Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.722
Filter
1.
Nat Commun ; 15(1): 5502, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951519

ABSTRACT

Resistance to chemotherapy has been a major hurdle that limits therapeutic benefits for many types of cancer. Here we systematically identify genetic drivers underlying chemoresistance by performing 30 genome-scale CRISPR knockout screens for seven chemotherapeutic agents in multiple cancer cells. Chemoresistance genes vary between conditions primarily due to distinct genetic background and mechanism of action of drugs, manifesting heterogeneous and multiplexed routes towards chemoresistance. By focusing on oxaliplatin and irinotecan resistance in colorectal cancer, we unravel that evolutionarily distinct chemoresistance can share consensus vulnerabilities identified by 26 second-round CRISPR screens with druggable gene library. We further pinpoint PLK4 as a therapeutic target to overcome oxaliplatin resistance in various models via genetic ablation or pharmacological inhibition, highlighting a single-agent strategy to antagonize evolutionarily distinct chemoresistance. Our study not only provides resources and insights into the molecular basis of chemoresistance, but also proposes potential biomarkers and therapeutic strategies against such resistance.


Subject(s)
Antineoplastic Agents , CRISPR-Cas Systems , Drug Resistance, Neoplasm , Irinotecan , Oxaliplatin , Protein Serine-Threonine Kinases , Drug Resistance, Neoplasm/genetics , Humans , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Oxaliplatin/pharmacology , Irinotecan/pharmacology , CRISPR-Cas Systems/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Animals , Neoplasms/genetics , Neoplasms/drug therapy , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Mice , Gene Expression Regulation, Neoplastic/drug effects
2.
BMC Biol ; 22(1): 144, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956550

ABSTRACT

BACKGROUND: Diurnal and nocturnal mammals have evolved distinct pathways to optimize survival for their chronotype-specific lifestyles. Conventional rodent models, being nocturnal, may not sufficiently recapitulate the biology of diurnal humans in health and disease. Although diurnal rodents are potentially advantageous for translational research, until recently, they have not been genetically tractable. The present study aims to address this major limitation by developing experimental procedures necessary for genome editing in a well-established diurnal rodent model, the Nile grass rat (Arvicanthis niloticus). RESULTS: A superovulation protocol was established, which yielded nearly 30 eggs per female grass rat. Fertilized eggs were cultured in a modified rat 1-cell embryo culture medium (mR1ECM), in which grass rat embryos developed from the 1-cell stage into blastocysts. A CRISPR-based approach was then used for gene editing in vivo and in vitro, targeting Retinoic acid-induced 1 (Rai1), the causal gene for Smith-Magenis Syndrome, a neurodevelopmental disorder. The CRISPR reagents were delivered in vivo by electroporation using an improved Genome-editing via Oviductal Nucleic Acids Delivery (i-GONAD) method. The in vivo approach produced several edited founder grass rats with Rai1 null mutations, which showed stable transmission of the targeted allele to the next generation. CRISPR reagents were also microinjected into 2-cell embryos in vitro. Large deletion of the Rai1 gene was confirmed in 70% of the embryos injected, demonstrating high-efficiency genome editing in vitro. CONCLUSION: We have established a set of methods that enabled the first successful CRISPR-based genome editing in Nile grass rats. The methods developed will guide future genome editing of this and other diurnal rodent species, which will promote greater utility of these models in basic and translational research.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , Gene Editing/methods , Female , Clustered Regularly Interspaced Short Palindromic Repeats
4.
Biosens Bioelectron ; 261: 116449, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38850734

ABSTRACT

Pathogens and contaminants in food and the environment present significant challenges to human health, necessitating highly sensitive and specific diagnostic methods. Traditional approaches often struggle to meet these requirements. However, the emergence of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system has revolutionized nucleic acid diagnostics. The present review provides a comprehensive overview of the biological sensing technology based on the CRISPR/Cas system and its potential applications in public health-related analysis. Additionally, it explores the enzymatic cleavage capabilities mediated by Cas proteins, highlighting the promising prospects of CRISPR technology in addressing bioanalysis challenges. We discuss commonly used CRISPR-Cas proteins and elaborate on their application in detecting foodborne bacteria, viruses, toxins, other chemical pollution, and drug-resistant bacteria. Furthermore, we highlight the advantages of CRISPR-based sensors in the field of public health-related analysis and propose that integrating CRISPR-Cas biosensing technology with other technologies could facilitate the development of more diverse detection platforms, thereby indicating promising prospects in this field.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , Public Health , Biosensing Techniques/methods , CRISPR-Cas Systems/genetics , Humans , Bacteria/genetics , Bacteria/isolation & purification , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Viruses/genetics , Viruses/isolation & purification
5.
ACS Synth Biol ; 13(6): 1633-1646, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38860462

ABSTRACT

A growing number of applications require simultaneous detection of multiplexed nucleic acid targets in a single reaction, which enables higher information density in combination with reduced assay time and cost. Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-Cas system have broad applications for the detection of nucleic acids due to their strong specificity, high sensitivity, and excellent programmability. However, realizing multiplexed detection is still challenging for the CRISPR-Cas system due to the nonspecific collateral cleavage activity, limited signal reporting strategies, and possible cross-reactions. In this review, we summarize the principles, strategies, and features of multiplexed detection based on the CRISPR-Cas system and further discuss the challenges and perspective.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , CRISPR-Cas Systems/genetics , Biosensing Techniques/methods , Nucleic Acids/analysis , Nucleic Acids/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics
6.
Mol Metab ; 85: 101964, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823776

ABSTRACT

OBJECTIVE: Cancer cells must maintain lipid supplies for their proliferation and do so by upregulating lipogenic gene programs. The sterol regulatory element-binding proteins (SREBPs) act as modulators of lipid homeostasis by acting as transcriptional activators of genes required for fatty acid and cholesterol synthesis and uptake. SREBPs have been recognized as chemotherapeutic targets in multiple cancers, however it is not well understood which SREBP target genes are essential for tumorigenesis. In this study, we examined the requirement of SREBP target genes for pancreatic ductal adenocarcinoma (PDAC) tumor growth. METHODS: Here we constructed a custom CRISPR knockout library containing known SREBP target genes and performed in vitro 2D culture and in vivo orthotopic xenograft CRISPR screens using a patient-derived PDAC cell line. In vitro, we grew cells in medium supplemented with 10% fetal bovine serum (FBS) or 10% lipoprotein-deficient serum (LPDS) to examine differences in gene essentiality in different lipid environments. In vivo, we injected cells into the pancreata of nude mice and collected tumors after 4 weeks. RESULTS: We identified terpenoid backbone biosynthesis genes as essential for PDAC tumor development. Specifically, we identified the non-sterol isoprenoid product of the mevalonate pathway, geranylgeranyl diphosphate (GGPP), as an essential lipid for tumor growth. Mechanistically, we observed that restricting mevalonate pathway activity using statins and SREBP inhibitors synergistically induced apoptosis and caused disruptions in small G protein prenylation that have pleiotropic effects on cellular signaling pathways. Finally, we demonstrated that geranylgeranyl diphosphate synthase 1 (GGPS1) knockdown significantly reduces tumor burden in an orthotopic xenograft mouse model. CONCLUSIONS: These findings indicate that PDAC tumors selectively require GGPP over other lipids such as cholesterol and fatty acids and that this is a targetable vulnerability of pancreatic cancer cells.


Subject(s)
Cell Proliferation , Mice, Nude , Pancreatic Neoplasms , Polyisoprenyl Phosphates , Humans , Animals , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Mice , Cell Line, Tumor , Cell Proliferation/drug effects , Polyisoprenyl Phosphates/metabolism , Polyisoprenyl Phosphates/pharmacology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Sterol Regulatory Element Binding Proteins/metabolism , Sterol Regulatory Element Binding Proteins/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics
7.
Sci Immunol ; 9(96): eadd6774, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875317

ABSTRACT

Pro-inflammatory CD4+ T cells are major drivers of autoimmune diseases, yet therapies modulating T cell phenotypes to promote an anti-inflammatory state are lacking. Here, we identify T helper 17 (TH17) cell plasticity in the kidneys of patients with antineutrophil cytoplasmic antibody-associated glomerulonephritis on the basis of single-cell (sc) T cell receptor analysis and scRNA velocity. To uncover molecules driving T cell polarization and plasticity, we established an in vivo pooled scCRISPR droplet sequencing (iCROP-seq) screen and applied it to mouse models of glomerulonephritis and colitis. CRISPR-based gene targeting in TH17 cells could be ranked according to the resulting transcriptional perturbations, and polarization biases into T helper 1 (TH1) and regulatory T cells could be quantified. Furthermore, we show that iCROP-seq can facilitate the identification of therapeutic targets by efficient functional stratification of genes and pathways in a disease- and tissue-specific manner. These findings uncover TH17 to TH1 cell plasticity in the human kidney in the context of renal autoimmunity.


Subject(s)
Single-Cell Analysis , Th17 Cells , Animals , Humans , Mice , Th17 Cells/immunology , Glomerulonephritis/immunology , Glomerulonephritis/genetics , Cell Plasticity/immunology , Cell Plasticity/genetics , Kidney/immunology , Kidney/pathology , Mice, Inbred C57BL , CRISPR-Cas Systems , Colitis/immunology , Colitis/genetics , Inflammation/immunology , Inflammation/genetics , Female , Male , Clustered Regularly Interspaced Short Palindromic Repeats/immunology
8.
Proc Biol Sci ; 291(2025): 20240500, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38889790

ABSTRACT

Gene drive alleles that can bias their own inheritance could engineer populations for control of disease vectors, invasive species and agricultural pests. There are successful examples of suppression drives and confined modification drives, but developing confined suppression drives has proven more difficult. However, CRISPR-based toxin-antidote dominant embryo (TADE) suppression drive may fill this niche. It works by targeting and disrupting a haplolethal target gene in the germline with its gRNAs while rescuing this target. It also disrupts a female fertility gene by driving insertion or additional gRNAs. Here, we used a reaction-diffusion model to assess drive performance in continuous space, where outcomes can be substantially different from those in panmictic populations. We measured drive wave speed and found that moderate fitness costs or target gene disruption in the early embryo from maternally deposited nuclease can eliminate the drive's ability to form a wave of advance. We assessed the required release size, and finally we investigated migration corridor scenarios. It is often possible for the drive to suppress one population and then persist in the corridor without invading the second population, a potentially desirable outcome. Thus, even imperfect variants of TADE suppression drive may be excellent candidates for confined population suppression.


Subject(s)
CRISPR-Cas Systems , Gene Drive Technology , Animals , Models, Genetic , Clustered Regularly Interspaced Short Palindromic Repeats
9.
ACS Synth Biol ; 13(6): 1893-1905, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38825826

ABSTRACT

Gas-fermenting Clostridium species hold tremendous promise for one-carbon biomanufacturing. To unlock their full potential, it is crucial to unravel and optimize the intricate regulatory networks that govern these organisms; however, this aspect is currently underexplored. In this study, we employed pooled CRISPR interference (CRISPRi) screening to uncover a wide range of functional transcription factors (TFs) in Clostridium ljungdahlii, a representative species of gas-fermenting Clostridium, with a special focus on TFs associated with the utilization of carbon resources. Among the 425 TF candidates, we identified 75 and 68 TF genes affecting the heterotrophic and autotrophic growth of C. ljungdahlii, respectively. We focused our attention on two of the screened TFs, NrdR and DeoR, and revealed their pivotal roles in the regulation of deoxyribonucleoside triphosphates (dNTPs) supply, carbon fixation, and product synthesis in C. ljungdahlii, thereby influencing the strain performance in gas fermentation. Based on this, we proceeded to optimize the expression of deoR in C. ljungdahlii by adjusting its promoter strength, leading to an improved growth rate and ethanol synthesis of C. ljungdahlii when utilizing syngas. This study highlights the effectiveness of pooled CRISPRi screening in gas-fermenting Clostridium species, expanding the horizons for functional genomic research in these industrially important bacteria.


Subject(s)
CRISPR-Cas Systems , Clostridium , Fermentation , Transcription Factors , Clostridium/genetics , Clostridium/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , CRISPR-Cas Systems/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Promoter Regions, Genetic/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Metabolic Engineering/methods , Gases/metabolism
10.
J Mol Diagn ; 26(7): 599-612, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38901927

ABSTRACT

The high disease burden of influenza virus poses a significant threat to human health. Optimized diagnostic technologies that combine speed, sensitivity, and specificity with minimal equipment requirements are urgently needed to detect the many circulating species, subtypes, and variants of influenza at the point of need. Here, we introduce such a method using Streamlined Highlighting of Infections to Navigate Epidemics (SHINE), a clustered regularly interspaced short palindromic repeats (CRISPR)-based RNA detection platform. Four SHINE assays were designed and validated for the detection and differentiation of clinically relevant influenza species (A and B) and subtypes (H1N1 and H3N2). When tested on clinical samples, these optimized assays achieved 100% concordance with quantitative RT-PCR. Duplex Cas12a/Cas13a SHINE assays were also developed to detect two targets simultaneously. This study demonstrates the utility of this duplex assay in discriminating two alleles of an oseltamivir resistance (H275Y) mutation as well as in simultaneously detecting influenza A and human RNAse P in patient samples. These assays have the potential to expand influenza detection outside of clinical laboratories for enhanced influenza diagnosis and surveillance.


Subject(s)
CRISPR-Cas Systems , Influenza, Human , Humans , Influenza, Human/diagnosis , Influenza, Human/virology , CRISPR-Cas Systems/genetics , Sensitivity and Specificity , RNA, Viral/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Molecular Diagnostic Techniques/methods , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza A virus/classification
11.
J Nanobiotechnology ; 22(1): 346, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898493

ABSTRACT

Chemoresistance remains a significant challenge for effective breast cancer treatment which leads to cancer recurrence. CRISPR-directed gene editing becomes a powerful tool to reduce chemoresistance by reprogramming the tumor microenvironment. Previous research has revealed that Chinese herbal extracts have significant potential to overcome tumor chemoresistance. However, the therapeutic efficacy is often limited due to their poor tumor targeting and in vivo durability. Here we have developed a tumor microenvironment responsive nanoplatform (H-MnO2(ISL + DOX)-PTPN2@HA, M(I + D)PH) for nano-herb and CRISPR codelivery to reduce chemoresistance. Synergistic tumor inhibitory effects were achieved by the treatment of isoliquiritigenin (ISL) with doxorubicin (DOX), which were enhanced by CRISPR-based gene editing to target protein tyrosine phosphatase non-receptor type 2 (PTPN2) to initiate long-term immunotherapy. Efficient PTPN2 depletion was observed after treatment with M(I + D)PH nanoparticles, which resulted in the recruitment of intratumoral infiltrating lymphocytes and an increase of proinflammatory cytokines in the tumor tissue. Overall, our nanoparticle platform provides a diverse technique for accomplishing synergistic chemotherapy and immunotherapy, which offers an effective treatment alternative for malignant neoplasms.


Subject(s)
Doxorubicin , Immunotherapy , Tumor Microenvironment , Tumor Microenvironment/drug effects , Animals , Immunotherapy/methods , Doxorubicin/pharmacology , Humans , Mice , Cell Line, Tumor , Female , Mice, Inbred BALB C , Nanoparticles/chemistry , Breast Neoplasms/therapy , Breast Neoplasms/drug therapy , Gene Editing/methods , CRISPR-Cas Systems , Manganese Compounds/chemistry , Drug Resistance, Neoplasm/drug effects , Drug Delivery Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Oxides
12.
PLoS Comput Biol ; 20(6): e1012214, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38848440

ABSTRACT

CRISPR is a gene editing technology which enables precise in-vivo genome editing; but its potential is hampered by its relatively low specificity and sensitivity. Improving CRISPR's on-target and off-target effects requires a better understanding of its mechanism and determinants. Here we demonstrate, for the first time, the chromosomal 3D spatial structure's association with CRISPR's cleavage efficiency, and its predictive capabilities. We used high-resolution Hi-C data to estimate the 3D distance between different regions in the human genome and utilized these spatial properties to generate 3D-based features, characterizing each region's density. We evaluated these features based on empirical, in-vivo CRISPR efficiency data and compared them to 425 features used in state-of-the-art models. The 3D features ranked in the top 13% of the features, and significantly improved the predictive power of LASSO and xgboost models trained with these features. The features indicated that sites with lower spatial density demonstrated higher efficiency. Understanding how CRISPR is affected by the 3D DNA structure provides insight into CRISPR's mechanism in general and improves our ability to correctly predict CRISPR's cleavage as well as design sgRNAs for therapeutic and scientific use.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Genome, Human , Humans , CRISPR-Cas Systems/genetics , Gene Editing/methods , Genome, Human/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Computational Biology/methods , Genomics/methods , Nucleic Acid Conformation , DNA/genetics , DNA/chemistry , DNA/metabolism
14.
Mol Cell ; 84(12): 2353-2367.e5, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38834066

ABSTRACT

CRISPR-associated transposons (CASTs) are mobile genetic elements that co-opt CRISPR-Cas systems for RNA-guided DNA transposition. CASTs integrate large DNA cargos into the attachment (att) site independently of homology-directed repair and thus hold promise for eukaryotic genome engineering. However, the functional diversity and complexity of CASTs hinder an understanding of their mechanisms. Here, we present the high-resolution cryoelectron microscopy (cryo-EM) structure of the reconstituted ∼1 MDa post-transposition complex of the type V-K CAST, together with different assembly intermediates and diverse TnsC filament lengths, thus enabling the recapitulation of the integration complex formation. The results of mutagenesis experiments probing the roles of specific residues and TnsB-binding sites show that transposition activity can be enhanced and suggest that the distance between the PAM and att sites is determined by the lengths of the TnsB C terminus and the TnsC filament. This singular model of RNA-guided transposition provides a foundation for repurposing the system for genome-editing applications.


Subject(s)
CRISPR-Cas Systems , Cryoelectron Microscopy , DNA Transposable Elements , DNA Transposable Elements/genetics , Binding Sites , Gene Editing/methods , Models, Molecular , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Protein Conformation , Nucleic Acid Conformation
15.
J Vis Exp ; (207)2024 May 17.
Article in English | MEDLINE | ID: mdl-38829124

ABSTRACT

Functional genomics screening offers a powerful approach to probe gene function and relies on the construction of genome-wide plasmid libraries. Conventional approaches for plasmid library construction are time-consuming and laborious. Therefore, we recently developed a simple and efficient method, CRISPR-based modular assembly (CRISPRmass), for high-throughput construction of a genome-wide upstream activating sequence-complementary DNA/open reading frame (UAS-cDNA/ORF) plasmid library. Here, we present a protocol for CRISPRmass, taking as an example the construction of a GAL4/UAS-based UAS-cDNA/ORF plasmid library. The protocol includes massively parallel two-step test tube reactions followed by bacterial transformation. The first step is to linearize the existing complementary DNA (cDNA) or open reading frame (ORF) cDNA or ORF library plasmids by cutting the shared upstream vector sequences adjacent to the 5' end of cDNAs or ORFs using CRISPR/Cas9 together with single guide RNA (sgRNA), and the second step is to insert a UAS module into the linearized cDNA or ORF plasmids using a single step reaction. CRISPRmass allows the simple, fast, efficient, and cost-effective construction of various plasmid libraries. The UAS-cDNA/ORF plasmid library can be utilized for gain-of-function screening in cultured cells and for constructing a genome-wide transgenic UAS-cDNA/ORF library in Drosophila.


Subject(s)
CRISPR-Cas Systems , Gene Library , Open Reading Frames , Plasmids , Plasmids/genetics , Animals , CRISPR-Cas Systems/genetics , Open Reading Frames/genetics , DNA, Complementary/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Drosophila melanogaster/genetics
17.
CRISPR J ; 7(3): 156-167, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38922054

ABSTRACT

CRISPR-Cas technology is a widely utilized gene-editing tool that involves gRNA-guided sequence recognition and Cas nuclease-mediated cleavage. The design and evaluation of gRNA are essential for enhancing CRISPR/Cas editing efficiency. Various assays such as single-strand annealing, in vitro cleavage, and T7 endonuclease I (T7EI) are commonly used to assess gRNA-mediated Cas protein cleavage activity. In this study, a firefly luciferase and Renilla luciferase co-expressed and a cleavage-based single-plasmid dual-luciferase surrogate reporter was built to evaluate the gRNA-mediated Cas12a cleavage efficiency. The cleavage activities of CRISPR-Cas12a can be quantitatively determined by the recovery degree of firefly luciferase activity. The cleavage efficiency of CRISPR-Cas12a can be quantitatively measured by the recovery of firefly luciferase activity. By using this system, the cleavage efficiency of CRISPR-Cas12a on hepatitis B virus (HBV)/D expression plasmid was evaluated, revealing a negative correlation between gRNA cleavage efficiency and HBV gene expression measured using an enzyme-linked immunosorbent assay. This simple, efficient, and quantifiable system only requires the dual-luciferase vector and CRISPR-Cas12a vector, making it a valuable tool for selecting effective gRNAs for gene editing.


Subject(s)
CRISPR-Associated Proteins , CRISPR-Cas Systems , Gene Editing , Genes, Reporter , Luciferases , Plasmids , RNA, Guide, CRISPR-Cas Systems , Gene Editing/methods , RNA, Guide, CRISPR-Cas Systems/genetics , Plasmids/genetics , Humans , Luciferases/genetics , Luciferases/metabolism , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , Hepatitis B virus/genetics , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
18.
CRISPR J ; 7(3): 168-178, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38922052

ABSTRACT

The revolutionary CRISPR-Cas9 technology has revolutionized genetic engineering, and it holds immense potential for therapeutic interventions. However, the presence of off-target mutations and mismatch capacity poses significant challenges to its safe and precise implementation. In this study, we explore the implications of off-target effects on critical gene regions, including exons, introns, and intergenic regions. Leveraging a benchmark dataset and using innovative data preprocessing techniques, we have put forth the advantages of categorical encoding over one-hot encoding in training machine learning classifiers. Crucially, we use latent class analysis (LCA) to uncover subclasses within the off-target range, revealing distinct patterns of gene region disruption. Our comprehensive approach not only highlights the critical role of model complexity in CRISPR applications but also offers a transformative off-target scoring procedure based on ML classifiers and LCA. By bridging the gap between traditional target-off scoring and comprehensive model analysis, our study advances the understanding of off-target effects and opens new avenues for precision genome editing in diverse biological contexts. This work represents a crucial step toward ensuring the safety and efficacy of CRISPR-based therapies, underscoring the importance of responsible genetic manipulation for future therapeutic applications.


Subject(s)
CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing , Mutation , RNA, Guide, CRISPR-Cas Systems , RNA, Guide, CRISPR-Cas Systems/genetics , Gene Editing/methods , Humans , Exons , Introns , Machine Learning
19.
PLoS Genet ; 20(6): e1011314, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38857306

ABSTRACT

INTRODUCTION: Glioblastoma (GBM) invasion studies have focused on coding genes, while few studies evaluate long non-coding RNAs (lncRNAs), transcripts without protein-coding potential, for role in GBM invasion. We leveraged CRISPR-interference (CRISPRi) to evaluate invasive function of GBM-associated lncRNAs in an unbiased functional screen, characterizing and exploring the mechanism of identified candidates. METHODS: We implemented a CRISPRi lncRNA loss-of-function screen evaluating association of lncRNA knockdown (KD) with invasion capacity in Matrigel. Top screen candidates were validated using CRISPRi and oligonucleotide(ASO)-mediated knockdown in three tumor lines. Clinical relevance of candidates was assessed via The Cancer Genome Atlas(TCGA) and Genotype-Tissue Expression(GTEx) survival analysis. Mediators of lncRNA effect were identified via differential expression analysis following lncRNA KD and assessed for tumor invasion using knockdown and rescue experiments. RESULTS: Forty-eight lncRNAs were significantly associated with 33-83% decrease in invasion (p<0.01) upon knockdown. The top candidate, LINC03045, identified from effect size and p-value, demonstrated 82.7% decrease in tumor cell invasion upon knockdown, while LINC03045 expression was significantly associated with patient survival and tumor grade(p<0.0001). RNAseq analysis of LINC03045 knockdown revealed that WASF3, previously implicated in tumor invasion studies, was highly correlated with lncRNA expression, while WASF3 KD was associated with significant decrease in invasion. Finally, WASF3 overexpression demonstrated rescue of invasive function lost with LINC03045 KD. CONCLUSION: CRISPRi screening identified LINC03045, a previously unannotated lncRNA, as critical to GBM invasion. Gene expression is significantly associated with tumor grade and survival. RNA-seq and mechanistic studies suggest that this novel lncRNA may regulate invasion via WASF3.


Subject(s)
Gene Expression Regulation, Neoplastic , Glioblastoma , Neoplasm Invasiveness , RNA, Long Noncoding , RNA, Long Noncoding/genetics , Humans , Glioblastoma/genetics , Glioblastoma/pathology , Neoplasm Invasiveness/genetics , Cell Line, Tumor , Brain Neoplasms/genetics , Brain Neoplasms/pathology , CRISPR-Cas Systems , Gene Knockdown Techniques , Cell Movement/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics
20.
Nat Commun ; 15(1): 5319, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909033

ABSTRACT

Although CRISPR-dCas13, the RNA-guided RNA-binding protein, was recently exploited as a translation-level gene expression modulator, it has still been difficult to precisely control the level due to the lack of detailed characterization. Here, we develop a synthetic tunable translation-level CRISPR interference (Tl-CRISPRi) system based on the engineered guide RNAs that enable precise and predictable down-regulation of mRNA translation. First, we optimize the Tl-CRISPRi system for specific and multiplexed repression of genes at the translation level. We also show that the Tl-CRISPRi system is more suitable for independently regulating each gene in a polycistronic operon than the transcription-level CRISPRi (Tx-CRISPRi) system. We further engineer the handle structure of guide RNA for tunable and predictable repression of various genes in Escherichia coli and Vibrio natriegens. This tunable Tl-CRISPRi system is applied to increase the production of 3-hydroxypropionic acid (3-HP) by 14.2-fold via redirecting the metabolic flux, indicating the usefulness of this system for the flux optimization in the microbial cell factories based on the RNA-targeting machinery.


Subject(s)
CRISPR-Cas Systems , Escherichia coli , Protein Biosynthesis , RNA, Guide, CRISPR-Cas Systems , Vibrio , Escherichia coli/genetics , Escherichia coli/metabolism , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , Vibrio/genetics , Vibrio/metabolism , Gene Expression Regulation, Bacterial , RNA, Messenger/genetics , RNA, Messenger/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Operon/genetics , Genetic Engineering/methods , Lactic Acid/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...