Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.847
Filter
1.
ACS Appl Bio Mater ; 7(7): 4307-4322, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38954747

ABSTRACT

In the realm of clinical applications, the concern surrounding biomedical device-related infections (BDI) is paramount. To mitigate the risk associated with BDI, enhancing surface characteristics such as lubrication and antibacterial efficacy is considered as a strategic approach. This study delineated the synthesis of a multifunctional copolymer, embodying self-adhesive, lubricating, and antibacterial properties, achieved through free radical polymerization and a carbodiimide coupling reaction. The copolymer was adeptly modified on the surface of stainless steel 316L (SS316L) substrates by employing a facile dip-coating technique. Comprehensive characterizations were performed by using an array of analytical techniques including Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, optical interferometry, scanning electron microscopy, and atomic force microscopy. Nanoscale tribological assessments revealed a notable reduction in the value of the friction coefficient of the copolymer-coated SS316L substrates compared to bare SS316L samples. The coating demonstrated exceptional resistance to protein adsorption, as evidenced in protein contamination models employing bovine serum albumin and fibrinogen. The bactericidal efficacy of the copolymer-modified surfaces was significantly improved against pathogenic strains such as Staphylococcus aureus and Escherichia coli. Additionally, in vitro evaluations of blood compatibility and cellular compatibility underscored the remarkable anticoagulant performance and biocompatibility. Collectively, these findings indicated that the developed copolymer coating represented a promising candidate, with its facile modification approach, for augmenting lubrication and antifouling properties in the field of biomedical implant applications.


Subject(s)
Anti-Bacterial Agents , Coated Materials, Biocompatible , Escherichia coli , Materials Testing , Staphylococcus aureus , Surface Properties , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Particle Size , Prostheses and Implants , Humans , Microbial Sensitivity Tests , Animals , Polymers/chemistry , Polymers/pharmacology , Stainless Steel/chemistry , Lubrication , Serum Albumin, Bovine/chemistry
2.
ACS Appl Bio Mater ; 7(7): 4642-4653, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38967050

ABSTRACT

Titanium-based implants have long been studied and used for applications in bone tissue engineering, thanks to their outstanding mechanical properties and appropriate biocompatibility. However, many implants struggle with osseointegration and attachment and can be vulnerable to the development of infections. In this work, we have developed a composite coating via electrophoretic deposition, which is both bioactive and antibacterial. Mesoporous bioactive glass particles with gentamicin were electrophoretically deposited onto a titanium substrate. In order to validate the hypothesis that the quantity of particles in the coatings is sufficiently high and uniform in each deposition process, an easy-to-use image processing algorithm was designed to minimize human dependence and ensure reproducible results. The addition of loaded mesoporous particles did not affect the good adhesion of the coating to the substrate although roughness was clearly enhanced. After 7 days of immersion, the composite coatings were almost dissolved and released, but phosphate-related compounds started to nucleate at the surface. With a simple and low-cost technique like electrophoretic deposition, and optimized stir and suspension times, we were able to synthesize a hemocompatible coating that significantly improves the antibacterial activity when compared to the bare substrate for both Gram-positive and Gram-negative bacteria.


Subject(s)
Anti-Bacterial Agents , Chitosan , Electrophoresis , Gentamicins , Glass , Materials Testing , Nanoparticles , Particle Size , Surface Properties , Titanium , Gentamicins/pharmacology , Gentamicins/chemistry , Titanium/chemistry , Titanium/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Glass/chemistry , Nanoparticles/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Porosity , Microbial Sensitivity Tests , Humans , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Prostheses and Implants , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
3.
Molecules ; 29(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38999030

ABSTRACT

Coatings with xenogenic materials, made of detonation nanodiamonds, provide additional strength and increase elasticity. A functionally developed surface of nanodiamonds makes it possible to apply antibiotics. Previous experiments show the stability of such coatings; however, studies on stability in the bloodstream and calcification of the material in natural conditions have yet to be conducted. Tritium-labeled nanodiamonds (negative and positive) were obtained by the tritium activation method and used to develop coatings for a pork aorta to analyze their stability in a pig's bloodstream using a radiotracer technique. A chitosan layer was applied from a solution of carbonic acid under high-pressure conditions to prevent calcification. The obtained materials were used to prepare a porcine conduit, which was surgically stitched inside the pig's aorta for four months. The aorta samples, including nanodiamond-coated and control samples, were analyzed for nanodiamond content and calcium, using the radiotracer and ICP-AES methods. A histological analysis of the materials was also performed. The obtained coatings illustrate a high in vivo stability and low levels of calcification for all types of nanodiamonds. Even though we did not use additional antibiotics in this case, the development of infection was not observed for negatively charged nanodiamonds, opening up prospects for their use in developing coatings.


Subject(s)
Coated Materials, Biocompatible , Nanodiamonds , Tritium , Animals , Nanodiamonds/chemistry , Swine , Coated Materials, Biocompatible/chemistry , Tritium/chemistry , Aorta , Bioprosthesis , Chitosan/chemistry , Heart Valve Prosthesis
4.
J Biomed Mater Res B Appl Biomater ; 112(7): e35448, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38968133

ABSTRACT

Traditional decellularized bioscaffolds possessing intact vascular networks and unique architecture have been extensively studied as conduits for repairing nerve damage. However, they are limited by the absence of electrical conductivity, which is crucial for proper functioning of nervous tissue. This study focuses on investigating decellularized umbilical cord arteries by applying coatings of graphene oxide (GO) and reduced graphene oxide (RGO) to their inner surfaces. This resulted in a homogeneous GO coating that fully covered the internal lumen of the arteries. The results of electrical measurements demonstrated that the conductivity of the scaffolds could be significantly enhanced by incorporating RGO and GO conductive sheets. At a low frequency of 0.1 Hz, the electrical resistance level of the coated scaffolds decreased by 99.8% with RGO and 98.21% with GO, compared with uncoated scaffolds. Additionally, the mechanical properties of the arteries improved by 24.69% with GO and 32.9% with RGO after the decellularization process. The GO and RGO coatings did not compromise the adhesion of endothelial cells and promoted cell growth. The cytotoxicity tests revealed that cell survival rate increased over time with RGO, while it decreased with GO, indicating the time-dependent effect on the cytotoxicity of GO and RGO. Blood compatibility evaluations showed that graphene nanomaterials did not induce hemolysis but exhibited some tendency toward blood coagulation.


Subject(s)
Coated Materials, Biocompatible , Electric Conductivity , Graphite , Umbilical Arteries , Graphite/chemistry , Humans , Coated Materials, Biocompatible/chemistry , Human Umbilical Vein Endothelial Cells/metabolism , Tissue Scaffolds/chemistry , Materials Testing , Umbilical Cord/cytology , Animals
5.
Sci Rep ; 14(1): 15178, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38987553

ABSTRACT

The evolution of endovascular therapies, particularly in the field of intracranial aneurysm treatment, has been truly remarkable and is characterized by the development of various stents. However, ischemic complications related to thrombosis or downstream emboli pose a challenge for the broader clinical application of such stents. Despite advancements in surface modification technologies, an ideal coating that fulfills all the desired requirements, including anti-thrombogenicity and swift endothelialization, has not been available. To address these issues, we investigated a new coating comprising 3-aminopropyltriethoxysilane (APTES) with both anti-thrombogenic and cell-adhesion properties. We assessed the anti-thrombogenic property of the coating using an in vitro blood loop model by evaluating the platelet count and the level of the thrombin-antithrombin (TAT) complex, and investigating thrombus formation on the surface using scanning electron microscopy (SEM). We then assessed endothelial cell adhesion on the metal surfaces. In vitro blood tests revealed that, compared to a bare stent, the coating significantly inhibited platelet reduction and thrombus formation; more human serum albumin spontaneously adhered to the coated surface to block thrombogenic activation in the blood. Cell adhesion tests also indicated a significant increase in the number of cells adhering to the APTES-coated surfaces compared to the numbers adhering to either the bare stent or the stent coated with an anti-fouling phospholipid polymer. Finally, we performed an in vivo safety test by implanting coated stents into the internal thoracic arteries and ascending pharyngeal arteries of minipigs, and subsequently assessing the health status and vessel patency of the arteries by angiography over the course of 1 week. We found that there were no adverse effects on the pigs and the vascular lumens of their vessels were well maintained in the group with APTES-coated stents. Therefore, our new coating exhibited both high anti-thrombogenicity and cell-adhesion properties, which fulfill the requirements of an implantable stent.


Subject(s)
Cell Adhesion , Coated Materials, Biocompatible , Propylamines , Silanes , Stents , Thrombosis , Silanes/chemistry , Silanes/pharmacology , Animals , Cell Adhesion/drug effects , Humans , Stents/adverse effects , Swine , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Propylamines/pharmacology , Propylamines/chemistry , Adsorption , Thrombosis/prevention & control , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/chemistry , Blood Platelets/drug effects , Blood Platelets/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism
6.
Int J Mol Sci ; 25(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39063169

ABSTRACT

Implant surface nanofiber (NF) coatings represent an alternative way to prevent/treat periprosthetic joint infection (PJI) via local drug release. We developed and characterized a coaxial erythromycin (EM)-doped PLGA/PCL-PVA NF coating. The purpose of this study was to determine the efficacy of EM-NF coatings (EM0, no EM, EM100 (100 mg/mL), and EM1000 (1000 mg/mL) wt/wt) in a rat PJI model. A strong bond of the EM-NF coating to the surface of titanium (Ti) pins was confirmed by in vitro mechanical testing. Micro-computed tomography (mCT) analysis showed that both EM100 and EM1000 NF effectively reduced periprosthetic osteolysis compared to EM0 at 8 and 16 weeks after implantation. Histology showed that EM100 and EM1000 coatings effectively controlled infection and enhanced periprosthetic new bone formation. The bone implant contact (BIC) of EM100 (35.08%) was higher than negative controls and EM0 (3.43% and 0%, respectively). The bone area fraction occupancy (BAFO) of EM100 (0.63 mm2) was greater than controls and EM0 (0.390 mm2 and 0.0 mm2, respectively). The BAFO of EM100 was higher than that of EM1000 (0.3 mm2). These findings may provide a basis for a new implant surface fabrication strategy aimed at reducing the risks of defective osseointegration and PJI.


Subject(s)
Coated Materials, Biocompatible , Disease Models, Animal , Erythromycin , Nanofibers , Prosthesis-Related Infections , Staphylococcal Infections , Staphylococcus aureus , Animals , Nanofibers/chemistry , Rats , Prosthesis-Related Infections/drug therapy , Prosthesis-Related Infections/microbiology , Erythromycin/pharmacology , Erythromycin/administration & dosage , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/administration & dosage , Male , Titanium/chemistry , Titanium/pharmacology , X-Ray Microtomography , Rats, Sprague-Dawley
7.
Sci Rep ; 14(1): 16968, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39043806

ABSTRACT

Biopolymers such as chitosan and pectin are currently attracting significant attention because of their unique properties, which are valuable in the food industry and pharmaceutical applications. These properties include non-toxicity, compatibility with biological systems, natural decomposition ability, and structural adaptability. The objective of this study was to assess the performance of two different ratios of pectin-chitosan polyelectrolyte composite (PCPC) after applying them as a coating to commercially pure titanium (CpTi) substrates using electrospraying. The PCPC was studied in ratios of 1:2 and 1:3, while the control group consisted of CpTi substrates without any coating. The pull-off adhesion strength, cytotoxicity, and antibacterial susceptibility tests were utilized to evaluate the PCPC coatings. In order to determine whether the composite coating was the result of physical blending or chemical bonding, the topographic surface parameters were studied using Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). PCPC (1:3) had the highest average cell viability of 93.42, 89.88, and 86.85% after 24, 48, and 72 h, respectively, as determined by the cytotoxicity assay, when compared to the other groups. According to the Kirby-Bauer disk diffusion method for testing antibacterial susceptibility, PCPC (1:3) showed the highest average diameter of the zone of inhibition, measuring 14.88, 14.43, and 11.03 mm after 24, 48, and 72 h of incubation, respectively. This difference was highly significant compared to Group 3 at all three time periods. PCPC (1:3) exhibited a significantly higher mean pull-off adhesion strength (521.6 psi) compared to PCPC (1:2), which revealed 419.5 psi. PCPC (1:3) coated substrates exhibited better surface roughness parameters compared to other groups based on the findings of the AFM. The FTIR measurement indicated that both PCPC groups exhibited a purely physical blending in the composite coating. Based on the extent of these successful in vitro experiments, PCPC (1:3) demonstrates its potential as an effective coating layer. Therefore, the findings of this study pave the way for using newly developed PCPC after electrospraying coating on CpTi for dental implants.


Subject(s)
Anti-Bacterial Agents , Chitosan , Dental Implants , Pectins , Polyelectrolytes , Chitosan/chemistry , Chitosan/pharmacology , Pectins/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polyelectrolytes/chemistry , Microbial Sensitivity Tests , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Spectroscopy, Fourier Transform Infrared , Animals , Titanium/chemistry , Titanium/pharmacology , Materials Testing , Cell Survival/drug effects , Humans , Microscopy, Atomic Force , Surface Properties , Mice
8.
Clin Exp Dent Res ; 10(4): e903, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39031165

ABSTRACT

OBJECTIVES: To explore the antimicrobial potential of strontium (Sr)-functionalized wafers against multiple bacteria associated with per-implant infections, in both mono- and multispecies biofilms. MATERIALS AND METHODS: The bactericidal and bacteriostatic effect of silicon wafers functionalized with a strontium titanium oxygen coating (Sr-Ti-O) or covered only with Ti (controls) against several bacteria, either grown as a mono-species or multispecies biofilms, was assessed using a bacterial viability assay and a plate counting method. Mono-species biofilms were assessed after 2 and 24 h, while the antimicrobial effect on multispecies biofilms was assessed at Days 1, 3, and 6. The impact of Sr functionalization on the total percentage of Porphyromonas gingivalis in the multispecies biofilm, using qPCR, and gingipain activity was also assessed. RESULTS: Sr-functionalized wafers, compared to controls, were associated with statistically significant less viable cells in both mono- and multispecies tests. The number of colony forming units (CFUs) within the biofilm was significantly less in Sr-functionalized wafers, compared to control wafers, for Staphylococcus aureus at all time points of evaluation and for Escherichia coli at Day 1. Gingipain activity was less in Sr-functionalized wafers, compared to control wafers, and the qPCR showed that P. gingivalis remained below detection levels at Sr-functionalized wafers, while it consisted of 15% of the total biofilm on control wafers at Day 6. CONCLUSION: Sr functionalization displayed promising antimicrobial potential, possessing bactericidal and bacteriostatic ability against bacteria associated with peri-implantitis grown either as mono-species or mixed in a multispecies consortium with several common oral microorganisms.


Subject(s)
Biofilms , Peri-Implantitis , Porphyromonas gingivalis , Strontium , Titanium , Titanium/chemistry , Titanium/pharmacology , Biofilms/drug effects , Peri-Implantitis/microbiology , Peri-Implantitis/drug therapy , Strontium/pharmacology , Porphyromonas gingivalis/drug effects , Humans , Anti-Bacterial Agents/pharmacology , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry , Microbial Viability/drug effects , Dental Implants/microbiology
9.
Chem Commun (Camb) ; 60(60): 7729-7732, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38973292

ABSTRACT

Implant infections are a major challenge for the healthcare system. Biofilm formation and increasing antibiotic resistance of common bacteria cause implant infections, leading to an urgent need for alternative antibacterial agents. In this study, the antibiofilm behaviour of a coating consisting of a silver (Ag)/gold (Au) nanoalloy is investigated. This alloy is crucial to reduce uncontrolled potentially toxic Ag+ ion release. In neutral pH environments this release is minimal, but the Ag+ ion release increases in acidic microenvironments caused by bacterial biofilms. We perform a detailed physicochemical characterization of the nanoalloys and compare their Ag+ ion release with that of pure Ag nanoparticles. Despite a lower released Ag+ ion concentration at pH 7.4, the antibiofilm activity against Escherichia coli (a bacterium known to produce acidic pH environments) is comparable to a pure nanosilver sample with a similar Ag-content. Finally, biocompatibility studies with mouse pre-osteoblasts reveal a decreased cytotoxicity for the alloy coatings and nanoparticles.


Subject(s)
Alloys , Anti-Bacterial Agents , Biofilms , Escherichia coli , Gold , Metal Nanoparticles , Silver , Silver/chemistry , Silver/pharmacology , Biofilms/drug effects , Gold/chemistry , Gold/pharmacology , Hydrogen-Ion Concentration , Mice , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Alloys/chemistry , Alloys/pharmacology , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Ions/chemistry , Ions/pharmacology , Prostheses and Implants , Cell Survival/drug effects
10.
Colloids Surf B Biointerfaces ; 241: 114048, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38954936

ABSTRACT

The extensive use of polymers in the medical field has facilitated the development of various devices and implants, contributing to the restoration of organ function. However, despite their advantages such as biocompatibility and robustness, these materials often face challenges like bacterial contamination and subsequent inflammation, leading to implant-associated infections (IAI). Integrating implants effectively is crucial to prevent bacterial colonization and reduce inflammatory responses. To overcome these major issues, surface chemical modifications have been extensively explored. Indeed, click chemistry, and particularly, copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction has emerged as a promising approach for surface functionalization without affecting material bulk properties. Curcumin, known for its diverse biological activities, suffers from low solubility and stability. To enhance its bioavailability, bioconjugation strategy has garnered attention in recent years. This study represents pioneering work in immobilizing curcumin derivative onto polyethylene terephthalate (PET) surfaces, aiming to combat bacterial adhesion, inflammation and coagulation. Before curcumin derivative bioconjugation, a fluorophore, dansyl derivative, was employed in order to monitor and determine the efficiency of the proposed methodology. Previous surface chemical modifications were required for the immobilization of both dansyl and curcumin derivatives. Ultraviolet-Visible (UV-Vis) demonstrated the amidation functionalization of PET surface. Other surface characterization techniques including X-ray Photoelectron Spectroscopy (XPS), Attenuated Total Reflectance Fourier Transformed Infrared (ATR-FTIR), Scanning Electron Microscopy (SEM) and contact angle, among others, confirmed also the conjugation of both dansyl and curcumin derivatives. On the other hand, different biological assays corroborated that curcumin derivative immobilized PET surfaces do not exhibit cytotoxicity effect. Additionally, corresponding inflammation test were performed, indicating that these polymeric surfaces do not produce inflammation and, when curcumin derivative is immobilized, they decrease the inflammation marker level (IL-6). Moreover, the bacterial growth of both Gram positive and Gram negative bacteria were measured, demonstrating that the immobilization of curcumin derivative on PET provided antibacterial properties to the material. Finally, hemolysis rate analysis and whole blood clotting assay demonstrated the antithrombogenic effect of PET-Cur surfaces as well as no hemolysis concern in the fabricated functional surfaces.


Subject(s)
Curcumin , Inflammation , Polymers , Curcumin/pharmacology , Curcumin/chemistry , Inflammation/drug therapy , Polymers/chemistry , Polymers/pharmacology , Humans , Surface Properties , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Blood Coagulation/drug effects , Microbial Sensitivity Tests , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Bacterial Adhesion/drug effects , Escherichia coli/drug effects
11.
ACS Appl Mater Interfaces ; 16(30): 38893-38904, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39013021

ABSTRACT

Thermal inactivation is a major bottleneck to the scalable production, storage, and transportation of protein-based reagents and therapies. Failures in temperature control both compromise protein bioactivity and increase the risk of microorganismal contamination. Herein, we report the rational design of fluorochemical additives that promiscuously bind to and coat the surfaces of proteins to enable their stable dispersion within fluorous solvents. By replacing traditional aqueous liquids with fluorinated media, this strategy conformationally rigidifies proteins to preserve their structure and function at extreme temperatures (≥90 °C). We show that fluorous protein formulations resist contamination by bacterial, fungal, and viral pathogens, which require aqueous environments for survival, and display equivalent serum bioavailability to standard saline samples in animal models. Importantly, by designing dispersants that decouple from the protein surface in physiologic solutions, we deliver a fluorochemical formulation that does not alter the pharmacologic function or safety profile of the functionalized protein in vivo. As a result, this nonaqueous protein storage paradigm is poised to open technological opportunities in the design of shelf-stable protein reagents and biopharmaceuticals.


Subject(s)
Hot Temperature , Animals , Mice , Proteins/chemistry , Proteins/metabolism , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology
12.
ACS Appl Mater Interfaces ; 16(30): 39064-39078, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39028896

ABSTRACT

The bacterial infection and poor osseointegration of Ti implants could significantly compromise their applications in bone repair and replacement. Based on the carrier separation ability of the heterojunction and the redox reaction of pseudocapacitive metal oxides, we report an electrically responsive TiO2-SnO2-RuO2 coating with a multilayered heterostructure on a Ti implant. Owing to the band gap structure of the TiO2-SnO2-RuO2 coating, electron carriers are easily enriched at the coating surface, enabling a response to the endogenous electrical stimulation of the bone. With the formation of SnO2-RuO2 pseudocapacitance on the modified surface, the postcharging mode can significantly change the surface chemical state of the coating due to the redox reaction, enhancing the antibacterial ability and osteogenesis-related gene expression of the human bone marrow mesenchymal stem cells. Owing to the attraction for Ca2+, only the negatively postcharged SnO2@RuO2 can promote apatite deposition. The in vivo experiment reveals that the S-SnO2@RuO2-NP could effectively kill the bacteria colonized on the surface and promote osseointegration with the synostosis bonding interface. Thus, negatively charging the electrically responsive coating of TiO2-SnO2-RuO2 is a good strategy to endow modified Ti implants with excellent antibacterial ability and osseointegration.


Subject(s)
Anti-Bacterial Agents , Coated Materials, Biocompatible , Osseointegration , Tin Compounds , Titanium , Titanium/chemistry , Titanium/pharmacology , Osseointegration/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Tin Compounds/chemistry , Tin Compounds/pharmacology , Animals , Ruthenium Compounds/chemistry , Ruthenium Compounds/pharmacology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Staphylococcus aureus/drug effects , Surface Properties , Osteogenesis/drug effects
13.
ACS Appl Mater Interfaces ; 16(30): 39104-39116, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39036941

ABSTRACT

Surface modification using zwitterionic 2-methacryloyloxyethylphosphorylcholine (MPC) polymers is one of the most reasonable ways to prepare medical devices that can suppress undesired biological reactions such as blood coagulation. Usable MPC polymers are hydrophilic and water soluble, and their surface modification strategy involves exploiting the copolymer structures by adding physical or chemical bonding moieties. In this study, we developed copolymers composed of MPC, hydrophobic anchoring moiety, and chemical cross-linking unit to clarify the role of hydrophobic interactions in achieving biocompatible and long-term stable coatings. The four kinds of MPC copolymers with cross-linking units, such as 3-methacryloxypropyl trimethoxysilane (MPTMSi), and four different hydrophobic anchoring moieties, such as 3-(methacryloyloxy)propyltris(trimethylsiloxy)silane (MPTSSi) named as PMMMSi, n-butyl methacrylate (BMA) as PMBSi, 2-ethylhexyl methacrylate (EHMA) as PMESi, and lauryl methacrylate as PMLSi, were synthesized and coated on polydimethylsiloxane, polypropylene (PP), and polymethyl pentene. These copolymers were uniformly coated on the substrate materials PP and poly(methyl pentene) (PMP), to achieve hydrophilic and electrically neutral coatings. The results of the antibiofouling test showed that PMBSi repelled the adsorption of fluorescence-labeled bovine serum albumin the most, whereas PMLSi repelled it the least. Notably, all four copolymers suppressed platelet adhesion similarly. The variations in protein adsorption quantities among the four copolymer coatings were attributed to their distinct swelling behaviors in aqueous environments. Further investigations, including 3D scanning force microscopy and neutron reflectivity measurements, revealed that the PMLSi coating exhibited a higher water intake under aqueous conditions in comparison to the other coatings. Consequently, all copolymer coatings effectively prevented the invasion of platelets but the proteins penetrated the PMLSi network. Subsequently, the dynamic stability required to induce shear stress was evaluated using a circulation system. The results demonstrated that the PMMMSi and PMLSi coatings on PMP and PP exhibited exceptional platelet repellency and maintained high stability during circulation. This study highlights the potential of hydrophobic moieties to improve hemocompatibility and stability, offering potential applications in medical devices.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Phosphorylcholine/chemistry , Phosphorylcholine/analogs & derivatives , Polymers/chemistry , Animals , Cross-Linking Reagents/chemistry , Coated Materials, Biocompatible/chemistry , Platelet Adhesiveness/drug effects , Surface Properties , Serum Albumin, Bovine/chemistry , Humans , Methacrylates/chemistry , Phospholipids/chemistry , Cattle
14.
ACS Appl Mater Interfaces ; 16(30): 39129-39139, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39039989

ABSTRACT

Catheter-associated urinary tract infections represent a major share of nosocomial infections, and are associated with longer periods of hospitalization and a huge financial burden. Currently, there are only a handful of commercial materials that reduce biofilm formation on urinary catheters, mostly relying on silver alloys. Therefore, we combined silver-phenolated lignin nanoparticles with poly(carboxybetaine) zwitterions to build a composite antibiotic-free coating with bactericidal and antifouling properties. Importantly, the versatile lignin chemistry enabled the formation of the coating in situ, enabling both the nanoparticle grafting and the radical polymerization by using only the oxidative activity of laccase. The resulting surface efficiently prevented nonspecific protein adsorption and reduced the bacterial viability on the catheter surface by more than 2 logs under hydrodynamic flow, without exhibiting any apparent signs of cytotoxicity. Moreover, the said functionality was maintained over a week both in vitro and in vivo, whereby the animal models showed excellent biocompatibility.


Subject(s)
Laccase , Urinary Catheters , Urinary Catheters/microbiology , Animals , Laccase/chemistry , Silver/chemistry , Silver/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Lignin/chemistry , Mice , Humans , Biofilms/drug effects , Urinary Tract Infections/prevention & control , Urinary Tract Infections/drug therapy , Escherichia coli/drug effects , Nanoparticles/chemistry , Staphylococcus aureus/drug effects
15.
ACS Appl Mater Interfaces ; 16(29): 38631-38644, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38980701

ABSTRACT

Achievement of a stable surface coating with long-term resistance to biofilm formation remains a challenge. Catechol-based polymerization chemistry and surface deposition are used as tools for surface modification of diverse materials. However, the control of surface deposition of the coating, surface coverage, coating properties, and long-term protection against biofilm formation remain to be solved. We report a new approach based on supramolecular assembly to generate long-acting antibiofilm coating. Here, we utilized catechol chemistry in combination with low molecular weight amphiphilic polymers for the generation of such coatings. Screening studies with diverse low molecular weight (LMW) polymers and different catechols are utilized to identify lead compositions, which resulted in a thick coating with high surface coverage, smoothness, and antibiofilm activity. We have identified that small supramolecular assemblies (∼10 nm) formed from a combination of polydopamine and LMW poly(N-vinyl caprolactam) (PVCL) resulted in relatively thick coating (∼300 nm) with excellent surface coverage in comparison to other polymers and catechol combinations. The coating properties, such as thickness (10-300 nm) and surface hydrophilicity (with water contact angle: 20-60°), are readily controlled. The optimal coating composition showed excellent antibiofilm properties with long-term (>28 days) antibiofilm activity against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) strains. We further utilized the combination of optimal binary coating with silver to generate a coating with sustained release of silver ions, resulting in killing both adhered and planktonic bacteria and preventing long-term surface bacterial colonization. The new coating method utilizing LMW polymers opens a new avenue for the development of a novel class of thick, long-acting antibiofilm coatings.


Subject(s)
Biofilms , Catechols , Polymers , Staphylococcus aureus , Biofilms/drug effects , Catechols/chemistry , Catechols/pharmacology , Polymers/chemistry , Polymers/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Molecular Weight , Surface Properties , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology
16.
ACS Appl Mater Interfaces ; 16(30): 38956-38967, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39018469

ABSTRACT

This work reports the production of biocompatible thin layers for biomedical applications based on a graphene-like material (GL), a graphene-related material (GRM) obtained from carbon black. GL was combined in a hybrid fashion with polydopamine (pDA), a mussel-inspired water-resistant wet adhesive bonding obtained by the oxidative polymerization of dopamine (DA), and polyvinyl pyrrolidinone (PVP), a nontoxic synthetic polymer with intrinsic adhesion properties, to obtain a tighter adhesion of the thin layer to the substrate (silicone slices). Matrix-assisted pulsed laser evaporation (MAPLE) was used to coat PDMS slices with thin films of GL-pDA and GL-PVP directly from their frozen suspensions in water. The results indicate that the relevant chemical-physical characteristics of both thin films (evidenced by FTIR and AFM) were maintained after MAPLE deposition and that the films exhibit uniformity also at the nanometric level. After deposition, the GL-pDA and GL-PVP films underwent a biological survey toward murine fibroblasts (NIH3T3), human keratinocytes (HaCAT), and human cervical adenocarcinoma epithelial-like (HeLa) cells to assess the feasibility of this approach. Results indicate that both the GL-pDA and GL-PVP films did not perturb the biological parameters evaluated, including cytoskeleton alterations. Both hybrid films enhanced the effects of GL on cellular vitality across all cell lines. Specifically, the GL-pDA film exhibited a more stable effect over time (up to 72 h), whereas the GL-PVP film behaved similarly to the GL film in NIH3T3 and HeLa cell lines after long-term exposure. These promising results make the GL-pDA and GL-PVP films potential candidates for the manufacture of coated flexible devices for biomedical applications.


Subject(s)
Coated Materials, Biocompatible , Graphite , Indoles , Polymers , Mice , Animals , Humans , Indoles/chemistry , NIH 3T3 Cells , Graphite/chemistry , Polymers/chemistry , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Lasers , HeLa Cells , HaCaT Cells
17.
Int J Nanomedicine ; 19: 6427-6447, 2024.
Article in English | MEDLINE | ID: mdl-38952675

ABSTRACT

Background: Implants are widely used in the field of orthopedics and dental sciences. Titanium (TI) and its alloys have become the most widely used implant materials, but implant-associated infection remains a common and serious complication after implant surgery. In addition, titanium exhibits biological inertness, which prevents implants and bone tissue from binding strongly and may cause implants to loosen and fall out. Therefore, preventing implant infection and improving their bone induction ability are important goals. Purpose: To study the antibacterial activity and bone induction ability of titanium-copper alloy implants coated with nanosilver/poly (lactic-co-glycolic acid) (NSPTICU) and provide a new approach for inhibiting implant-associated infection and promoting bone integration. Methods: We first examined the in vitro osteogenic ability of NSPTICU implants by studying the proliferation and differentiation of MC3T3-E1 cells. Furthermore, the ability of NSPTICU implants to induce osteogenic activity in SD rats was studied by micro-computed tomography (micro-CT), hematoxylin-eosin (HE) staining, masson staining, immunohistochemistry and van gieson (VG) staining. The antibacterial activity of NSPTICU in vitro was studied with gram-positive Staphylococcus aureus (Sa) and gram-negative Escherichia coli (E. coli) bacteria. Sa was used as the test bacterium, and the antibacterial ability of NSPTICU implanted in rats was studied by gross view specimen collection, bacterial colony counting, HE staining and Giemsa staining. Results: Alizarin red staining, alkaline phosphatase (ALP) staining, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis showed that NSPTICU promoted the osteogenic differentiation of MC3T3-E1 cells. The in vitro antimicrobial results showed that the NSPTICU implants exhibited better antibacterial properties. Animal experiments showed that NSPTICU can inhibit inflammation and promote the repair of bone defects. Conclusion: NSPTICU has excellent antibacterial and bone induction ability, and has broad application prospects in the treatment of bone defects related to orthopedics and dental sciences.


Subject(s)
Anti-Bacterial Agents , Coated Materials, Biocompatible , Escherichia coli , Osteogenesis , Polylactic Acid-Polyglycolic Acid Copolymer , Rats, Sprague-Dawley , Staphylococcus aureus , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Osteogenesis/drug effects , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Mice , Staphylococcus aureus/drug effects , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Escherichia coli/drug effects , Cell Differentiation/drug effects , Prostheses and Implants , Alloys/pharmacology , Alloys/chemistry , Rats , Titanium/chemistry , Titanium/pharmacology , Silver/chemistry , Silver/pharmacology , Cell Proliferation/drug effects , Copper/chemistry , Copper/pharmacology , Male , X-Ray Microtomography , Cell Line , Metal Nanoparticles/chemistry
18.
Sci Rep ; 14(1): 15339, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961115

ABSTRACT

Given the hierarchical nature of bone and bone interfaces, osseointegration, namely the formation of a direct bone-implant contact, is best evaluated using a multiscale approach. However, a trade-off exists between field of view and spatial resolution, making it challenging to image large volumes with high resolution. In this study, we combine established electron microscopy techniques to probe bone-implant interfaces at the microscale and nanoscale with plasma focused ion beam-scanning electron microscopy (PFIB-SEM) tomography to evaluate osseointegration at the mesoscale. This characterization workflow is demonstrated for bone response to an additively manufactured Ti-6Al-4V implant which combines engineered porosity to facilitate bone ingrowth and surface functionalization via genistein, a phytoestrogen, to counteract bone loss in osteoporosis. SEM demonstrated new bone formation at the implant site, including in the internal implant pores. At the nanoscale, scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy confirmed the gradual nature of the bone-implant interface. By leveraging mesoscale analysis with PFIB-SEM tomography that captures large volumes of bone-implant interface with nearly nanoscale resolution, the presence of mineral ellipsoids varying in size and orientation was revealed. In addition, a well-developed lacuno-canalicular network and mineralization fronts directed both towards the implant and away from it were highlighted.


Subject(s)
Genistein , Osseointegration , Titanium , Osseointegration/drug effects , Genistein/pharmacology , Genistein/chemistry , Titanium/chemistry , Animals , Coated Materials, Biocompatible/chemistry , Bone-Implant Interface , Microscopy, Electron, Scanning , Prostheses and Implants , Porosity , Alloys/chemistry
19.
ACS Appl Mater Interfaces ; 16(28): 35985-36001, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38958411

ABSTRACT

Upconversion nanoparticles (UCNPs) are materials that provide unique advantages for biomedical applications. There are constantly emerging customized UCNPs with varying compositions, coatings, and upconversion mechanisms. Cellular uptake is a key parameter for the biological application of UCNPs. Uptake experiments have yielded highly varying results, and correlating trends between cellular uptake with different types of UCNP coatings remains challenging. In this report, the impact of surface polymer coatings on the formation of protein coronas and subsequent cellular uptake of UCNPs by macrophages and cancer cells was investigated. Luminescence confocal microscopy and elemental analysis techniques were used to evaluate the different coatings for internalization within cells. Pathway inhibitors were used to unravel the specific internalization mechanisms of polymer-coated UCNPs. Coatings were chosen as the most promising for colloidal stability, conjugation chemistry, and biomedical applications. PIMA-PEG (poly(isobutylene-alt-maleic) anhydride with polyethylene glycol)-coated UCNPs were found to have low cytotoxicity, low uptake by macrophages (when compared with PEI, poly(ethylenimine)), and sufficient uptake by tumor cells for surface-loaded drug delivery applications. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) studies revealed that PIMA-coated NPs were preferentially internalized by the clathrin- and caveolar-independent pathways, with a preference for clathrin-mediated uptake at longer time points. PMAO-PEG (poly(maleic anhydride-alt-1-octadecene) with polyethylene glycol)-coated UCNPs were internalized by energy-dependent pathways, while PAA- (poly(acrylic acid)) and PEI-coated NPs were internalized by multifactorial mechanisms of internalization. The results indicate that copolymers of PIMA-PEG coatings on UCNPs were well suited for the next-generation of biomedical applications.


Subject(s)
Nanoparticles , Protein Corona , Protein Corona/chemistry , Protein Corona/metabolism , Humans , Nanoparticles/chemistry , Mice , Animals , RAW 264.7 Cells , Macrophages/metabolism , Macrophages/drug effects , Polyethylene Glycols/chemistry , Polymers/chemistry , Surface Properties , Maleic Anhydrides/chemistry , Cell Line, Tumor , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology
20.
Int J Nanomedicine ; 19: 5157-5172, 2024.
Article in English | MEDLINE | ID: mdl-38855731

ABSTRACT

Background: Poly-L-lactic acid (PLLA) stents have broad application prospects in the treatment of cardiovascular diseases due to their excellent mechanical properties and biodegradability. However, foreign body reactions caused by stent implantation remain a bottleneck that limits the clinical application of PLLA stents. To solve this problem, the biocompatibility of PLLA stents must be urgently improved. Albumin, the most abundant inert protein in the blood, possesses the ability to modify the surface of biomaterials, mitigating foreign body reactions-a phenomenon described as the "stealth effect". In recent years, a strategy based on albumin camouflage has become a focal point in nanomedicine delivery and tissue engineering research. Therefore, albumin surface modification is anticipated to enhance the surface biological characteristics required for vascular stents. However, the therapeutic applicability of this modification has not been fully explored. Methods: Herein, a bionic albumin (PDA-BSA) coating was constructed on the surface of PLLA by a mussel-inspired surface modification technique using polydopamine (PDA) to enhance the immobilization of bovine serum albumin (BSA). Results: Surface characterization revealed that the PDA-BSA coating was successfully constructed on the surface of PLLA materials, significantly improving their hydrophilicity. Furthermore, in vivo and in vitro studies demonstrated that this PDA-BSA coating enhanced the anticoagulant properties and pro-endothelialization effects of the PLLA material surface while inhibiting the inflammatory response and neointimal hyperplasia at the implantation site. Conclusion: These findings suggest that the PDA-BSA coating provides a multifunctional biointerface for PLLA stent materials, markedly improving their biocompatibility. Further research into the diverse applications of this coating in vascular implants is warranted.


Subject(s)
Coated Materials, Biocompatible , Polyesters , Polymers , Serum Albumin, Bovine , Stents , Polyesters/chemistry , Animals , Serum Albumin, Bovine/chemistry , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Polymers/chemistry , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Indoles/chemistry , Indoles/pharmacology , Surface Properties , Humans , Materials Testing , Human Umbilical Vein Endothelial Cells/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL