Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.024
1.
Hear Res ; 447: 109011, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692015

This study introduces and evaluates the PHAST+ model, part of a computational framework designed to simulate the behavior of auditory nerve fibers in response to the electrical stimulation from a cochlear implant. PHAST+ incorporates a highly efficient method for calculating accommodation and adaptation, making it particularly suited for simulations over extended stimulus durations. The proposed method uses a leaky integrator inspired by classic biophysical nerve models. Through evaluation against single-fiber animal data, our findings demonstrate the model's effectiveness across various stimuli, including short pulse trains with variable amplitudes and rates. Notably, the PHAST+ model performs better than its predecessor, PHAST (a phenomenological model by van Gendt et al.), particularly in simulations of prolonged neural responses. While PHAST+ is optimized primarily on spike rate decay, it shows good behavior on several other neural measures, such as vector strength and degree of adaptation. The future implications of this research are promising. PHAST+ drastically reduces the computational burden to allow the real-time simulation of neural behavior over extended periods, opening the door to future simulations of psychophysical experiments and multi-electrode stimuli for evaluating novel speech-coding strategies for cochlear implants.


Action Potentials , Adaptation, Physiological , Cochlear Implants , Cochlear Nerve , Computer Simulation , Electric Stimulation , Models, Neurological , Cochlear Nerve/physiology , Animals , Humans , Time Factors , Cochlear Implantation/instrumentation , Biophysics , Acoustic Stimulation
2.
Trends Hear ; 28: 23312165241246596, 2024.
Article En | MEDLINE | ID: mdl-38738341

The auditory brainstem response (ABR) is a valuable clinical tool for objective hearing assessment, which is conventionally detected by averaging neural responses to thousands of short stimuli. Progressing beyond these unnatural stimuli, brainstem responses to continuous speech presented via earphones have been recently detected using linear temporal response functions (TRFs). Here, we extend earlier studies by measuring subcortical responses to continuous speech presented in the sound-field, and assess the amount of data needed to estimate brainstem TRFs. Electroencephalography (EEG) was recorded from 24 normal hearing participants while they listened to clicks and stories presented via earphones and loudspeakers. Subcortical TRFs were computed after accounting for non-linear processing in the auditory periphery by either stimulus rectification or an auditory nerve model. Our results demonstrated that subcortical responses to continuous speech could be reliably measured in the sound-field. TRFs estimated using auditory nerve models outperformed simple rectification, and 16 minutes of data was sufficient for the TRFs of all participants to show clear wave V peaks for both earphones and sound-field stimuli. Subcortical TRFs to continuous speech were highly consistent in both earphone and sound-field conditions, and with click ABRs. However, sound-field TRFs required slightly more data (16 minutes) to achieve clear wave V peaks compared to earphone TRFs (12 minutes), possibly due to effects of room acoustics. By investigating subcortical responses to sound-field speech stimuli, this study lays the groundwork for bringing objective hearing assessment closer to real-life conditions, which may lead to improved hearing evaluations and smart hearing technologies.


Acoustic Stimulation , Electroencephalography , Evoked Potentials, Auditory, Brain Stem , Speech Perception , Humans , Evoked Potentials, Auditory, Brain Stem/physiology , Male , Female , Speech Perception/physiology , Acoustic Stimulation/methods , Adult , Young Adult , Auditory Threshold/physiology , Time Factors , Cochlear Nerve/physiology , Healthy Volunteers
3.
Sci Data ; 11(1): 411, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649691

This dataset was collected to study the functional consequences of age-related hearing loss for the auditory nerve, which carries acoustic information from the periphery to the central auditory system. Using high-impedance glass electrodes, raw voltage traces and spike times were recorded from more than one thousand single fibres of the auditory nerve of young-adult, middle-aged, and old Mongolian gerbils raised in a quiet environment. The dataset contains not only responses to simple acoustic stimuli to characterize the fibres, but also to more complex stimuli, such as speech logatomes in background noise and Schroeder-phase stimuli. A software toolbox is provided to search through the dataset, to plot various analysed outcomes, and to give insight into the analyses. This dataset may serve as a valuable resource to test further hypotheses about age-related hearing loss. Additionally, it can aid in optimizing available computational models of the auditory system, which can contribute to, or eventually even fully replace, animal experiments.


Aging , Cochlear Nerve , Gerbillinae , Animals , Gerbillinae/physiology , Cochlear Nerve/physiology , Acoustic Stimulation
4.
PLoS One ; 19(3): e0299911, 2024.
Article En | MEDLINE | ID: mdl-38451925

INTRODUCTION: The functional evaluation of auditory-nerve activity in spontaneous conditions has remained elusive in humans. In animals, the frequency analysis of the round-window electrical noise recorded by means of electrocochleography yields a frequency peak at around 900 to 1000 Hz, which has been proposed to reflect auditory-nerve spontaneous activity. Here, we studied the spectral components of the electrical noise obtained from cochlear implant electrocochleography in humans. METHODS: We recruited adult cochlear implant recipients from the Clinical Hospital of the Universidad de Chile, between the years 2021 and 2022. We used the AIM System from Advanced Bionics® to obtain single trial electrocochleography signals from the most apical electrode in cochlear implant users. We performed a protocol to study spontaneous activity and auditory responses to 0.5 and 2 kHz tones. RESULTS: Twenty subjects including 12 females, with a mean age of 57.9 ± 12.6 years (range between 36 and 78 years) were recruited. The electrical noise of the single trial cochlear implant electrocochleography signal yielded a reliable peak at 3.1 kHz in 55% of the cases (11 out of 20 subjects), while an oscillatory pattern that masked the spectrum was observed in seven cases. In the other two cases, the single-trial noise was not classifiable. Auditory stimulation at 0.5 kHz and 2.0 kHz did not change the amplitude of the 3.1 kHz frequency peak. CONCLUSION: We found two main types of noise patterns in the frequency analysis of the single-trial noise from cochlear implant electrocochleography, including a peak at 3.1 kHz that might reflect auditory-nerve spontaneous activity, while the oscillatory pattern probably corresponds to an artifact.


Cochlear Implantation , Cochlear Implants , Adult , Aged , Female , Humans , Middle Aged , Acoustic Stimulation/methods , Audiometry, Evoked Response/methods , Cochlear Nerve/physiology , Noise , Male
5.
Otol Neurotol ; 45(3): e206-e213, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38361306

INTRODUCTION: Electrically evoked compound action potentials (ECAPs) are used for intra-/postoperative monitoring with intracochlear stimulation of cochlear implants. ECAPs are recorded in MED-EL (Innsbruck, Austria) implants using auditory response telemetry (ART), which has been further developed with automatic threshold determination as AutoART. The success of an ECAP measurement also depends on the number of available spiral ganglion cells and the bipolar neurons of the cochlear nerve (CN). It is assumed that a higher population of spiral ganglion cell implies a larger CN cross-sectional area (CSA), which consequently affects ECAP measurements. METHODS: Intraoperative ECAP measurements from 19 implanted ears of children aged 8 to 18 months were retrospectively evaluated. A comparison and correlation of ART/AutoART ECAP thresholds/slopes at electrodes E2 (apical), E6 (medial), E10 (basal), and averaged E1 to E12 with CN CSA on magnetic resonance imaging was performed. RESULTS: A Pearson correlation of the ART/AutoART ECAP thresholds/slopes for E2/E6/E10 and the averaged electrodes E1 to E12 showed a significant correlation. The CN CSA did not correlate significantly with the averaged ART/AutoART ECAP thresholds/slopes across all 12 electrodes. SUMMARY: AutoART provides reliable measurements and is therefore a suitable alternative to ART. No significant influence of CN CSA on ECAP thresholds/slopes was observed. A predictive evaluation of the success of ECAP measurements based on CN CSA for a clinical setting cannot be made according to the present data.


Cochlear Implantation , Cochlear Implants , Child , Infant , Humans , Child, Preschool , Retrospective Studies , Evoked Potentials, Auditory/physiology , Cochlear Implantation/methods , Cochlear Nerve/physiology , Action Potentials/physiology , Electric Stimulation
6.
Hear Res ; 443: 108964, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38277882

Data from non-human primates can help extend observations from non-primate species to humans. Here we report measurements on the auditory nerve of macaque monkeys in the context of a controversial topic important to human hearing. A range of techniques have been used to examine the claim, which is not generally accepted, that human frequency tuning is sharper than traditionally thought, and sharper than in commonly used animal models. Data from single auditory-nerve fibers occupy a pivotal position to examine this claim, but are not available for humans. A previous study reported sharper tuning in auditory-nerve fibers of macaque relative to the cat. A limitation of these and other single-fiber data is that frequency selectivity was measured with tonal threshold-tuning curves, which do not directly assess spectral filtering and whose shape is sharpened by cochlear nonlinearity. Our aim was to measure spectral filtering with wideband suprathreshold stimuli in the macaque auditory nerve. We obtained responses of single nerve fibers of anesthetized macaque monkeys and cats to a suprathreshold, wideband, multicomponent stimulus designed to allow characterization of spectral filtering at any cochlear locus. Quantitatively the differences between the two species are smaller than in previous studies, but consistent with these studies the filters obtained show a trend of sharper tuning in macaque, relative to the cat, for fibers in the basal half of the cochlea. We also examined differences in group delay measured on the phase data near the characteristic frequency versus in the low-frequency tail. The phase data are consistent with the interpretation of sharper frequency tuning in monkey in the basal half of the cochlea. We conclude that use of suprathreshold, wide-band stimuli supports the interpretation of sharper frequency selectivity in macaque nerve fibers relative to the cat, although the difference is less marked than apparent from the assessment with tonal threshold-based data.


Cochlea , Cochlear Nerve , Animals , Haplorhini , Cochlear Nerve/physiology , Cochlea/physiology , Hearing/physiology , Macaca , Auditory Threshold/physiology , Acoustic Stimulation
7.
J Neurophysiol ; 130(3): 736-750, 2023 09 01.
Article En | MEDLINE | ID: mdl-37584075

The spiking activity of auditory nerve fibers (ANFs) transmits information about the acoustic environment from the cochlea to the central auditory system. Increasing age leads to degeneration of cochlear tissues, including the sensory hair cells and stria vascularis. Here, we aim to identify the functional effects of such age-related cochlear pathologies of ANFs. Rate-level functions (RLFs) were recorded from single-unit ANFs of young adult (n = 52, 3-12 months) and quiet-aged (n = 24, >36 months) Mongolian gerbils of either sex. RLFs were used to determine sensitivity and spontaneous rates (SRs) and were classified into flat-saturating, sloping-saturating, and straight categories, as previously established. A physiologically based cochlear model, adapted for the gerbil, was used to simulate the effects of cochlear degeneration on ANF physiology. In ANFs tuned to low frequencies (<3.5 kHz), SR was lower in those of aged gerbils, while an age-related loss of low-SR fibers was evident in ANFs tuned to high frequencies. These changes in SR distribution did not affect the typical SR versus sensitivity correlation. The distribution of RLF types among low-SR fibers, however, shifted toward that of high-SR fibers, specifically showing more fast-saturating and fewer sloping-saturating RLFs. A modeled striatal degeneration, which affects the combined inner hair cell and synaptic output, reduced SR but left RLF type unchanged. An additional reduced basilar membrane gain, which decreased sensitivity, explained the changed RLF types. Overall, the data indicated age-related changes in the characteristics of single ANFs that blurred the established relationships between SR and RLF types.NEW & NOTEWORTHY Auditory nerve fibers, which connect the cochlea to the central auditory system, change their encoding of sound level in aged gerbils. In addition to a general shift to higher levels, indicative of decreased sensitivity, level coding was also differentially affected in fibers with low- and high-spontaneous rates. Loss of low-spontaneous rate fibers, combined with a general decrease of spontaneous rate, further blurs the categorization of auditory nerve fiber types in the aged gerbil.


Cochlea , Cochlear Nerve , Animals , Gerbillinae , Cochlea/physiology , Cochlear Nerve/physiology , Aging/physiology , Nerve Fibers/physiology , Acoustic Stimulation
8.
Hear Res ; 438: 108858, 2023 10.
Article En | MEDLINE | ID: mdl-37556897

Spiral ganglion neurons (SGNs) facilitation properties can be recorded utilizing electrically evoked compound action potential (ECAP). While intracochlear variation of the ECAP threshold in relation to its electrode channel is reported, no study investigated its impact on facilitation. In this study, we quantified intracochlear variation of the facilitation properties in cochlear implants (CI) using ECAPs. We hypothesized that the facilitation effect is dependent on the electrode channel and its ECAP threshold. Therefore, ECAPs were recorded in 23 CI subjects. For each subject, five default (channel-derived) and up to two additional (threshold-derived) stimulation sites were defined. Facilitation was quantified by the paradigm introduced by (Hey et al., 2017) with optimized parameter settings. For each channel the maximum facilitated amplitude was determined by a series of ECAP measurements. A linear mixed-effects model was used to investigate the impact of the electrode channel and ECAP threshold on the maximum facilitated amplitude. The maximum facilitated amplitude was found to be dependent on the ECAP threshold and independent on the electrode channel. We conclude that the facilitation paradigm is a useful and feasible tool to gain local information on the SGNs temporal processing patterns.


Cochlear Implantation , Cochlear Implants , Humans , Action Potentials/physiology , Evoked Potentials , Spiral Ganglion , Evoked Potentials, Auditory/physiology , Electric Stimulation , Cochlear Nerve/physiology
9.
Elife ; 122023 06 08.
Article En | MEDLINE | ID: mdl-37288824

Globular bushy cells (GBCs) of the cochlear nucleus play central roles in the temporal processing of sound. Despite investigation over many decades, fundamental questions remain about their dendrite structure, afferent innervation, and integration of synaptic inputs. Here, we use volume electron microscopy (EM) of the mouse cochlear nucleus to construct synaptic maps that precisely specify convergence ratios and synaptic weights for auditory nerve innervation and accurate surface areas of all postsynaptic compartments. Detailed biophysically based compartmental models can help develop hypotheses regarding how GBCs integrate inputs to yield their recorded responses to sound. We established a pipeline to export a precise reconstruction of auditory nerve axons and their endbulb terminals together with high-resolution dendrite, soma, and axon reconstructions into biophysically detailed compartmental models that could be activated by a standard cochlear transduction model. With these constraints, the models predict auditory nerve input profiles whereby all endbulbs onto a GBC are subthreshold (coincidence detection mode), or one or two inputs are suprathreshold (mixed mode). The models also predict the relative importance of dendrite geometry, soma size, and axon initial segment length in setting action potential threshold and generating heterogeneity in sound-evoked responses, and thereby propose mechanisms by which GBCs may homeostatically adjust their excitability. Volume EM also reveals new dendritic structures and dendrites that lack innervation. This framework defines a pathway from subcellular morphology to synaptic connectivity, and facilitates investigation into the roles of specific cellular features in sound encoding. We also clarify the need for new experimental measurements to provide missing cellular parameters, and predict responses to sound for further in vivo studies, thereby serving as a template for investigation of other neuron classes.


Cochlear Nucleus , Time Perception , Animals , Mice , Cochlear Nucleus/physiology , Epidemiological Models , Neurons/physiology , Cochlear Nerve/physiology , Synapses/physiology , Synaptic Transmission/physiology
10.
Ear Hear ; 44(6): 1485-1497, 2023.
Article En | MEDLINE | ID: mdl-37194125

OBJECTIVE: This study assessed the relationship between electrophysiological measures of the electrically evoked compound action potential (eCAP) and speech perception scores measured in quiet and in noise in postlingually deafened adult cochlear implant (CI) users. It tested the hypothesis that how well the auditory nerve (AN) responds to electrical stimulation is important for speech perception with a CI in challenging listening conditions. DESIGN: Study participants included 24 postlingually deafened adult CI users. All participants used Cochlear Nucleus CIs in their test ears. In each participant, eCAPs were measured at multiple electrode locations in response to single-pulse, paired-pulse, and pulse-train stimuli. Independent variables included six metrics calculated from the eCAP recordings: the electrode-neuron interface (ENI) index, the neural adaptation (NA) ratio, NA speed, the adaptation recovery (AR) ratio, AR speed, and the amplitude modulation (AM) ratio. The ENI index quantified the effectiveness of the CI electrodes in stimulating the targeted AN fibers. The NA ratio indicated the amount of NA at the AN caused by a train of constant-amplitude pulses. NA speed was defined as the speed/rate of NA. The AR ratio estimated the amount of recovery from NA at a fixed time point after the cessation of pulse-train stimulation. AR speed referred to the speed of recovery from NA caused by previous pulse-train stimulation. The AM ratio provided a measure of AN sensitivity to AM cues. Participants' speech perception scores were measured using Consonant-Nucleus-Consonant (CNC) word lists and AzBio sentences presented in quiet, as well as in noise at signal-to-noise ratios (SNRs) of +10 and +5 dB. Predictive models were created for each speech measure to identify eCAP metrics with meaningful predictive power. RESULTS: The ENI index and AR speed individually explained at least 10% of the variance in most of the speech perception scores measured in this study, while the NA ratio, NA speed, the AR ratio, and the AM ratio did not. The ENI index was identified as the only eCAP metric that had unique predictive power for each of the speech test results. The amount of variance in speech perception scores (both CNC words and AzBio sentences) explained by the eCAP metrics increased with increased difficulty under the listening condition. Over half of the variance in speech perception scores measured in +5 dB SNR noise (both CNC words and AzBio sentences) was explained by a model with only three eCAP metrics: the ENI index, NA speed, and AR speed. CONCLUSIONS: Of the six electrophysiological measures assessed in this study, the ENI index is the most informative predictor for speech perception performance in CI users. In agreement with the tested hypothesis, the response characteristics of the AN to electrical stimulation are more important for speech perception with a CI in noise than they are in quiet.


Cochlear Implantation , Cochlear Implants , Speech Perception , Adult , Humans , Action Potentials , Cochlear Implantation/methods , Evoked Potentials , Cochlear Nerve/physiology , Evoked Potentials, Auditory/physiology
11.
Otol Neurotol ; 44(5): 447-452, 2023 06 01.
Article En | MEDLINE | ID: mdl-37026816

BACKGROUND: Advanced age is associated with poorer speech perception outcomes in cochlear implant (CI) users. In an effort to improve our understanding of the basis for this decline, this study focused on the contributions from peripheral auditory processing, using the electrically evoked compound action potential (eCAP). OBJECTIVES: To investigate the effect of aging on intraoperative, suprathreshold eCAP responses (amplitude growth function [AGF] slopes, eCAP maximum amplitudes, and N1 latencies) across the electrode array, in a large cohort of recipients of newer generation devices, who met hearing preservation criteria. METHODS: Participants of this retrospective study consisted of 113 middle-aged and older CI recipients. Intraoperative eCAP measures consisted of AGF slopes, maximum amplitudes, and N1 latencies at the maximum amplitude. eCAP recordings were obtained at several intracochlear electrodes, which were grouped by electrode location (basal, middle, and apical). RESULTS: There was a moderate to strong association between suprathreshold eCAP measures (eCAP AGF slopes and maximum amplitudes) and age, particularly for basal and middle electrodes. For apical electrodes, correlations between both suprathreshold eCAP measures and age were weak (and for eCAP maximum amplitudes, not statistically significant). N1 latencies at the maximum amplitudes were not associated with age at any electrode location. CONCLUSIONS: Results of this study add to a growing body of evidence suggesting that aging may negatively affect suprathreshold eCAP responses, especially in basal and middle cochlear regions. Although it is difficult to separate the effects of aging from those of duration of deafness, both would support recommending early implantation in the clinical setting.


Cochlear Implantation , Cochlear Implants , Middle Aged , Humans , Aged , Retrospective Studies , Evoked Potentials, Auditory/physiology , Cochlear Implantation/methods , Aging , Action Potentials/physiology , Electric Stimulation , Cochlear Nerve/physiology
13.
J Neurosci ; 43(20): 3687-3695, 2023 05 17.
Article En | MEDLINE | ID: mdl-37028932

Modulations in both amplitude and frequency are prevalent in natural sounds and are critical in defining their properties. Humans are exquisitely sensitive to frequency modulation (FM) at the slow modulation rates and low carrier frequencies that are common in speech and music. This enhanced sensitivity to slow-rate and low-frequency FM has been widely believed to reflect precise, stimulus-driven phase locking to temporal fine structure in the auditory nerve. At faster modulation rates and/or higher carrier frequencies, FM is instead thought to be coded by coarser frequency-to-place mapping, where FM is converted to amplitude modulation (AM) via cochlear filtering. Here, we show that patterns of human FM perception that have classically been explained by limits in peripheral temporal coding are instead better accounted for by constraints in the central processing of fundamental frequency (F0) or pitch. We measured FM detection in male and female humans using harmonic complex tones with an F0 within the range of musical pitch but with resolved harmonic components that were all above the putative limits of temporal phase locking (>8 kHz). Listeners were more sensitive to slow than fast FM rates, even though all components were beyond the limits of phase locking. In contrast, AM sensitivity remained better at faster than slower rates, regardless of carrier frequency. These findings demonstrate that classic trends in human FM sensitivity, previously attributed to auditory nerve phase locking, may instead reflect the constraints of a unitary code that operates at a more central level of processing.SIGNIFICANCE STATEMENT Natural sounds involve dynamic frequency and amplitude fluctuations. Humans are particularly sensitive to frequency modulation (FM) at slow rates and low carrier frequencies, which are prevalent in speech and music. This sensitivity has been ascribed to encoding of stimulus temporal fine structure (TFS) via phase-locked auditory nerve activity. To test this long-standing theory, we measured FM sensitivity using complex tones with a low F0 but only high-frequency harmonics beyond the limits of phase locking. Dissociating the F0 from TFS showed that FM sensitivity is limited not by peripheral encoding of TFS but rather by central processing of F0, or pitch. The results suggest a unitary code for FM detection limited by more central constraints.


Cochlear Nerve , Music , Male , Humans , Female , Cochlear Nerve/physiology , Cochlea/physiology , Sound , Speech , Acoustic Stimulation
14.
Hear Res ; 432: 108744, 2023 05.
Article En | MEDLINE | ID: mdl-37004271

Computational models are useful tools to investigate scientific questions that would be complicated to address using an experimental approach. In the context of cochlear-implants (CIs), being able to simulate the neural activity evoked by these devices could help in understanding their limitations to provide natural hearing. Here, we present a computational modelling framework to quantify the transmission of information from sound to spikes in the auditory nerve of a CI user. The framework includes a model to simulate the electrical current waveform sensed by each auditory nerve fiber (electrode-neuron interface), followed by a model to simulate the timing at which a nerve fiber spikes in response to a current waveform (auditory nerve fiber model). Information theory is then applied to determine the amount of information transmitted from a suitable reference signal (e.g., the acoustic stimulus) to a simulated population of auditory nerve fibers. As a use case example, the framework is applied to simulate published data on modulation detection by CI users obtained using direct stimulation via a single electrode. Current spread as well as the number of fibers were varied independently to illustrate the framework capabilities. Simulations reasonably matched experimental data and suggested that the encoded modulation information is proportional to the total neural response. They also suggested that amplitude modulation is well encoded in the auditory nerve for modulation rates up to 1000 Hz and that the variability in modulation sensitivity across CI users is partly because different CI users use different references for detecting modulation.


Cochlear Implantation , Cochlear Implants , Acoustic Stimulation , Cochlear Nerve/physiology , Computer Simulation , Electric Stimulation , Evoked Potentials, Auditory/physiology
15.
Hear Res ; 432: 108741, 2023 05.
Article En | MEDLINE | ID: mdl-36972636

Performing simulations with a realistic biophysical auditory nerve fiber model can be very time-consuming, due to the complex nature of the calculations involved. Here, a surrogate (approximate) model of such an auditory nerve fiber model was developed using machine learning methods, to perform simulations more efficiently. Several machine learning models were compared, of which a Convolutional Neural Network showed the best performance. In fact, the Convolutional Neural Network was able to emulate the behavior of the auditory nerve fiber model with extremely high similarity (R2>0.99), tested under a wide range of experimental conditions, whilst reducing the simulation time by five orders of magnitude. In addition, a method for randomly generating charge-balanced waveforms using hyperplane projection is introduced. In the second part of this paper, the Convolutional Neural Network surrogate model was used by an Evolutionary Algorithm to optimize the shape of the stimulus waveform in terms of energy efficiency. The resulting waveforms resemble a positive Gaussian-like peak, preceded by an elongated negative phase. When comparing the energy of the waveforms generated by the Evolutionary Algorithm with the commonly used square wave, energy decreases of 8%-45% were observed for different pulse durations. These results were validated with the original auditory nerve fiber model, which demonstrates that the proposed surrogate model can be used as its accurate and efficient replacement.


Cochlear Implantation , Cochlear Implants , Electric Stimulation/methods , Cochlear Nerve/physiology , Machine Learning
16.
Sci Rep ; 13(1): 4309, 2023 03 15.
Article En | MEDLINE | ID: mdl-36922582

It is challenging to program children with cochlear nerve deficiency (CND) due to limited auditory and speech abilities or concurrent neurological deficits. Electrically evoked compound action potential (ECAP) thresholds have been widely used by many audiologists to help cochlear implant programming for children who cannot cooperate with behavioral testing. However, the relationship between ECAP thresholds and behavioral levels of cochlear nerve in children with CND remains unclear. This study aimed to investigate how well ECAP thresholds are related to behavioral thresholds in the MAP for children with CND. This study included 29 children with CND who underwent cochlear implantation. For each participant, ECAP thresholds and behavioral T-levels were measured at three electrode locations across the electrode array post-activation. The relationship between ECAP thresholds and behavioral T-levels was analyzed using Pearson's correlation coefficient. The results showed that ECAP thresholds were significantly correlated with behavioral T-levels at the basal, middle, and apical electrodes. ECAP thresholds were equal to or higher than the behavioral T-levels for all tested electrodes, and fell within MAP's dynamic range for approximately 90% of the tested electrodes. Moreover, the contour of the ECAP thresholds was similar to the contour of T-levels across electrodes for most participants. ECAP thresholds can help audiologists select stimulation levels more efficiently for children with CND who cannot provide sufficient behavioral response.


Cochlear Implantation , Cochlear Implants , Humans , Child , Action Potentials , Auditory Threshold/physiology , Evoked Potentials/physiology , Cochlear Implantation/methods , Cochlear Nerve/physiology , Evoked Potentials, Auditory/physiology , Electric Stimulation
17.
J Assoc Res Otolaryngol ; 24(2): 253-264, 2023 04.
Article En | MEDLINE | ID: mdl-36754938

Two EEG experiments measured the sustained neural response to amplitude-modulated (AM) high-rate pulse trains presented to a single cochlear-implant (CI) electrode. Stimuli consisted of two interleaved pulse trains with AM rates F1 and F2 close to 80 and 120 Hz respectively, and where F2 = 1.5F1. Following Carlyon et al. (J Assoc Res Otolaryngol, 2021), we assume that such stimuli can produce a neural distortion response (NDR) at F0 = F2-F1 Hz if temporal dependencies ("smoothing") in the auditory system are followed by one or more neural nonlinearities. In experiment 1, the rate of each pulse train was 480 pps and the gap between pulses in the F1 and F2 pulse trains ranged from 0 to 984 µs. The NDR had a roughly constant amplitude for gaps between 0 and about 200-400 µs, and decreased for longer gaps. We argue that this result is consistent with a temporal dependency, such as facilitation, operating at the level of the auditory nerve and/or with co-incidence detection by cochlear-nucleus neurons. Experiment 2 first measured the NDR for stimuli at each listener's most comfortable level ("MCL") and for F0 = 37, 40, and 43 Hz. This revealed a group delay of about 42 ms, consistent with a thalamic/cortical source. We then showed that the NDR grew steeply with stimulus amplitude and, for most listeners, decreased by more than 12 dB between MCL and 75% of the listener's dynamic range. We argue that the NDR is a potentially useful objective estimate of MCL.


Cochlear Implantation , Cochlear Implants , Cochlear Nerve/physiology , Electrodes, Implanted , Electric Stimulation , Electroencephalography
18.
Ear Hear ; 44(3): 627-640, 2023.
Article En | MEDLINE | ID: mdl-36477611

OBJECTIVES: Electrically evoked compound action-potentials (ECAPs) can be recorded using the electrodes in a cochlear implant (CI) and represent the synchronous responses of the electrically stimulated auditory nerve. ECAPs can be obtained using a forward-masking method that measures the neural response to a probe and masker electrode separately and in combination. The panoramic ECAP (PECAP) analyses measured ECAPs obtained using multiple combinations of masker and probe electrodes and uses a nonlinear optimization algorithm to estimate current spread from each electrode and neural health along the cochlea. However, the measurement of ECAPs from multiple combinations of electrodes is too time consuming for use in clinics. Here, we propose and evaluate SpeedCAP, a speedy method for obtaining the PECAP measurements that minimizes recording time by exploiting redundancies between multiple ECAP measures. DESIGN: In the first study, 11 users of Cochlear Ltd. CIs took part. ECAPs were recorded using the forward-masking artifact-cancelation technique at the most comfortable loudness level (MCL) for every combination of masker and probe electrodes for all active electrodes in the users' MAPs, as per the standard PECAP recording paradigm. The same current levels and recording parameters were then used to collect ECAPs in the same users with the SpeedCAP method. The ECAP amplitudes were then compared between the two conditions, as were the corresponding estimates of neural health and current spread calculated using the PECAP method previously described by Garcia et al. The second study measured SpeedCAP intraoperatively in 8 CI patients and with all maskers and probes presented at the same current level to assess feasibility. ECAPs for the subset of conditions where the masker and probe were presented on the same electrode were compared with those obtained using the slower approach leveraged by the standard clinical software. RESULTS: Data collection time was reduced from ≈45 to ≈8 minutes. There were no significant differences between normalized root mean squared error (RMSE) repeatability metrics for post-operative PECAP and SpeedCAP data, nor for the RMSEs calculated between PECAP and SpeedCAP data. The comparison achieved 80% power to detect effect sizes down to 8.2% RMSE. When between-participant differences were removed, both the neural-health (r = 0.73) and current-spread (r = 0.65) estimates were significantly correlated ( p < 0.0001, df = 218) between SpeedCAP and PECAP conditions across all electrodes, and showed RMSE errors of 12.7 ± 4.7% and 16.8 ± 8.8%, respectively (with the ± margins representing 95% confidence intervals). Valid ECAPs were obtained in all patients in the second study, demonstrating intraoperative feasibility of SpeedCAP. No significant differences in RMSEs were detectable between post- and intra-operative ECAP measurements, with the comparison achieving 80% power to detect effect sizes down to 13.3% RMSE. CONCLUSIONS: The improved efficiency of SpeedCAP provides time savings facilitating multi-electrode ECAP recordings in routine clinical practice. SpeedCAP data collection is sufficiently quick to record intraoperatively, and adds no more than 8.2% error to the ECAP amplitudes. Such measurements could thereafter be submitted to models such as PECAP to provide patient-specific patterns of neural activation to inform programming of clinical MAPs and identify causes of poor performance at the electrode-nerve interface of CI users. The speed and accuracy of these measurements also opens up a wide range of additional research questions to be addressed.


Cochlear Implantation , Cochlear Implants , Humans , Cochlear Implantation/methods , Cochlea/physiology , Evoked Potentials , Evoked Potentials, Auditory/physiology , Action Potentials/physiology , Cochlear Nerve/physiology , Electric Stimulation
19.
J Neurosurg ; 138(2): 399-404, 2023 02 01.
Article En | MEDLINE | ID: mdl-35901762

OBJECTIVE: Cochlear nerve preservation during surgery for vestibular schwannoma (VS) may be challenging. Brainstem auditory evoked potentials and cochlear compound nerve action potentials have clearly shown their limitations in surgeries for large VSs. In this paper, the authors report their preliminary results after direct electrical intraoperative cochlear nerve stimulation and recording of the postauricular muscle response (PAMR) during resection of large VSs. METHODS: The details for the electrode setup, stimulation, and recording parameters are provided. Data of patients for whom PAMR was recorded during surgery were prospectively collected and analyzed. RESULTS: PAMRs were recorded in all patients at the ipsilateral vertex-earlobe scalp electrode, and in 90% of the patients they were also observed in the contralateral electrode. The optimal stimulation intensity was found to be 1 mA at 1 Hz, with a good cochlear response and an absent response from other nerves. At that intensity, the ipsilateral cochlear response had an initial peak at a mean (± SEM) latency of 11.6 ± 1.5 msec with an average amplitude of 14.4 ± 5.4 µV. One patient experienced a significant improvement in his audition, while that of the other patients remained stable. CONCLUSIONS: PAMR monitoring may be useful in mapping the position and trajectory of the cochlear nerve to enable hearing preservation during surgery.


Neuroma, Acoustic , Humans , Neuroma, Acoustic/surgery , Cochlear Nerve/physiology , Hearing/physiology , Cochlea , Muscles , Evoked Potentials, Auditory, Brain Stem/physiology
20.
Hear Res ; 426: 108643, 2022 12.
Article En | MEDLINE | ID: mdl-36343534

Cochlear implants (CIs) provide acoustic information to implanted patients by electrically stimulating nearby auditory nerve fibers (ANFs) which then transmit the information to higher-level neural structures for further processing and interpretation. Computational models that simulate ANF responses to CI stimuli enable the exploration of the mechanisms underlying CI performance beyond the capacity of in vivo experimentation alone. However, all ANF models developed to date utilize to some extent anatomical/morphometric data, biophysical properties and/or physiological data measured in non-human animal models. This review compares response properties of the electrically stimulated auditory nerve (AN) in human listeners and different mammalian models. Properties of AN responses to single pulse stimulation, paired-pulse stimulation, and pulse-train stimulation are presented. While some AN response properties are similar between human listeners and animal models (e.g., increased AN sensitivity to single pulse stimuli with long interphase gaps), there are some significant differences. For example, the AN of most animal models is typically more sensitive to cathodic stimulation while the AN of human listeners is generally more sensitive to anodic stimulation. Additionally, there are substantial differences in the speed of recovery from neural adaptation between animal models and human listeners. Therefore, results from animal models cannot be simply translated to human listeners. Recognizing the differences in responses of the AN to electrical stimulation between humans and other mammals is an important step for creating ANF models that are more applicable to various human CI patient populations.


Cochlear Implantation , Cochlear Implants , Animals , Humans , Cochlear Nerve/physiology , Electric Stimulation/methods , Evoked Potentials, Auditory , Mammals , Models, Animal
...