clostridioides difficile , Germinal Center , Receptors, CXCR4 , Animals , Receptors, CXCR4/metabolism , Receptors, CXCR4/immunology , Germinal Center/immunology , Bacterial Proteins/metabolism , Bacterial Proteins/immunology , Bacterial Toxins/immunology , Bacterial Toxins/metabolism , Clostridioides difficile/immunology , Clostridioides difficile/pathogenicity , Mice , Mice, Inbred C57BL , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Chemokine CXCL12/metabolism , Clostridium Infections/immunology , Clostridium Infections/microbiology , Humans , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Immunologic Memory , Female , Antibody Formation/immunology
7.
World J Gastroenterol ; 30(16): 2179-2183, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38690018

ABSTRACT

In this editorial we comment on the article published in the recent issue of the World journal of Gastroenterology. We focus specifically on the mechanisms un-derlying the effects of fecal microbiota transplantation (FMT) for irritable bowel syndrome (IBS), the factors which affect the outcomes of FMT in IBS patients, and challenges. FMT has emerged as a efficacious intervention for clostridium difficile infection and holds promise as a therapeutic modality for IBS. The utilization of FMT in the treatment of IBS has undergone scrutiny in numerous randomized controlled trials, yielding divergent outcomes. The current frontier in this field seeks to elucidate these variations, underscore the existing knowledge gaps that necessitate exploration, and provide a guideline for successful FMT imple-mentation in IBS patients. At the same time, the application of FMT as a treatment for IBS confronts several challenges.


Subject(s)
Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Irritable Bowel Syndrome , Irritable Bowel Syndrome/therapy , Irritable Bowel Syndrome/microbiology , Fecal Microbiota Transplantation/methods , Humans , Treatment Outcome , Feces/microbiology , Randomized Controlled Trials as Topic , Clostridioides difficile/pathogenicity , Clostridium Infections/therapy , Clostridium Infections/microbiology
8.
Intern Emerg Med ; 19(4): 1041-1049, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615301

ABSTRACT

BACKGROUND: Clostridioides difficile infection (CDI) causes considerable morbidity, mortality, and economic cost. Advanced age, prolonged stay in healthcare facility, and exposure to antibiotics are leading risk factors for CDI. Data on CDI clinical outcomes in the very elderly patients are limited. METHODS: A retrospective cohort study of patients hospitalized between 2016 and 2018 with CDI. We evaluated demographic clinical and laboratory parameters. Major clinical outcomes were evaluated including duration of hospital stay, admission to intensive care unit (ICU), in-hospital mortality, 30 days post-discharge mortality, and readmission/mortality composite outcome. We compared patients aged up to 80 years (elderly) to those of 80 years old or more (very elderly). RESULTS: Of 196 patients included in the study, 112 (57%) were very elderly with a mean age of 86 versus 67 years in the elderly group. The duration of hospital stays, and intensive care unit admission frequency were significantly reduced in the very elderly (13 vs. 22 days p = 0.003 and 1.8% vs. 10.7% p = 0.01, respectively). No significant difference was found in the frequencies of in-hospital and in 30 days post-discharge mortality. CONCLUSIONS: In our cohort, the duration of hospital stay seemed to be shorter in the very elderly with no increase of in-hospital and post-discharge mortality. Although admitted less frequently to ICU, the in-hospital survival of the very elderly was not adversely affected compared to the elderly, suggesting that very advanced age per se should not be a major factor to consider in determining the prognosis of a patient with CDI.


Subject(s)
Clostridium Infections , Length of Stay , Humans , Male , Clostridium Infections/epidemiology , Clostridium Infections/mortality , Aged, 80 and over , Retrospective Studies , Female , Aged , Length of Stay/statistics & numerical data , Clostridioides difficile/pathogenicity , Cohort Studies , Risk Factors , Hospital Mortality , Intensive Care Units/organization & administration , Intensive Care Units/statistics & numerical data
9.
Clin Chim Acta ; 558: 119674, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38621586

ABSTRACT

BACKGROUND: Clostridioides difficile infection (CDI) is the main etiologic agent of antibiotic-associated diarrhea. CDI contributes to gut inflammation and can lead to disruption of the intestinal epithelial barrier. Recently, the rate of CDI cases has been increased. Thus, early diagnosis of C. difficile is critical for controlling the infection and guiding efficacious therapy. APPROACH: A search strategy was set up using the terms C. difficile biomarkers and diagnosis. The found references were classified into two general categories; conventional and advanced methods. RESULTS: The pathogenicity and biomarkers of C. difficile, and the collection manners for CDI-suspected specimens were briefly explained. Then, the conventional CDI diagnostic methods were subtly compared in terms of duration, level of difficulty, sensitivity, advantages, and disadvantages. Thereafter, an extensive review of the various newly proposed techniques available for CDI detection was conducted including nucleic acid isothermal amplification-based methods, biosensors, and gene/single-molecule microarrays. Also, the detection mechanisms, pros and cons of these methods were highlighted and compared with each other. In addition, approximately complete information on FDA-approved platforms for CDI diagnosis was collected. CONCLUSION: To overcome the deficiencies of conventional methods, the potential of advanced methods for C. difficile diagnosis, their direction, perspective, and challenges ahead were discussed.


Subject(s)
Biomarkers , Clostridioides difficile , Clostridium Infections , Clostridioides difficile/genetics , Clostridioides difficile/pathogenicity , Clostridioides difficile/isolation & purification , Humans , Clostridium Infections/diagnosis , Clostridium Infections/microbiology
10.
Anaerobe ; 87: 102837, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38527650

ABSTRACT

OBJECTIVES: In the US, Clostridioides difficile (C. difficile) infection (CDI) is the 8th leading cause of hospital readmission and 7th for mortality among all gastrointestinal (GI) disorders. Here, we investigated GI dysfunction post-CDI in humans and mice post-acute infection. MATERIALS AND METHODS: From March 2020 to July 2021, we reviewed the clinical records of 67 patients referred to the UVA Complicated C. difficile clinic for fecal microbiota transplantation (FMT) eligibility. C57BL/6 mice were infected with C. difficile and clinical scores were determined daily. Stool samples from mice were collected to measure the shedding of C. difficile and myeloperoxidase (MPO) levels. On day 21 post-infection, Evans's blue and FITC-70kDa methods were performed to evaluate GI motility in mice. RESULTS: Of the 67 patients evaluated at the C. difficile clinic, 40 patients (59.7%) were confirmed to have CDI, and 22 patients (32.8%) with post-CDI IBS (diarrhea-type, constipation-type, and mixed-type). In infected mice, levels of MPO in stools and clinical score were higher on day 3. On day 21, mice recovered from body weight loss induced by CDI, and fecal MPO was undetectable. The total GI transit time (TGITT) and FITC-70kDa levels on the proximal colon were increased in infected mice (p = 0.002), suggesting a constipation phenotype post-acute phase of CDI. A positive correlation intestinal inflammation on day 3 and TGITT on day 21 was observed. CONCLUSION: In conclusion, post-infection intestinal dysfunction occurs in humans and mice post-CDI. Importantly, we have validated in the mouse model that CDI causes abnormal GI transit in the recovery phase of the disease, indicating the potential utility of the model in exploring the underlying mechanisms of post-infectious IBS in humans.


Subject(s)
Clostridioides difficile , Clostridium Infections , Mice, Inbred C57BL , Animals , Humans , Clostridium Infections/microbiology , Clostridium Infections/physiopathology , Mice , Clostridioides difficile/pathogenicity , Female , Male , Middle Aged , Disease Models, Animal , Feces/microbiology , Gastrointestinal Diseases/microbiology , Gastrointestinal Diseases/physiopathology , Aged , Fecal Microbiota Transplantation , Adult , Peroxidase/metabolism
11.
Nature ; 622(7983): 611-618, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37699522

ABSTRACT

Clostridioides difficile infection (CDI) is a major cause of healthcare-associated gastrointestinal infections1,2. The exaggerated colonic inflammation caused by C. difficile toxins such as toxin B (TcdB) damages tissues and promotes C. difficile colonization3-6, but how TcdB causes inflammation is unclear. Here we report that TcdB induces neurogenic inflammation by targeting gut-innervating afferent neurons and pericytes through receptors, including the Frizzled receptors (FZD1, FZD2 and FZD7) in neurons and chondroitin sulfate proteoglycan 4 (CSPG4) in pericytes. TcdB stimulates the secretion of the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) from neurons and pro-inflammatory cytokines from pericytes. Targeted delivery of the TcdB enzymatic domain, through fusion with a detoxified diphtheria toxin, into peptidergic sensory neurons that express exogeneous diphtheria toxin receptor (an approach we term toxogenetics) is sufficient to induce neurogenic inflammation and recapitulates major colonic histopathology associated with CDI. Conversely, mice lacking SP, CGRP or the SP receptor (neurokinin 1 receptor) show reduced pathology in both models of caecal TcdB injection and CDI. Blocking SP or CGRP signalling reduces tissue damage and C. difficile burden in mice infected with a standard C. difficile strain or with hypervirulent strains expressing the TcdB2 variant. Thus, targeting neurogenic inflammation provides a host-oriented therapeutic approach for treating CDI.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Neurogenic Inflammation , Neurons, Afferent , Pericytes , Animals , Mice , Bacterial Toxins/administration & dosage , Bacterial Toxins/pharmacology , Calcitonin Gene-Related Peptide/antagonists & inhibitors , Calcitonin Gene-Related Peptide/metabolism , Clostridioides difficile/pathogenicity , Clostridium Infections/microbiology , Neurogenic Inflammation/chemically induced , Neurogenic Inflammation/microbiology , Neurogenic Inflammation/pathology , Pericytes/drug effects , Pericytes/microbiology , Pericytes/pathology , Receptors, Neurokinin-1/metabolism , Substance P/antagonists & inhibitors , Substance P/metabolism , Neurons, Afferent/drug effects , Neurons, Afferent/microbiology , Neurons, Afferent/pathology , Inflammation Mediators/metabolism , Cecum/drug effects , Cecum/metabolism , Signal Transduction/drug effects
12.
Nature ; 611(7937): 780-786, 2022 11.
Article in English | MEDLINE | ID: mdl-36385534

ABSTRACT

Enteric pathogens are exposed to a dynamic polymicrobial environment in the gastrointestinal tract1. This microbial community has been shown to be important during infection, but there are few examples illustrating how microbial interactions can influence the virulence of invading pathogens2. Here we show that expansion of a group of antibiotic-resistant, opportunistic pathogens in the gut-the enterococci-enhances the fitness and pathogenesis of Clostridioides difficile. Through a parallel process of nutrient restriction and cross-feeding, enterococci shape the metabolic environment in the gut and reprogramme C. difficile metabolism. Enterococci provide fermentable amino acids, including leucine and ornithine, which increase C. difficile fitness in the antibiotic-perturbed gut. Parallel depletion of arginine by enterococci through arginine catabolism provides a metabolic cue for C. difficile that facilitates increased virulence. We find evidence of microbial interaction between these two pathogenic organisms in multiple mouse models of infection and patients infected with C. difficile. These findings provide mechanistic insights into the role of pathogenic microbiota in the susceptibility to and the severity of C. difficile infection.


Subject(s)
Clostridioides difficile , Enterococcus , Microbial Interactions , Animals , Humans , Mice , Anti-Bacterial Agents/pharmacology , Arginine/deficiency , Arginine/metabolism , Clostridioides difficile/metabolism , Clostridioides difficile/pathogenicity , Clostridioides difficile/physiology , Disease Models, Animal , Drug Resistance, Bacterial , Enterococcus/drug effects , Enterococcus/metabolism , Enterococcus/pathogenicity , Enterococcus/physiology , Gastrointestinal Microbiome/drug effects , Intestines/drug effects , Intestines/metabolism , Intestines/microbiology , Leucine/metabolism , Ornithine/metabolism , Virulence , Disease Susceptibility
13.
PLoS One ; 17(1): e0262597, 2022.
Article in English | MEDLINE | ID: mdl-35025959

ABSTRACT

BACKGROUND: Clostridium difficile is the leading cause of infectious diarrhea that develops in patients after hospitalization during antibiotic administration. It has also become a big issue in community-acquired diarrhea. The emergence of hypervirulent strains of C. difficile poses a major problem in hospital-associated diarrhea outbreaks and it is difficult to treat. The antimicrobial resistance in C. difficile has worsened due to the inappropriate use of broad-spectrum antibiotics including cephalosporins, clindamycin, tetracycline, and fluoroquinolones together with the emergence of hypervirulent strains. OBJECTIVE: To estimate the pooled prevalence and antimicrobial resistance pattern of C. difficile derived from hospitalized diarrheal patients, a systematic review and meta-analysis was performed. METHODS: Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline was followed to review published studies conducted. We searched bibliographic databases from PubMed, Scopus, Google Scholar, and Cochrane Library for studies on the prevalence and antimicrobial susceptibility testing on C. difficile. The weighted pooled prevalence and resistance for each antimicrobial agent was calculated using a random-effects model. A funnel plot and Egger's regression test were used to see publication bias. RESULTS: A total of 15 studies were included. Ten articles for prevalence study and 5 additional studies for antimicrobial susceptibility testing of C. difficile were included. A total of 1967/7852 (25%) C. difficile were isolated from 10 included studies for prevalence study. The overall weighted pooled proportion (WPP) of C. difficile was 30% (95% CI: 10.0-49.0; p<0.001). The analysis showed substantial heterogeneity among studies (Cochran's test = 7038.73, I2 = 99.87%; p<0.001). The weighed pooled antimicrobial resistance (WPR) were: vancomycin 3%(95% CI: 1.0-4.0, p<0.001); metronidazole 5%(95% CI: 3.0-7.0, p<0.001); clindamycin 61%(95% CI: 52.0-69.0, p<0.001); moxifloxacin 42%(95% CI: 29-54, p<0.001); tetracycline 35%(95% CI: 22-49, p<0.001); erythromycin 61%(95% CI: 48-75, p<0.001) and ciprofloxacin 64%(95% CI: 48-80; p< 0.001) using the random effect model. CONCLUSIONS: A higher weighted pooled prevalence of C. difficile was observed. It needs a great deal of attention to decrease the prevailing prevalence. The resistance of C. difficile to metronidazole and vancomycin was low compared to other drugs used to treat C. difficile infection. Periodic antimicrobial resistance monitoring is vital for appropriate therapy of C. difficile infection.


Subject(s)
Clostridium Infections/epidemiology , Dysentery/epidemiology , Dysentery/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Clostridioides difficile/genetics , Clostridioides difficile/metabolism , Clostridioides difficile/pathogenicity , Diarrhea/drug therapy , Drug Resistance, Bacterial/drug effects , Drug Resistance, Microbial/drug effects , Drug Resistance, Microbial/genetics , Enterocolitis, Pseudomembranous/epidemiology , Hospitalization/trends , Humans , Microbial Sensitivity Tests/methods , Prevalence
14.
Rev. bras. ciênc. vet ; 29(1): 59-63, jan./mar. 2022. il.
Article in Portuguese | LILACS, VETINDEX | ID: biblio-1395508

ABSTRACT

O objetivo deste estudo foi analisar a prevalência de Clostridioides difficile e suas toxinas (A/B) nas fezes de animais domésticos de um Hospital Veterinário Universitário de Teresina - PI. A detecção de C. difficile e suas toxinas foi realizada por meio de um ensaio imunoenzimático, denominado C. Diff Quik Chek Complete® (TECHLAB), capaz de detectar antígeno Glutamato Desidrogenase (GDH) e as toxinas A/B produzidas pelo bacilo, realizado em amostras fecais de cães (C. lupus) e e gatos (Felis catus) coletadas entre agosto de 2019 a setembro de 2020. Um total de 54 amostras fecais foram analisadas, das quais 16 foram positivas para C. difficile (29,63%). 68,75% (11/16) pertenciam a caninos, enquanto 31,25% (5/16) a felinos. Amostras diarreicas e não diarreicas foram utilizadas para o estudo e uma maior prevalência do bacilo pôde ser identificada em amostras diarreicas (33%). Nenhuma das amostras apresentou toxinas do patógeno. Os achados deste estudo evidenciam que C.difficile está presente no estado do Piauí. Foi possível identificá-lo em todas as espécies e em amostras diarreicas ou não, demonstrando que essa infecção pode se manifestar de formasintomática e assintomática, levantando a possibilidade de infecção cruzada entre o animal e seu tutor.


The aim of this study was to analyze the prevalence of Clostridioides difficile and its toxins (A/B) in the feces of domestic animals at a University Veterinary Hospital in Teresina - PI. The detection of C. difficile and its toxins was performed by an immunogenic enzyme, called C. Diff Quik Chek Complete® (TECHLAB), capable of detecting antigen glutamate dehydrogenase (GDH) and A/B toxins produced by this bacillus, performed in fecal samples of dogs (C. lupus) and cats (Felis catus) collected between August 2019 and September 2020.:54 stools were analyzed, of which 16 were positive for C. difficile (29.63%). 68.75% (11/16) belonged to canines, while 3.25% (5/16) to felines. Diarrheal and non-diarrheal diseases are used for the study and a higher prevalence of bacillus can be identified in diarrheal diseases (33%). None of the samples present pathogen toxins. The results of this study show that C. difficile is present in the state of Piauí. It can be identified in all species and in diarrheal or non-diarrheic samples, demonstrating that this infection can be symptomatic and asymptomatic, giving the possibility of cross-infection between the animal and its owner.


Subject(s)
Animals , Cats , Dogs , Cats/abnormalities , Clostridioides difficile/pathogenicity , Immunoenzyme Techniques/veterinary , Clostridium Infections/diagnosis , Dogs/abnormalities , Feces/microbiology , Bacterial Zoonoses/diagnosis
15.
Sci China Life Sci ; 65(1): 107-118, 2022 01.
Article in English | MEDLINE | ID: mdl-34279819

ABSTRACT

As the leading cause of worldwide hospital-acquired infection, Clostridioides difficile (C. difficile) infection has caused heavy economic and hospitalized burden, while its pathogenesis is not fully understood. Toxin B (TcdB) is one of the major virulent factors of C. difficile. Recently, CSPG4 and FZD2 were reported to be the receptors that mediate TcdB cellular entry. However, genetic ablation of genes encoding these receptors failed to completely block TcdB entry, implicating the existence of alternative receptor(s) for this toxin. Here, by employing the CRISPR-Cas9 screen in CSPG4-deficient HeLa cells, we identified LDL receptor-related protein-1 (LRP1) as a novel receptor for TcdB. Knockout of LRP1 in both CSPG4-deficient HeLa cells and colonic epithelium Caco2 cells conferred cells with increased TcdB resistance, while LRP1 overexpression sensitized cells to TcdB at a low concentration. Co-immunoprecipitation assay showed that LRP1 interacts with full-length TcdB. Moreover, CROPs domain, which is dispensable for TcdB's interaction with CSPG4 and FZD2, is sufficient for binding to LRP1. As such, our study provided evidence for a novel mechanism of TcdB entry and suggested potential therapeutic targets for treating C. difficile infection.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Clostridioides difficile/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , CRISPR-Cas Systems , Chondroitin Sulfate Proteoglycans/deficiency , Chondroitin Sulfate Proteoglycans/metabolism , Clostridioides difficile/pathogenicity , Clostridium Infections , Frizzled Receptors , HeLa Cells , Humans , Membrane Proteins/deficiency , Membrane Proteins/metabolism , Oligopeptides/metabolism
16.
Emerg Microbes Infect ; 10(1): 2244-2255, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34756150

ABSTRACT

Clostridioides difficile is the most common pathogen causing antibiotic-associated diarrhea. Previous studies showed that diverse sources, aside from C. difficile infection (CDI) patients, played a major role in C. difficile hospital transmission. This study aimed to investigate relationships and transmission potential of C. difficile strains from different sources. A prospective study was conducted both in the intensive care unit (ICU) and six livestock farms in China in 2018-2019. Ninety-eight strains from CDI patients (10 isolates), asymptomatic hospitalized carriers (55), the ICU environment (12), animals (14), soil (4), and farmers (3) were collected. Sequence type (ST) 3/ribotype (RT) 001, ST35/RT046, and ST48/RT596 were dominant types, distributed widely in multiple sources. Core-genome single-nucleotide polymorphism (cgSNP) analysis showed that hospital and farm strains shared several common clonal groups (CGs, strains separated by ≤ 2 cgSNPs) (CG4/ST3/RT001, CG7/ST35/RT046, CG11/ST48/RT596). CDI patients, asymptomatic carriers, and the ICU environment strains also shared several common CGs. The number of virulence genes was not statistically different between strains from different sources. Multi-source strains in the same CG carried identical virulence gene sequences, including pathogenicity genes at the pathogenicity locus and adhesion-related genes at S-layer cassette. Resistance genes (ermB, tetM, etc.) were widespread in multiple sources, and multi-source strains in the same CG had similar resistance phenotypes and carried consistent transposons and plasmid types. The study indicated that interspecies and cross-regional transmission of C. difficile occurs between animals, the environment, and humans. Community-associated strains from both farms and asymptomatic hospitalized carriers were important reservoirs of CDI in hospitals.


Subject(s)
Animals, Domestic/microbiology , Clostridioides difficile/genetics , Clostridium Infections/microbiology , Clostridium Infections/veterinary , Animals , China , Clostridioides difficile/classification , Clostridioides difficile/isolation & purification , Clostridioides difficile/pathogenicity , Feces/microbiology , Genome, Bacterial , Humans , Phylogeny , Prospective Studies , Virulence
17.
Viruses ; 13(11)2021 11 11.
Article in English | MEDLINE | ID: mdl-34835068

ABSTRACT

All known Clostridioides difficile phages encode integrases rendering them potentially able to lyse or lysogenise bacterial strains. Here, we observed the infection of the siphovirus, CDHS-1 on a ribotype 027 strain, R20291 and determined the phage and bacterial gene expression profiles, and impacts of phage infection on bacterial physiology and pathogenicity. Using RNA-seq and RT-qPCR we analysed transcriptomic changes during early, mid-log and late phases of phage replication at an MOI of 10. The phage has a 20 min latent period, takes 80 min to lyse cells and a burst size of ~37. All phage genes are highly expressed during at least one time point. The Cro/C1-transcriptional regulator, ssDNA binding protein and helicase are expressed early, the holin is expressed during the mid-log phase and structural proteins are expressed from mid-log to late phase. Most bacterial genes, particularly the metabolism and toxin production/regulatory genes, were downregulated from early phage replication. Phage-resistant strains and lysogens showed reduced virulence during Galleria mellonella colonization as ascertained by the larval survival and expression of growth (10), reproduction (2) and infection (2) marker genes. These data suggest that phage infection both reduces colonization and negatively impacts bacterial pathogenicity, providing encouraging data to support the development of this phage for therapy to treat C. difficile infection.


Subject(s)
Clostridioides difficile/pathogenicity , Clostridioides difficile/virology , Siphoviridae/physiology , Animals , Bacterial Proteins/genetics , Bacteriolysis , Clostridioides difficile/physiology , Gene Expression Regulation, Bacterial , Insect Proteins/genetics , Larva/genetics , Larva/microbiology , Lysogeny , Moths , Ribotyping , Siphoviridae/isolation & purification , Viral Proteins/genetics , Virulence/genetics , Virus Replication
18.
PLoS One ; 16(11): e0259771, 2021.
Article in English | MEDLINE | ID: mdl-34813626

ABSTRACT

BACKGROUND: Clostridioides difficile (CD) is the most common healthcare-associated enteric infection. There is currently limited epidemiological evidence on CD incidence in South Africa. AIM: To estimate the burden of CD infection (CDI) in the South African public sector between 1 July 2016 and 30 June 2017. METHODS: A retrospective cohort study utilizing secondary data was conducted to describe the epidemiology of CD in South Africa. We assessed the patient-level association between variables of interest, CD, and CD recurrence, by undertaking both univariate and multivariable analysis. Adjusted incidence rate ratios (aIRR) were calculated utilizing multivariable Poisson regression. The incidence of CD, CD recurrence and CD testing was estimated by Poisson regression for various levels of care and provinces. RESULTS: A total of 14 023 samples were tested for CD during the study period. After applying exclusion criteria, we were left with a sample of 10 053 of which 1 860 (18.50%) tested CD positive. A positive and significant association between CDI and level of care is found, with patients treated in specialized tuberculosis (TB) hospitals having a five-fold increased adjusted incidence risk ratio (aIRR) for CDI (aIRR 4.96 CI95% 4.08-6.04,) compared to those managed in primary care. Patients receiving care at a secondary, tertiary, or central hospital had 35%, 66% and 41% increased adjusted incidence of CDI compared to those managed in primary care, respectively. National incidence of CDI is estimated at 53.89 cases per 100 000 hospitalizations (CI95% 51.58-56.29), the incidence of recurrence at 21.39 (CI95% 15.06-29.48) cases per 1 000 cases and a recurrence rate of 2.14% (CI95% 1.51-2.94). CONCLUSION: Compared to European countries, we found a comparable incidence of CD. However, our estimates are lower than those for the United States. Compared to high-income countries, this study found a comparatively lower CD recurrence.


Subject(s)
Clostridioides difficile/pathogenicity , Clostridium Infections/epidemiology , Europe/epidemiology , Humans , Multivariate Analysis , South Africa/epidemiology
19.
Cell Host Microbe ; 29(11): 1693-1708.e7, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34637781

ABSTRACT

Leveraging systems biology approaches, we illustrate how metabolically distinct species of Clostridia protect against or worsen Clostridioides difficile infection in mice by modulating the pathogen's colonization, growth, and virulence to impact host survival. Gnotobiotic mice colonized with the amino acid fermenter Paraclostridium bifermentans survive infection with reduced disease severity, while mice colonized with the butyrate-producer, Clostridium sardiniense, succumb more rapidly. Systematic in vivo analyses revealed how each commensal alters the gut-nutrient environment to modulate the pathogen's metabolism, gene regulatory networks, and toxin production. Oral administration of P. bifermentans rescues conventional, clindamycin-treated mice from lethal C. difficile infection in a manner similar to that of monocolonized animals, thereby supporting the therapeutic potential of this commensal species. Our findings lay the foundation for mechanistically informed therapies to counter C. difficile disease using systems biology approaches to define host-commensal-pathogen interactions in vivo.


Subject(s)
Clostridiales/physiology , Clostridioides difficile/pathogenicity , Clostridium Infections/microbiology , Clostridium Infections/therapy , Clostridium/physiology , Symbiosis , Amino Acids/metabolism , Animals , Arginine/metabolism , Butyrates/metabolism , Cecum/metabolism , Cecum/microbiology , Clostridiales/growth & development , Clostridioides difficile/genetics , Clostridioides difficile/physiology , Clostridium/growth & development , Fermentation , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Gene Regulatory Networks , Germ-Free Life , Mice , Severity of Illness Index , Systems Biology , Virulence
20.
mSphere ; 6(5): e0066921, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34704776

ABSTRACT

Clostridioides difficile infection (CDI) is the most common hospital-acquired infection in the United States. Antibiotic-induced dysbiosis is the primary cause of susceptibility, and fecal microbiota transplantation (FMT) has emerged as an effective therapy for recurrence. We previously demonstrated in the mouse model of CDI that antibiotic-induced dysbiosis reduced colonic expression of interleukin 25 (IL-25) and that FMT protected in part by restoring IL-25 signaling. Here, we conducted a prospective study in humans to test if FMT induced IL-25 expression in the colons of patients with recurrent CDI (rCDI). Colonic biopsy specimens and blood were collected at the time of FMT and 60 days later. Colon biopsy specimens were analyzed for IL-25 protein levels, total tissue transcriptome, and epithelium-associated microbiota before and after FMT, and peripheral immune cells were immunophenotyped. FMT increased alpha diversity of the colonic microbiota and levels of IL-25 in colonic tissue. In addition, FMT increased expression of homeostatic genes and repressed inflammatory genes. Finally, circulating Th17 cells were decreased post-FMT. The increase in levels of the cytokine IL-25 accompanied by decreased inflammation is consistent with FMT acting in part to protect from recurrent CDI via restoration of commensal activation of type 2 immunity. IMPORTANCE Fecal microbiota transplantation (FMT) is an effective treatment for C. difficile infection for most patients; however, introducing a complex mixture of microbes also has had unintended consequences for some patients. Attempts to create a standardized probiotic therapeutic that recapitulates the efficacy of FMT have been unsuccessful to date. We sought to understand what immune markers are changed in patients undergoing FMT to treat recurrent C. difficile infection and identified an immune signaling molecule, IL-25, that was restored by FMT. This finding indicates that adjunctive therapy with IL-25 could be useful in treating C. difficile infection.


Subject(s)
Clostridium Infections/therapy , Fecal Microbiota Transplantation , Gastrointestinal Microbiome/physiology , Interleukin-17/metabolism , Aged , Anti-Bacterial Agents/therapeutic use , Clostridioides difficile/drug effects , Clostridioides difficile/pathogenicity , Clostridium Infections/metabolism , Clostridium Infections/microbiology , Colon/pathology , Feces/microbiology , Female , Humans , Inflammation/metabolism , Inflammation/microbiology , Inflammation/therapy , Male , Middle Aged , Prospective Studies , Recurrence , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...