Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.201
Filter
1.
Drug Chem Toxicol ; 47(4): 404-415, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38949608

ABSTRACT

Although the presence of nitro groups in chemicals can be recognized as structural alerts for mutagenicity and carcinogenicity, nitroaromatic compounds have attracted considerable interest as a class of agents that can serve as source of potential new anticancer agents. In the present study, the in vitro cytotoxicity, genotoxicity, and mutagenicity of three synthetic ortho-nitrobenzyl derivatives (named ON-1, ON-2 and ON-3) were evaluated by employing human breast and ovarian cancer cell lines. A series of biological assays was carried out with and without metabolic activation. Complementarily, computational predictions of the pharmacokinetic properties and druglikeness of the compounds were performed in the Swiss ADME platform. The MTT assay showed that the compounds selectively affected selectively the cell viability of cancer cells in comparison with a nontumoral cell line. Additionally, the metabolic activation enhanced cytotoxicity, and the compounds affected cell survival, as demonstrated by the clonogenic assay. The comet assay, the cytokinesis-block micronucleus assay, and the immunofluorescence of the γ-H2AX foci formation assay have that the compounds caused chromosomal damage to the cancer cells, with and without metabolic activation. The results obtained in the present study showed that the compounds assessed were genotoxic and mutagenic, inducing double-strand breaks in the DNA structure. The high selectivity indices observed for the compounds ON-2 and ON-3, especially after metabolic activation with the S9 fraction, must be highlighted. These experimental biological results, as well as the theoretical properties predicted for the compounds have shown that they are promising anticancer candidates to be exploited in additional studies.


Subject(s)
Activation, Metabolic , Antineoplastic Agents , Cell Survival , DNA Damage , Humans , Cell Survival/drug effects , Antineoplastic Agents/toxicity , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , DNA Damage/drug effects , Cell Line, Tumor , Micronucleus Tests , Mutagens/toxicity , Comet Assay , Mutagenicity Tests , Female , Nitrobenzenes/toxicity , Nitrobenzenes/chemistry , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Dose-Response Relationship, Drug
2.
Environ Geochem Health ; 46(8): 290, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976075

ABSTRACT

Heavy metal pollution is a significant environmental concern with detrimental effects on ecosystems and human health, and traditional remediation methods may be costly, energy-intensive, or have limited effectiveness. The current study aims were to investigate the impact of heavy metal toxicity in Eisenia fetida, the growth, reproductive outcomes, and their role in soil remediation. Various concentrations (ranging from 0 to 640 mg per kg of soil) of each heavy metal were incorporated into artificially prepared soil, and vermi-remediation was conducted over a period of 60 days. The study examined the effects of heavy metals on the growth and reproductive capabilities of E. fetida, as well as their impact on the organism through techniques such as FTIR, histology, and comet assay. Atomic absorption spectrometry demonstrated a significant (P < 0.000) reduction in heavy metal concentrations in the soil as a result of E. fetida activity. The order of heavy metal accumulation by E. fetida was found to be Cr > Cd > Pb. Histological analysis revealed a consistent decline in the organism's body condition with increasing concentrations of heavy metals. However, comet assay results indicated that the tested levels of heavy metals did not induce DNA damage in E. fetida. FTIR analysis revealed various functional group peaks, including N-H and O-H groups, CH2 asymmetric stretching, amide I and amide II, C-H bend, carboxylate group, C-H stretch, C-O stretching of sulfoxides, carbohydrates/polysaccharides, disulfide groups, and nitro compounds, with minor shifts indicating the binding or accumulation of heavy metals within E. fetida. Despite heavy metal exposure, no significant detrimental effects were observed, highlighting the potential of E. fetida for sustainable soil remediation. Vermi-remediation with E. fetida represents a novel, sustainable, and cutting-edge technology in environmental cleanup. This study found that E. fetida can serve as a natural and sustainable method for remediating heavy metal-contaminated soils, promising a healthier future for soil.


Subject(s)
Environmental Restoration and Remediation , Metals, Heavy , Oligochaeta , Reproduction , Soil Pollutants , Oligochaeta/drug effects , Metals, Heavy/toxicity , Animals , Soil Pollutants/toxicity , Reproduction/drug effects , Environmental Restoration and Remediation/methods , Comet Assay , Spectroscopy, Fourier Transform Infrared , DNA Damage , Soil/chemistry
3.
Genes (Basel) ; 15(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38927659

ABSTRACT

Pathogenic variations in the BRCA2 gene have been detected with the development of next-generation sequencing (NGS)-based hereditary cancer panel testing technology. It also reveals an increasing number of variants of uncertain significance (VUSs). Well-established functional tests are crucial to accurately reclassifying VUSs for effective diagnosis and treatment. We retrospectively analyzed the multi-gene cancer panel results of 922 individuals and performed in silico analysis following ClinVar classification. Then, we selected five breast cancer-diagnosed patients' missense BRCA2 VUSs (T1011R, T1104P/M1168K, R2027K, G2044A, and D2819) for reclassification. The effects of VUSs on BRCA2 function were analyzed using comet and H2AX phosphorylation (γH2AX) assays before and after the treatment of peripheral blood mononuclear cells (PBMCs) of subjects with the double-strand break (DSB) agent doxorubicin (Dox). Before and after Dox-induction, the amount of DNA in the comet tails was similar in VUS carriers; however, notable variations in γH2AX were observed, and according to combined computational and functional analyses, we reclassified T1001R as VUS-intermediate, T1104P/M1168K and D2819V as VUS (+), and R2027K and G2044A as likely benign. These findings highlight the importance of the variability of VUSs in response to DNA damage before and after Dox-induction and suggest that further investigation is needed to understand the underlying mechanisms.


Subject(s)
BRCA2 Protein , Breast Neoplasms , Histones , Humans , Histones/genetics , Histones/metabolism , Phosphorylation , Female , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , BRCA2 Protein/genetics , Comet Assay/methods , High-Throughput Nucleotide Sequencing , Retrospective Studies , Mutation, Missense , DNA Breaks, Double-Stranded , DNA Damage
4.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891928

ABSTRACT

Micro-sized particles of synthetic polymers (microplastics) are found in all parts of marine ecosystems. This fact requires intensive study of the degree of danger of such particles to the life activity of hydrobionts and needs additional research. It is evident that hydrobionts in the marine environment are exposed to microplastics modified by biotic and abiotic degradation. To assess the toxic potential of aging microplastic, comparative studies were conducted on the response of cytochemical and genotoxic markers in hemocytes of the mussel Mytilus trossulus (Gould, 1850) after exposure to pristine and photodegraded (UV irradiation) polystyrene microparticles (µPS). The results of cytochemical tests showed that UV-irradiated µPS strongly reduced metabolism and destabilized lysosome membranes compared to pristine µPS. Using a Comet assay, it was shown that the nuclear DNA of mussel hemocytes showed high sensitivity to exposure to both types of plastics. However, the level of DNA damage was significantly higher in mussels exposed to aging µPS. It is suggested that the mechanism of increased toxicity of photo-oxidized µPS is based on free-radical reactions induced by the UV irradiation of polymers. The risks of toxic effects will be determined by the level of physicochemical degradation of the polymer, which can significantly affect the mechanisms of toxicity.


Subject(s)
DNA Damage , Hemocytes , Microplastics , Mytilus , Polystyrenes , Ultraviolet Rays , Water Pollutants, Chemical , Animals , Mytilus/drug effects , Mytilus/metabolism , Mytilus/radiation effects , Microplastics/toxicity , Polystyrenes/toxicity , Polystyrenes/chemistry , Hemocytes/drug effects , Hemocytes/metabolism , Hemocytes/radiation effects , Water Pollutants, Chemical/toxicity , Ultraviolet Rays/adverse effects , Comet Assay
5.
J Mater Sci Mater Med ; 35(1): 30, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884813

ABSTRACT

Pyrophyllite is the least studied natural clay in terms of its potential in biomedical applications, although there are many deposits of this aluminosilicate around the world. Genotoxicity study was performed in vitro for this mineral. Subsequently, Wister rats were exposed to the pyrophyllite micronized to below 100 µm. After the exposure period, histology of the lung, liver, kidney and gastric tissues were performed, followed by the stereological and hematological analysis. The physicochemical analyses revealed typical XRD characteristics of pyrophyllite clay with particle-size distribution ranging 50 nm-100 µm with stable mineral composition and unique buffering property to pH around 8. The results showed that there were no cytotoxic effects on to THP-1 cells, or genotoxicity of pyrophyllite measured by the Comet assay. In vivo studies are accompanied by the thorough physicochemical characterization of the micronized pyrophyllite. Histology of the lung tissue proved presence of an inflammatory reaction. On the other hand, gastric tissue has shown the selective accumulation of nanoparticles in enterocytes of the stomach only, as supported by ultrastructural analysis. Liver and kidney tissues have shown tolerability for pyrophyllite particles. The results give directions for further comprehensive studies of potential biomedical applications of the pyrophyllite.


Subject(s)
Aluminum Silicates , Biocompatible Materials , Kidney , Liver , Particle Size , Rats, Wistar , Animals , Rats , Biocompatible Materials/chemistry , Aluminum Silicates/chemistry , Nanoparticles/chemistry , Humans , Materials Testing , Gastric Mucosa/metabolism , Male , X-Ray Diffraction , Comet Assay , Clay/chemistry
6.
Sci Rep ; 14(1): 13079, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38844507

ABSTRACT

As patient exposure to ionizing radiation from medical imaging and its risks are continuing issues, this study aimed to evaluate DNA damage and repair markers after myocardial perfusion single-photon emission computed tomography (MPS). Thirty-two patients undergoing Tc-99m sestamibi MPS were studied. Peripheral blood was collected before radiotracer injection at rest and 60-90 min after injection. The comet assay (single-cell gel electrophoresis) was performed with peripheral blood cells to detect DNA strand breaks. Three descriptors were evaluated: the percentage of DNA in the comet tail, tail length, and tail moment (the product of DNA tail percentage and tail length). Quantitative PCR (qPCR) was performed to evaluate the expression of five genes related to signaling pathways in response to DNA damage and repair (ATM, ATR, BRCA1, CDKN1A, and XPC). Mann-Whitney's test was employed for statistical analysis; p < 0.05 was considered significant. Mean Tc-99m sestamibi dose was 15.1 mCi. After radiotracer injection, comparing post-exposure to pre-exposure samples of each of the 32 patients, no statistically significant differences of the DNA percentage in the tail, tail length or tail moment were found. qPCR revealed increased expression of BRCA1 and XPC, without any significant difference regarding the other genes. No significant increase in DNA strand breaks was detected after a single radiotracer injection for MPS. There was activation of only two repair genes, which may indicate that, in the current patient sample, the effects of ionizing radiation on the DNA were not large enough to trigger intense repair responses, suggesting the absence of significant DNA damage.


Subject(s)
DNA Damage , DNA Repair , Tomography, Emission-Computed, Single-Photon , Humans , Female , Male , Tomography, Emission-Computed, Single-Photon/methods , DNA Repair/genetics , Middle Aged , Aged , Technetium Tc 99m Sestamibi , Myocardial Perfusion Imaging/methods , BRCA1 Protein/genetics , Comet Assay
7.
J Toxicol Environ Health A ; 87(18): 752-761, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-38922576

ABSTRACT

Although the last pandemic created an urgency for development of vaccines, there was a continuous and concerted effort to search for therapeutic medications among existing drugs with different indications. One of the medications of interest that underwent this change was infliximab (IFM). This drug is used as an anti-inflammatory, predominantly in patients with Crohn 's disease, colitis ulcerative, and rheumatoid arthritis. In addition to these patients, individuals infected with Coronavirus Disease (COVID-19) were administered this chimeric monoclonal antibody (IMF) to act as an immunomodulator for patients in the absence of comprehensive research. Consequently, the present study aimed to examine the genotoxic effects attributed to IFM treatment employing different assays in vivo using mouse Mus musculus. Therefore, IFM was found to induce genotoxic effects as evidenced by the comet assay but did not demonstrate genotoxic potential utilizing mouse bone marrow MN test. The results of evaluating the expression of the P53 and BCL-2 genes using RT-qPCR showed stimulation of expression of these genes at 24 hr followed by a decline at 48 hr. Although the comet assay provided positive results, it is noteworthy that based upon negative findings in the micronucleus test, the data did not demonstrate significant changes in the genetic material that might affect the therapeutic use of IFM. The stimulation of expression of P53 and BCL-2 genes at 24 hr followed by a decline at 48 hr suggest a transient, if any, effect on genetic material. However, there is still a need for more research to more comprehensively understand the genotoxic profile of this medication.


Subject(s)
Infliximab , Tumor Suppressor Protein p53 , Animals , Mice , Tumor Suppressor Protein p53/genetics , DNA Damage/drug effects , Comet Assay , Micronucleus Tests , Proto-Oncogene Proteins c-bcl-2/genetics , Male , Genes, p53/drug effects , Genes, bcl-2/drug effects
8.
Saudi Med J ; 45(5): 468-475, 2024 May.
Article in English | MEDLINE | ID: mdl-38734439

ABSTRACT

OBJECTIVES: To compare the genotoxic effects of desflurane and propofol using comet assay in patients undergoing elective discectomy surgery. METHODS: This was a randomized controlled study. Patients who underwent elective lumbar discectomy under general anesthesia with propofol or desflurane were included in the study. Venous blood samples were obtained at 4 different time points: 5 minutes before anesthesia induction (T1), 2 hours after the start of anesthesia (T2), the first day after surgery (T3), and the fifth day following surgery (T4). Deoxyribonucleic acid damage in lymphocytes was assessed via the comet assay. RESULTS: A total of 30 patients, 15 in each group, were included in the analysis. The groups were similar in terms of age and gender distribution. There were no significant differences in demographics, duration of surgery, total remifentanil consumption, and total rocuronium bromide consumption. The comet assay revealed that head length, head intensity, tail intensity, tail moment at T1 were similar in the desflurane and propofol groups. Head length, tail length and tail moment measured in the desflurane group at T4 were significantly higher compared to the propofol group. Tail lengths of the desflurane group at T1, T2 and T3 were significantly higher than the corresponding values in the propofol group. CONCLUSION: Propofol and desflurane do not appear to induce DNA damage in lymphocytes. However, when the quantitative data were compared, it was determined that propofol had relatively lower genotoxic potential than desflurane.ClinicalTrials.gov Reg. No.: NCT05185167.


Subject(s)
Anesthetics, Inhalation , Comet Assay , DNA Damage , Desflurane , Diskectomy , Lymphocytes , Propofol , Humans , Propofol/adverse effects , Diskectomy/methods , Comet Assay/methods , Male , Lymphocytes/drug effects , Female , Adult , Middle Aged , Anesthetics, Inhalation/adverse effects , DNA Damage/drug effects , Lumbar Vertebrae/surgery , Anesthetics, Intravenous/adverse effects , Isoflurane/analogs & derivatives , Isoflurane/adverse effects
9.
Free Radic Biol Med ; 221: 75-80, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38762060

ABSTRACT

DNA damage caused by oxidative reactions plays a crucial role in the pathogenesis of colorectal cancer (CRC). In a previous cross-sectional study, CRC patients diagnosed with regional disease (stage III) exhibited a higher level of DNA base oxidation in peripheral blood mononuclear cells (PBMCs) 2-9 months post-surgery compared to those with localized disease (stage I-II). To further explore this observation over time, the present study aimed to investigate DNA base oxidation in CRC patients with localized versus regional disease 6 and 12 months after the initial measurements. The present study included patients enrolled in the randomized controlled trial Norwegian Dietary Guidelines and Colorectal Cancer Survival (CRC-NORDIET). The standard comet assay, modified with the lesion-specific enzyme formamidopyrimidine DNA glycosylase (Fpg), was applied to measure DNA base oxidation in PBMCs at the 6- and 12-month follow-ups. Of the 255 patients assessed at baseline, 156 were included at the 6-month follow-up, with 89 of these patients included in the 12-month follow-up. In contrast to our observation at baseline, there were no significant differences in the levels of DNA base oxidation between patients diagnosed with localized disease and those with regional involvement at the 6- and 12-month follow-up visits (P = 0.81 and P = 0.09, respectively). Patients with stage III disease exhibited a significant decrease in the levels of DNA base oxidation from baseline to 6 months (P < 0.01) and baseline to 12 months (P = 0.03), but no significant difference from 6 to 12 months (P = 0.80). In conclusion, the initially elevated levels of DNA base oxidation in PBMCs, observed 2-9 months post-surgery in patients diagnosed with regional disease (stage III), subsequently decreased to levels comparable to patients with localized disease (stage I-II) at the 6- and 12-month follow-ups.


Subject(s)
Colorectal Neoplasms , DNA Damage , Leukocytes, Mononuclear , Oxidation-Reduction , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/surgery , Colorectal Neoplasms/metabolism , Male , Female , Aged , Middle Aged , Leukocytes, Mononuclear/metabolism , Follow-Up Studies , Neoplasm Staging , Oxidative Stress , Comet Assay , DNA-Formamidopyrimidine Glycosylase/metabolism , DNA-Formamidopyrimidine Glycosylase/genetics , DNA/genetics , DNA/metabolism , Cross-Sectional Studies
10.
Part Fibre Toxicol ; 21(1): 24, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760761

ABSTRACT

BACKGROUND: Significant variations exist in the forms of ZnO, making it impossible to test all forms in in vivo inhalation studies. Hence, grouping and read-across is a common approach under REACH to evaluate the toxicological profile of familiar substances. The objective of this paper is to investigate the potential role of dissolution, size, or coating in grouping ZnO (nano)forms for the purpose of hazard assessment. We performed a 90-day inhalation study (OECD test guideline no. (TG) 413) in rats combined with a reproduction/developmental (neuro)toxicity screening test (TG 421/424/426) with coated and uncoated ZnO nanoforms in comparison with microscale ZnO particles and soluble zinc sulfate. In addition, genotoxicity in the nasal cavity, lungs, liver, and bone marrow was examined via comet assay (TG 489) after 14-day inhalation exposure. RESULTS: ZnO nanoparticles caused local toxicity in the respiratory tract. Systemic effects that were not related to the local irritation were not observed. There was no indication of impaired fertility, developmental toxicity, or developmental neurotoxicity. No indication for genotoxicity of any of the test substances was observed. Local effects were similar across the different ZnO test substances and were reversible after the end of the exposure. CONCLUSION: With exception of local toxicity, this study could not confirm the occasional findings in some of the previous studies regarding the above-mentioned toxicological endpoints. The two representative ZnO nanoforms and the microscale particles showed similar local effects. The ZnO nanoforms most likely exhibit their effects by zinc ions as no particles could be detected after the end of the exposure, and exposure to rapidly soluble zinc sulfate had similar effects. Obviously, material differences between the ZnO particles do not substantially alter their toxicokinetics and toxicodynamics. The grouping of ZnO nanoforms into a set of similar nanoforms is justified by these observations.


Subject(s)
Inhalation Exposure , Zinc Oxide , Animals , Zinc Oxide/toxicity , Zinc Oxide/chemistry , Male , Female , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Particle Size , Administration, Inhalation , DNA Damage , Rats , Comet Assay , Rats, Wistar , Reproduction/drug effects , Lung/drug effects , Lung/metabolism , Liver/drug effects , Liver/metabolism
11.
PLoS One ; 19(5): e0302691, 2024.
Article in English | MEDLINE | ID: mdl-38709735

ABSTRACT

Parabens are being used as preservatives due to their antifungal and antimicrobial effects. They are emerging as aquatic pollutants due to their excessive use in many products. The purpose of this study was to determine the toxic effect of ethyl paraben (C9H10O3) on the hematobiochemical, histological, oxidative, and anti-oxidant enzymatic and non-enzymatic activity; the study also evaluates the potential of ethyl paraben to cause genotoxicity in Rohu Labeo rohita. A number of 15 fish with an average weight of 35.45±1.34g were placed in each group and exposed to ethyl paraben for 21 days. Three different concentrations of ethyl paraben, i.e., T1 (2000µg/L), T2 (4000 µg/L), andT3 (6000 µg/L) on which fish were exposed as compared to the control T0 (0.00 µg/L). Blood was used for hematobiochemical and comet assay. Gills, kidneys, and liver were removed for histological alterations. The results showed a significant rise in all hemato-biochemical parameters such as RBCs, WBCs, PLT count, blood sugar, albumin, globulin, and cholesterol. An increase in aspartate aminotransferase (AST) and alanine transaminase (ALT) levels directed the hepatocytic damage. Histological alterations in the liver, gills and kidneys of fish were found. Ethylparaben induces oxidative stress by suppressing antioxidant enzyme activity such as SOD, GSH, CAT and POD. Based on the comet assay, DNA damage was also observed in blood cells, resulting in genotoxicity. Findings from the present study indicate that ethyl paraben induces hemato-biochemical alterations, tissue damage, oxidative stress, and genotoxicity.


Subject(s)
Antioxidants , Biomarkers , DNA Damage , Animals , Biomarkers/metabolism , Antioxidants/metabolism , DNA Damage/drug effects , Water Pollutants, Chemical/toxicity , Gills/drug effects , Gills/pathology , Gills/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Liver/drug effects , Liver/pathology , Liver/metabolism , Oxidative Stress/drug effects , Parabens/toxicity , Comet Assay , Cyprinidae/metabolism , Oxidants/metabolism , Oxidants/toxicity
12.
Physiol Res ; 73(2): 217-225, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38710053

ABSTRACT

An analytical method for studying DNA degradation by electrophoresis after cell lysis and visualization of DNA fragments with fluorescent dye, comet assay, was used to evaluate the viability of the endothelial layer of human arterial grafts with the aim of identifying the procedure that will least damage the tissue before cryopreservation. Four groups of samples were studied: cryopreserved arterial grafts that were thawed in two different ways, slowly lasting 2 hours or rapidly for approx. 7 minutes. Arterial grafts that were collected as part of multiorgan procurement with minimal warm ischemia time. Cadaveric grafts were taken as part of the autopsy, so they have a more extended period of warm ischemia. The HeadDNA (%) parameter and others commonly used parameters like TailDNA (%). TailMoment, TailLength, OliveMoment, TailMoment to characterize the comet were used to assess viability in this study. The ratio of non-decayed to decayed nuclei was determined from the values found. This ratio for cadaveric grafts was 0.63, for slowly thawed cryopreserved grafts 2.9, for rapidly thawed cryopreserved grafts 1.9, and for multi-organ procurement grafts 0.68. The results of the study confirmed the assumption that the allografts obtained from cadaveric donors are the least suitable. On the other hand, grafts obtained from multiorgan donors are better in terms of viability monitored by comet assay. Keywords: Arterial grafts, Cryopreservation, Cadaveric, Multiorgan procurement, Viability, Comet assay.


Subject(s)
Comet Assay , Cryopreservation , Humans , Cadaver , Arteries/transplantation , Graft Survival/physiology
13.
J Toxicol Environ Health A ; 87(16): 647-661, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-38804873

ABSTRACT

The present study aimed to determine the genoprotective activity and safety of Moringa oleifera leave and Tinospora cordifolia stem extracts against cyclophosphamide (CP)-induced genotoxicity utilizing Swiss albino mice. Animals were divided into 14 groups for subacute treatment with either M. oleifera or T. cordifolia extracts daily for 28 days. The extract doses selected were 100, 200 or 400 mg/kg b.w administered orally alone or combined with CP (50 mg/kg b.w. intraperitoneally daily for 5 days). Analyses performed included the comet assay, micronucleus test (MN) in bone marrow cells and sperm head abnormality assay (SHA). M. oleifera and T. cordifolia extracts induced no significant genotoxic effects on somatic and germ cells. In contrast, for all cells examined M. oleifera and T. cordifolia extracts inhibited DNA damage initiated by CP. Taken together data demonstrated that both plant extracts did not exhibit marked genotoxic effects but displayed potential chemoprotective properties against CP-induced genotoxicity in Swiss mice.


Subject(s)
Cyclophosphamide , DNA Damage , Micronucleus Tests , Moringa oleifera , Plant Extracts , Plant Leaves , Tinospora , Animals , Tinospora/chemistry , Mice , Cyclophosphamide/toxicity , Moringa oleifera/chemistry , Plant Extracts/pharmacology , Male , Plant Leaves/chemistry , DNA Damage/drug effects , Comet Assay , Plant Stems/chemistry , Bone Marrow/drug effects , Bone Marrow Cells/drug effects , Mutagens/toxicity , Antimutagenic Agents/pharmacology
14.
J Toxicol Environ Health A ; 87(16): 662-673, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-38808737

ABSTRACT

Pseudobombax marginatum, popularly known as "embiratanha," is widely used by traditional communities as anti-inflammatory and analgesic agent. This study aimed to determine the phytochemical profile as well as cytotoxicity, acute oral toxicity, genotoxicity, and mutagenicity attributed to exposure to aqueous (AqEx) and ethanolic (EtEx) extracts of embiratanha bark. Phytochemical screening was conducted using thin-layer chromatography (TLC). Cell viability was analyzed using MTT assay with human mammary gland adenocarcinoma (MDA-MB-231) and macrophage (J774A.1) cell lines, exposed to concentrations of 12.5, 25, 50, or 100 µg/ml of either extract. For acute oral toxicity, comet assay and micronucleus (MN) tests, a single dose of 2,000 mg/kg of either extract was administered orally to Wistar rats. TLC analysis identified classes of metabolites in the extracts, including cinnamic acid derivatives, flavonoids, hydrolyzable tannins, condensed tannins, coumarins, and terpenes/steroids. In the cytotoxicity assay, the varying concentrations of extracts derived from embiratanha induced no significant alterations in the viability of MDA-MB-231 cells. The lowest concentration of EtEx significantly increased macrophage J774A.1 viability. However, the higher concentrations of AqEx markedly lowered macrophage J774A.1 viability. Animals exhibited no toxicity in the parameters analyzed in acute oral toxicity, comet assay, and MN tests. Further, EtEx promoted a significant reduction in DNA damage index and DNA damage frequency utilizing the comet assay, while the group treated with AqEx exhibited no marked differences. Thus, data demonstrated that AqEx or EtEx of embiratanha may be considered safe at a dose of 2,000 mg/kg orgally under our experimental conditions tested.


Subject(s)
Plant Extracts , Rats, Wistar , Plant Extracts/toxicity , Plant Extracts/chemistry , Animals , Humans , Rats , Cell Line, Tumor , Male , Comet Assay , Micronucleus Tests , Female , Cell Survival/drug effects , Phytochemicals/toxicity , Phytochemicals/analysis , Mice , Plant Bark/chemistry , Mutagens/toxicity , Mutagenicity Tests , Ethanol/chemistry
15.
An Acad Bras Cienc ; 96(1): e20221111, 2024.
Article in English | MEDLINE | ID: mdl-38808810

ABSTRACT

In recent years, the use of pesticides has increased considerably for pest control and to improve agricultural production. The rural areas of several municipalities of department of Cordoba, north of Colombia, are highly dependent on agriculture. In this study, a questionnaire and field observations about pesticide use and genotoxic damage through the comet assay in peripheral blood lymphocytes of children who live near crop fields was evaluated. Damage Index for Comet Assay (DICA) of five children populations exposed to pesticides (mean of 94.73±53.95 for the municipality of Monteria, the higher damage in this study) were significantly Higher than control children population (mean of 7.56±7.39). Results showed the damage index in children exposed group was higher than in the control group. An inadequate management of pesticides, as well as incorrect disposal of toxic wastes was observed in the study zone.


Subject(s)
Agriculture , Comet Assay , DNA Damage , Environmental Exposure , Pesticides , Humans , Colombia , Child , Pesticides/adverse effects , Pesticides/toxicity , Male , Female , Environmental Exposure/adverse effects , DNA Damage/drug effects , Rural Population , Child, Preschool , Surveys and Questionnaires , Adolescent , Lymphocytes/drug effects , Case-Control Studies
16.
PLoS One ; 19(5): e0304602, 2024.
Article in English | MEDLINE | ID: mdl-38809935

ABSTRACT

This study aims to investigate if high-concentration HOCl fogging disinfection causes cytotoxicity and genotoxicity to cultured primary human skin fibroblasts. The cells were exposed to a dry fog of HOCl produced from solutions with a concentration of 300 ppm (5.72 mM) or 500 ppm (9.53 mM). After four times when fibroblasts were exposed to aerosolized HOCl at a concentration of 500 ppm for 9 minutes, significant cytotoxicity and genotoxicity effects were observed. Significant changes in the morphology of fibroblasts and cell death due to membrane disruption were observed, independent of the number of exposures. Flow cytometry analyses performed under these experimental conditions indicated a decrease in the number of cells with an intact cell membrane in the exposed samples compared to the sham samples, dropping to 49.1% of the total cells. Additionally, under the same conditions, the neutral comet assay results demonstrated significant DNA damage in the exposed cells. However, no analogous damages were found when the cells were exposed to aerosolized HOCl generated from a 300-ppm solution for 3 minutes, whether once or four times. Therefore, we have concluded that aerosolized HOCl in dry fog, with a concentration exceeding 300 ppm, can cause cytotoxic and genotoxic effects on human skin fibroblasts.


Subject(s)
DNA Damage , Fibroblasts , Hypochlorous Acid , Humans , Fibroblasts/drug effects , Hypochlorous Acid/toxicity , DNA Damage/drug effects , Cells, Cultured , Comet Assay , Skin/drug effects , Skin/cytology , Aerosols , Cell Survival/drug effects
17.
PLoS One ; 19(5): e0296255, 2024.
Article in English | MEDLINE | ID: mdl-38701093

ABSTRACT

Ivermectin (IVM) is an anti-parasitic drug which is used for treating parasitic infestations. It has been used in humans for treating intestinal strongyloidiasis and onchocerciasis however, currently researchers are investigating its potential for treating coronavirus SARS-CoV-2. Due to its broad-spectrum activities, IVM is being used excessively in animals which has generated an interest for researchers to investigate its toxic effects. Cytotoxic and genotoxic effects have been reported in animals due to excessive usage of IVM. Therefore, this study aims to evaluate the cytotoxic and genotoxic effects of IVM on the Madin-Darby-Bovine-Kidney (MDBK) cell line by examining the expression of a DNA damage-responsive gene (OGG1). Cytotoxicity of IVM was tested using an assay (MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), whereas the genotoxicity was evaluated using comet assay along with micronucleus assay. Moreover, the gene expression of DNA damage response gene (OGG1) was measured by qRT-PCR, after extraction of RNA from the MDBK cell line using the TRIzol method and its conversion to cDNA by reverse-transcriptase PCR. During the experiment, cell viability percentage was measured at different doses of IVM i.e., 25%, 50%, 75%, along with LC50/2, LC50 and LC50*2. It was observed that the gene expression of OGG1 increased as the concentration of IVM increased. It was concluded that IVM has both cytotoxic and genotoxic effects on the MDBK cell line. Furthermore, it is recommended that studies related to the toxic effects of IVM at molecular level and on other model organisms should be conducted to combat its hazardous effects.


Subject(s)
DNA Damage , Ivermectin , Ivermectin/toxicity , Ivermectin/pharmacology , Animals , DNA Damage/drug effects , Cell Line , Cattle , Cell Survival/drug effects , Micronucleus Tests , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , Comet Assay , Mutagens/toxicity , Antiparasitic Agents/pharmacology , Antiparasitic Agents/toxicity , Kidney/drug effects , Kidney/cytology
18.
Environ Mol Mutagen ; 65(3-4): 129-136, 2024.
Article in English | MEDLINE | ID: mdl-38717101

ABSTRACT

Chronic exposure to high (20,000 ppm) concentrations of tert-butyl alcohol (TBA) in drinking water, equivalent to ~2100 mg/kg bodyweight per day, is associated with slight increases in the incidence of thyroid follicular cell adenomas and carcinomas in mice, with no other indications of carcinogenicity. In a recent toxicological review of TBA, the U.S. EPA determined that the genotoxic potential of TBA was inconclusive, largely based on non-standard studies such as in vitro comet assays. As such, the potential role of genotoxicity in the mode of action of thyroid tumors and therefore human relevance was considered uncertain. To address the potential role of genotoxicity in TBA-associated thyroid tumor formation, CD-1 mice were exposed up to a maximum tolerated dose of 1500 mg/kg-day via oral gavage for two consecutive days and DNA damage was assessed with the comet assay in the thyroid. Blood TBA levels were analyzed by headspace GC-MS to confirm systemic tissue exposure. At study termination, no significant increases (DNA breakage) or decreases (DNA crosslinks) in %DNA tail were observed in TBA exposed mice. In contrast, oral gavage of the positive control ethyl methanesulfonate significantly increased %DNA tail in the thyroid. These findings are consistent with most genotoxicity studies on TBA and provide mechanistic support for non-linear, threshold toxicity criteria for TBA. While the mode of action for the thyroid tumors remains unclear, linear low dose extrapolation methods for TBA appear more a matter of policy than science.


Subject(s)
Comet Assay , DNA Damage , Thyroid Gland , tert-Butyl Alcohol , Animals , Comet Assay/methods , Mice , tert-Butyl Alcohol/toxicity , DNA Damage/drug effects , Thyroid Gland/drug effects , Thyroid Gland/pathology , Thyroid Neoplasms/chemically induced , Thyroid Neoplasms/pathology , Mutagens/toxicity , Male , Female
19.
Article in English | MEDLINE | ID: mdl-38821665

ABSTRACT

Wastewater released by textile dyeing industries is a major source of pollution. Untreated wastewater released from indigo dyeing operations affects aquatic ecosystems and threatens their biodiversity. We have assessed the toxicity of natural and synthetic indigo dye in zebrafish embryos, using the endpoints of teratogenicity, genotoxicity, and histopathology. The zebrafish embryo toxicity test (ZFET) was conducted, exposing embryos to ten concentrations of natural and synthetic indigo dyes; the 96-hour LC50 values were approximately 350 and 300 mg/L, respectively. Both dyes were teratogenic, causing egg coagulation, tail detachment, yolk sac edema, pericardial edema, and tail bend, with no significant difference in effects between the natural and synthetic dyes. Both dyes were genotoxic (using comet assay for DNA damage). Real-time RT-PCR studies showed upregulation of the DNA-repair genes FEN1 and ERCC1. Severe histological changes were seen in zebrafish larvae following exposure to the dyes. Our results show that indigo dyes may be teratogenic and genotoxic to aquatic organisms, underscoring the need for development of sustainable practices and policies for mitigating the environmental impacts of textile dyeing.


Subject(s)
Coloring Agents , DNA Damage , Embryo, Nonmammalian , Teratogens , Water Pollutants, Chemical , Zebrafish , Animals , Zebrafish/embryology , Embryo, Nonmammalian/drug effects , Coloring Agents/toxicity , DNA Damage/drug effects , Water Pollutants, Chemical/toxicity , Teratogens/toxicity , Indigo Carmine/toxicity , Mutagenicity Tests , Comet Assay
20.
Article in English | MEDLINE | ID: mdl-38821673

ABSTRACT

Diabetes mellitus is a complex metabolic disorder resulting from the interplay of environmental, genetic, and epigenetic factors that increase the risk of cancer development. However, it is unclear whether the increased cancer risk is due to poor glycemic control or the use of some antidiabetic medications. Therefore, we investigated the genetic and epigenetic changes in somatic cells in a mouse model of diabetes and studied whether multiple exposures to the antidiabetic medication dapagliflozin influence these changes. We also elucidated the mechanism(s) of these ameliorations. The micronucleus test and modified comet assay were used to investigate bone marrow DNA damage and methylation changes. These assays revealed that dapagliflozin is non-genotoxic in the tested regimen, and oxidative DNA damage and hypermethylation were significantly higher in diabetic mice. Spectrophotometry also evaluated oxidative DNA damage and global DNA methylation, revealing similar significant alterations induced by diabetes. Conversely, the dapagliflozin-treated diabetic animals significantly reduced these changes. The expression of some genes involved in DNA repair and DNA methylation was disrupted considerably in the somatic cells of diabetic animals. In contrast, dapagliflozin treatment significantly restored these disruptions and enhanced DNA repair. The simultaneous effects of decreased oxidative DNA damage and hypermethylation levels suggest that dapagliflozin can be used as a safe antidiabetic drug to reduce DNA damage and hypermethylation in diabetes, demonstrating its usefulness in patients with diabetes to control hyperglycemia and decrease the development of its subsequent complications.


Subject(s)
Benzhydryl Compounds , DNA Damage , DNA Methylation , Diabetes Mellitus, Experimental , Glucosides , Oxidative Stress , Animals , Benzhydryl Compounds/pharmacology , Glucosides/pharmacology , DNA Methylation/drug effects , DNA Damage/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/genetics , Mice , Oxidative Stress/drug effects , Male , Hypoglycemic Agents/pharmacology , Micronucleus Tests , DNA Repair/drug effects , Comet Assay
SELECTION OF CITATIONS
SEARCH DETAIL
...