Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34.667
1.
Methods Mol Biol ; 2726: 255-284, 2024.
Article En | MEDLINE | ID: mdl-38780735

Effective homology search for non-coding RNAs is frequently not possible via sequence similarity alone. Current methods leverage evolutionary information like structure conservation or covariance scores to identify homologs in organisms that are phylogenetically more distant. In this chapter, we introduce the theoretical background of evolutionary structure conservation and covariance score, and we show hands-on how current methods in the field are applied on example datasets.


Computational Biology , Evolution, Molecular , Computational Biology/methods , Phylogeny , Algorithms , RNA, Untranslated/genetics , Conserved Sequence , Humans , Animals , Software , Sequence Alignment/methods
2.
Nat Commun ; 15(1): 3789, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710693

The CUL3-RING E3 ubiquitin ligases (CRL3s) play an essential role in response to extracellular nutrition and stress stimuli. The ubiquitin ligase function of CRL3s is activated through dimerization. However, how and why such a dimeric assembly is required for its ligase activity remains elusive. Here, we report the cryo-EM structure of the dimeric CRL3KLHL22 complex and reveal a conserved N-terminal motif in CUL3 that contributes to the dimerization assembly and the E3 ligase activity of CRL3KLHL22. We show that deletion of the CUL3 N-terminal motif impairs dimeric assembly and the E3 ligase activity of both CRL3KLHL22 and several other CRL3s. In addition, we found that the dynamics of dimeric assembly of CRL3KLHL22 generates a variable ubiquitination zone, potentially facilitating substrate recognition and ubiquitination. These findings demonstrate that a CUL3 N-terminal motif participates in the assembly process and provide insights into the assembly and activation of CRL3s.


Amino Acid Motifs , Cryoelectron Microscopy , Cullin Proteins , Receptors, Interleukin-17 , Ubiquitin-Protein Ligases , Ubiquitination , Cullin Proteins/metabolism , Cullin Proteins/chemistry , Cullin Proteins/genetics , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics , HEK293 Cells , Protein Multimerization , Conserved Sequence , Protein Binding , Models, Molecular
3.
J Transl Med ; 22(1): 473, 2024 May 19.
Article En | MEDLINE | ID: mdl-38764035

The study of the functional genome in mice and humans has been instrumental for describing the conserved molecular mechanisms regulating human reproductive biology, and for defining the etiologies of monogenic fertility disorders. Infertility is a reproductive disorder that includes various conditions affecting a couple's ability to achieve a healthy pregnancy. Recent advances in next-generation sequencing and CRISPR/Cas-mediated genome editing technologies have facilitated the identification and characterization of genes and mechanisms that, if affected, lead to infertility. We report established genes that regulate conserved functions in fundamental reproductive processes (e.g., sex determination, gametogenesis, and fertilization). We only cover genes the deletion of which yields comparable fertility phenotypes in both rodents and humans. In the case of newly-discovered genes, we report the studies demonstrating shared cellular and fertility phenotypes resulting from loss-of-function mutations in both species. Finally, we introduce new model systems for the study of human reproductive biology and highlight the importance of studying human consanguineous populations to discover novel monogenic causes of infertility. The rapid and continuous screening and identification of putative genetic defects coupled with an efficient functional characterization in animal models can reveal novel mechanisms of gene function in human reproductive tissues.


Fertilization , Gametogenesis , Sex Differentiation , Humans , Gametogenesis/genetics , Animals , Fertilization/genetics , Sex Differentiation/genetics , Conserved Sequence/genetics , Female , Male
4.
Sci Rep ; 14(1): 11754, 2024 05 23.
Article En | MEDLINE | ID: mdl-38782990

Mammals maintain their body temperature, yet hibernators can temporarily lower their metabolic rate as an energy-saving strategy. It has been proposed that hibernators evolved independently from homeotherms, and it is possible that the convergent evolution of hibernation involved common genomic changes among hibernator-lineages. Since hibernation is a seasonal trait, the evolution of gene regulatory regions in response to changes in season may have been important for the acquisition of hibernation traits. High-frequency accumulation of mutations in conserved non-coding elements (CNEs) could, in principle, alter the expression of neighboring genes and thereby contribute to the acquisition of new traits. To address this possibility, we performed a comparative genomic analysis of mammals to identify accelerated CNEs commonly associated with hibernation. We found that accelerated CNEs are common to hibernator-lineages and could be involved with hibernation. We also found that common factors of genes that located near accelerated CNEs and are differentially expressed between normal and hibernation periods related to gene regulation and cell-fate determination. It suggests that the molecular mechanisms controlling hibernation have undergone convergent evolution. These results help broaden our understanding of the genetic adaptations that facilitated hibernation in mammals and may offer insights pertaining to stress responses and energy conservation.


Conserved Sequence , Evolution, Molecular , Hibernation , Mammals , Animals , Hibernation/genetics , Mammals/genetics , Gene Expression Regulation , Genomics/methods , Biological Evolution
5.
Int J Biol Macromol ; 269(Pt 2): 131965, 2024 Jun.
Article En | MEDLINE | ID: mdl-38697428

In A-family DNA polymerases (dPols), a functional 3'-5' exonuclease activity is known to proofread newly synthesized DNA. The identification of a mismatch in substrate DNA leads to transfer of the primer strand from the polymerase active site to the exonuclease active site. To shed more light regarding the mechanism responsible for the detection of mismatches, we have utilized DNA polymerase 1 from Aquifex pyrophilus (ApPol1). The enzyme synthesized DNA with high fidelity and exhibited maximal exonuclease activity with DNA substrates bearing mismatches at the -2 and - 3 positions. The crystal structure of apo-ApPol1 was utilized to generate a computational model of the functional ternary complex of this enzyme. The analysis of the model showed that N332 forms interactions with minor groove atoms of the base pairs at the -2 and - 3 positions. The majority of known A-family dPols show the presence of Asn at a position equivalent to N332. The N332L mutation led to a decrease in the exonuclease activity for representative purine-pyrimidine, and pyrimidine-pyrimidine mismatches at -2 and - 3 positions, respectively. Overall, our findings suggest that conserved polar residues located towards the minor groove may facilitate the detection of position-specific mismatches to enhance the fidelity of DNA synthesis.


Base Pair Mismatch , Models, Molecular , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , DNA/chemistry , DNA/metabolism , DNA/genetics , Catalytic Domain , Conserved Sequence , Amino Acid Sequence , Mutation , DNA Polymerase I/chemistry , DNA Polymerase I/metabolism , DNA Polymerase I/genetics , Substrate Specificity
6.
Front Immunol ; 15: 1380660, 2024.
Article En | MEDLINE | ID: mdl-38720894

Introduction: Babesia bovis, a tick-borne apicomplexan parasite causing bovine babesiosis, remains a significant threat worldwide, and improved and practical vaccines are needed. Previous studies defined the members of the rhoptry associated protein-1 (RAP-1), and the neutralization-sensitive rhoptry associated protein-1 related antigen (RRA) superfamily in B. bovis, as strong candidates for the development of subunit vaccines. Both RAP-1 and RRA share conservation of a group of 4 cysteines and amino acids motifs at the amino terminal end (NT) of these proteins. Methods and results: Sequence comparisons among the RRA sequences of several B. bovis strains and other Babesia spp parasites indicate a high level of conservation of a 15-amino acid (15-mer) motif located at the NT of the protein. BlastP searches indicate that the 15-mer motif is also present in adenylate cyclase, dynein, and other ATP binding proteins. AlphaFold2 structure predictions suggest partial exposure of the 15-mer on the surface of RRA of three distinct Babesia species. Antibodies in protected cattle recognize a synthetic peptide representing the 15-mer motif sequence in iELISA, and rabbit antibodies against the 15-mer react with the surface of free merozoites in immunofluorescence. Discussion and conclusion: The presence of the 15-mer-like regions in dynein and ATP-binding proteins provides a rationale for investigating possible functional roles for RRA. The demonstrated presence of a surface exposed B-cell epitope in the 15-mer motif of the B. bovis RRA, which is recognized by sera from protected bovines, supports its inclusion in future subunit epitope-based vaccines against B. bovis.


Antibodies, Protozoan , Antigens, Protozoan , Babesia bovis , Babesiosis , Epitopes, B-Lymphocyte , Protozoan Proteins , Animals , Cattle , Babesia bovis/immunology , Epitopes, B-Lymphocyte/immunology , Babesiosis/immunology , Babesiosis/parasitology , Babesiosis/prevention & control , Antibodies, Protozoan/immunology , Protozoan Proteins/immunology , Antigens, Protozoan/immunology , Amino Acid Motifs , Conserved Sequence , Cattle Diseases/immunology , Cattle Diseases/parasitology , Cattle Diseases/prevention & control , Amino Acid Sequence , Protozoan Vaccines/immunology
7.
Cell Mol Life Sci ; 81(1): 216, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740643

p50RhoGAP is a key protein that interacts with and downregulates the small GTPase RhoA. p50RhoGAP is a multifunctional protein containing the BNIP-2 and Cdc42GAP Homology (BCH) domain that facilitates protein-protein interactions and lipid binding and the GAP domain that regulates active RhoA population. We recently solved the structure of the BCH domain from yeast p50RhoGAP (YBCH) and showed that it maintains the adjacent GAP domain in an auto-inhibited state through the ß5 strand. Our previous WT YBCH structure shows that a unique kink at position 116 thought to be made by a proline residue between alpha helices α6 and α7 is essential for the formation of intertwined dimer from asymmetric monomers. Here we sought to establish the role and impact of this Pro116. However, the kink persists in the structure of P116A mutant YBCH domain, suggesting that the scaffold is not dictated by the proline residue at this position. We further identified Tyr124 (or Tyr188 in HBCH) as a conserved residue in the crucial ß5 strand. Extending to the human ortholog, when substituted to acidic residues, Tyr188D or Tyr188E, we observed an increase in RhoA binding and self-dimerization, indicative of a loss of inhibition of the GAP domain by the BCH domain. These results point to distinct roles and impact of the non-conserved and conserved amino acid positions in regulating the structural and functional complexity of the BCH domain.


Proline , Proline/metabolism , Proline/chemistry , Proline/genetics , Tyrosine/metabolism , Tyrosine/chemistry , Tyrosine/genetics , Protein Domains , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Amino Acid Sequence , rhoA GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/chemistry , Models, Molecular , Conserved Sequence , Humans , Protein Binding
8.
Int J Mol Sci ; 25(10)2024 May 17.
Article En | MEDLINE | ID: mdl-38791519

Our aim was to develop an accurate, highly sensitive method for HBV genotype determination and detection of genotype mixtures. We examined the preS and 5' end of the HBV X gene (5X) regions of the HBV genome using next-generation sequencing (NGS). The 1852 haplotypes obtained were subjected to genotyping via the Distance-Based discrimination method (DB Rule) using two sets of 95 reference sequences of genotypes A-H. In clinical samples from 125 patients, the main genotypes were A, D, F and H in Caucasian, B and C in Asian and A and E in Sub-Saharan patients. Genotype mixtures were identified in 28 (22.40%) cases, and potential intergenotypic recombination was observed in 29 (23.20%) cases. Furthermore, we evaluated sequence conservation among haplotypes classified into genotypes A, C, D, and E by computing the information content. The preS haplotypes exhibited limited shared conserved regions, whereas the 5X haplotypes revealed two groups of conserved regions across the genotypes assessed. In conclusion, we developed an NGS-based HBV genotyping method utilizing the DB Rule for genotype classification. We identified two regions conserved across different genotypes at 5X, offering promising targets for RNA interference-based antiviral therapies.


Genotype , Haplotypes , Hepatitis B virus , High-Throughput Nucleotide Sequencing , Hepatitis B virus/genetics , Humans , High-Throughput Nucleotide Sequencing/methods , Hepatitis B/virology , Hepatitis B/genetics , Genotyping Techniques/methods , Conserved Sequence , Coinfection/virology , Genome, Viral , Male , Female , Phylogeny , DNA, Viral/genetics , Adult
9.
PLoS Genet ; 20(4): e1010891, 2024 Apr.
Article En | MEDLINE | ID: mdl-38683842

Transcriptional cis-regulatory modules, e.g., enhancers, control the time and location of metazoan gene expression. While changes in enhancers can provide a powerful force for evolution, there is also significant deep conservation of enhancers for developmentally important genes, with function and sequence characteristics maintained over hundreds of millions of years of divergence. Not well understood, however, is how the overall regulatory composition of a locus evolves, with important outstanding questions such as how many enhancers are conserved vs. novel, and to what extent are the locations of conserved enhancers within a locus maintained? We begin here to address these questions with a comparison of the respective single-minded (sim) loci in the two dipteran species Drosophila melanogaster (fruit fly) and Aedes aegypti (mosquito). sim encodes a highly conserved transcription factor that mediates development of the arthropod embryonic ventral midline. We identify two enhancers in the A. aegypti sim locus and demonstrate that they function equivalently in both transgenic flies and transgenic mosquitoes. One A. aegypti enhancer is highly similar to known Drosophila counterparts in its activity, location, and autoregulatory capability. The other differs from any known Drosophila sim enhancers with a novel location, failure to autoregulate, and regulation of expression in a unique subset of midline cells. Our results suggest that the conserved pattern of sim expression in the two species is the result of both conserved and novel regulatory sequences. Further examination of this locus will help to illuminate how the overall regulatory landscape of a conserved developmental gene evolves.


Aedes , Drosophila melanogaster , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Animals , Aedes/genetics , Aedes/embryology , Drosophila melanogaster/genetics , Drosophila melanogaster/embryology , Conserved Sequence , Transcription Factors/genetics , Transcription Factors/metabolism , Animals, Genetically Modified , Evolution, Molecular , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
10.
PLoS Comput Biol ; 20(4): e1012028, 2024 Apr.
Article En | MEDLINE | ID: mdl-38662765

Intrinsically disordered regions (IDRs) are segments of proteins without stable three-dimensional structures. As this flexibility allows them to interact with diverse binding partners, IDRs play key roles in cell signaling and gene expression. Despite the prevalence and importance of IDRs in eukaryotic proteomes and various biological processes, associating them with specific molecular functions remains a significant challenge due to their high rates of sequence evolution. However, by comparing the observed values of various IDR-associated properties against those generated under a simulated model of evolution, a recent study found most IDRs across the entire yeast proteome contain conserved features. Furthermore, it showed clusters of IDRs with common "evolutionary signatures," i.e. patterns of conserved features, were associated with specific biological functions. To determine if similar patterns of conservation are found in the IDRs of other systems, in this work we applied a series of phylogenetic models to over 7,500 orthologous IDRs identified in the Drosophila genome to dissect the forces driving their evolution. By comparing models of constrained and unconstrained continuous trait evolution using the Brownian motion and Ornstein-Uhlenbeck models, respectively, we identified signals of widespread constraint, indicating conservation of distributed features is mechanism of IDR evolution common to multiple biological systems. In contrast to the previous study in yeast, however, we observed limited evidence of IDR clusters with specific biological functions, which suggests a more complex relationship between evolutionary constraints and function in the IDRs of multicellular organisms.


Evolution, Molecular , Intrinsically Disordered Proteins , Phylogeny , Animals , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Conserved Sequence/genetics , Computational Biology/methods , Drosophila/genetics , Proteome/chemistry , Proteome/metabolism , Proteome/genetics , Drosophila Proteins/genetics , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism
11.
Rev Alerg Mex ; 71(1): 78, 2024 Feb 01.
Article Es | MEDLINE | ID: mdl-38683095

OBJECTIVE: Analyze phylogenetic relationships and molecular mimicry of Cit s 2 and other plant profilins. METHODS: Online bioinformatics tools including Basic Local Alignment Search Tool (BLASTP), PRALINE and MEGA were used for multiple alignments and phylogenetic analysis. A 3D-homology model of Cit s 2 was predicted. Models were calculated with MODELLER. The best model was selected with the model scoring option of MAESTRO. Conserved regions between Cit s 2 and other profilins were located on the 3D model and antigenic regions were predicted by ElliPro server (3-5). RESULTS: Cit s 2 amino acid sequence (Uniprot code:P84177) was compared with other 30 profilins from different allergenic sources. The identity between Cit s 2 and other profilins ranged between 82 and 99%. The highest identity was observed with Cucumis melo (99%) followed by Prunus persica (98%) and Malus domestica (92%). High conserved antigenic regions were observed on the 3D predicted model. Seven lineal and six discontinuous epitopes were found in Cit s 2. CONCLUSION: High conserved antigenic regions were observed on the 3D predicted model of Cit s 2, which might involve potential cross-reactivity between Cit s 2 and other profilins. Future studies are needed to further analyze these results.


OBJETIVO: Analizar las relaciones filogenéticas y el mimetismo molecular de Cit s 2 y otras profilinas vegetales. MÉTODOS: Se utilizaron herramientas bioinformáticas en línea, incluida la de búsqueda de alineación local básica (BLASTP), PRALINE y MEGA, para alineamientos múltiples y análisis filogenético. Se predijo un modelo de homología 3D de Cit s 2. Los modelos se calcularon con MODELLER. El mejor modelo fue seleccionado con la opción de puntuación de modelo de Maestro. Las regiones conservadas entre Cit s 2 y otras profilinas se ubicaron en el modelo 3D y las regiones antigénicas fueron predichas por el servidor ElliPro (3-5). RESULTADOS: La secuencia de aminoácidos de Cit s 2 (código Uniprot: P84177), se comparó con otras 30 profilinas de diferentes fuentes alergénicas. La mayor identidad se observó con Cucumis melo (99%) seguida de Prunus persica (98%) y Malus domestica (92%). Se observaron regiones antigénicas altamente conservadas en el modelo predicho en 3D. Se encontraron siete epítopes lineales, y seis epítopes discontinuos en Cit s 2. CONCLUSIÓN: Se observaron regiones antigénicas altamente conservadas en el modelo 3D predicho de Cit s 2, lo que podría implicar una posible reactividad cruzada entre Cit s 2 y otras profilinas. Se necesitan estudios futuros para analizar más a fondo estos resultados.


Antigens, Plant , Profilins , Allergens/immunology , Amino Acid Sequence , Computer Simulation , Conserved Sequence , Models, Molecular , Phylogeny , Plant Proteins/immunology , Profilins/immunology , Profilins/genetics , Profilins/chemistry , Cucumis/chemistry , Cucumis/metabolism , Prunus persica/chemistry , Prunus persica/metabolism , Malus/chemistry , Malus/metabolism , Antigens, Plant/chemistry
12.
Microbiologyopen ; 13(3): e1410, 2024 Jun.
Article En | MEDLINE | ID: mdl-38682792

Escherichia coli serves as a proxy indicator of fecal contamination in aquatic ecosystems. However, its identification using traditional culturing methods can take up to 24 h. The application of DNA markers, such as conserved signature proteins (CSPs) genes (unique to all species/strains of a specific taxon), can form the foundation for novel polymerase chain reaction (PCR) tests that unambiguously identify and detect targeted bacterial taxa of interest. This paper reports the identification of three new highly-conserved CSPs (genes), namely YahL, YdjO, and YjfZ, which are exclusive to E. coli/Shigella. Using PCR primers based on highly conserved regions within these CSPs, we have developed quantitative PCR (qPCR) assays for the evaluation of E. coli/Shigella species in water ecosystems. Both in-silico and experimental PCR testing confirmed the absence of sequence match when tested against other bacteria, thereby confirming 100% specificity of the tested CSPs for E. coli/Shigella. The qPCR assays for each of the three CSPs provided reliable quantification for all tested enterohaemorrhagic and environmental E. coli strains, a requirement for water testing. For recreational water samples, CSP-based quantification showed a high correlation (r > 7, p < 0.01) with conventional viable E. coli enumeration. This indicates that novel CSP-based qPCR assays for E. coli can serve as robust tools for monitoring water ecosystems and other critical areas, including food monitoring.


Escherichia coli , Water Microbiology , Water Quality , Escherichia coli/genetics , Escherichia coli/classification , Escherichia coli Proteins/genetics , Real-Time Polymerase Chain Reaction/methods , Shigella/genetics , Shigella/classification , Shigella/isolation & purification , Conserved Sequence , Environmental Monitoring/methods , Polymerase Chain Reaction/methods , Feces/microbiology
13.
Molecules ; 29(8)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38675643

The B-box proteins (BBXs) encode a family of zinc-finger transcription factors that regulate the plant circadian rhythm and early light morphogenesis. The double B-box (DBB) family is in the class of the B-box family, which contains two conserved B-box domains and lacks a CCT (CO, CO-like and TOC1) motif. In this study, the identity, classification, structures, conserved motifs, chromosomal location, cis elements, duplication events, and expression profiles of the PtrDBB genes were analyzed in the woody model plant Populus trichocarpa. Here, 12 PtrDBB genes (PtrDBB1-PtrDBB12) were identified and classified into four distinct groups, and all of them were homogeneously spread among eight out of seventeen poplar chromosomes. The collinearity analysis of the DBB family genes from P. trichocarpa and two other species (Z. mays and A. thaliana) indicated that segmental duplication gene pairs and high-level conservation were identified. The analysis of duplication events demonstrates an insight into the evolutionary patterns of DBB genes. The previously published transcriptome data showed that PtrDBB genes represented distinct expression patterns in various tissues at different stages. In addition, it was speculated that several PtrDBBs are involved in the responsive to drought stress, light/dark, and ABA and MeJA treatments, which implied that they might function in abiotic stress and phytohormone responses. In summary, our results contribute to the further understanding of the DBB family and provide a reference for potential functional studies of PtrDBB genes in P. trichocarpa.


Evolution, Molecular , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins , Populus , Populus/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Profiling , Chromosomes, Plant/genetics , Gene Duplication , Transcriptome , Stress, Physiological/genetics , Conserved Sequence , Chromosome Mapping
14.
Genome Biol Evol ; 16(4)2024 Apr 02.
Article En | MEDLINE | ID: mdl-38648507

Conserved noncoding elements in vertebrates are enriched around transcription factor loci associated with development. However, loss and rapid divergence of conserved noncoding elements has been reported in teleost fish, albeit taking only few genomes into consideration. Taking advantage of the recent increase in high-quality teleost genomes, we focus on studying the evolution of teleost conserved noncoding elements, carrying out targeted genomic alignments and comparisons within the teleost phylogeny to detect conserved noncoding elements and reconstruct the ancestral teleost conserved noncoding elements repertoire. This teleost-centric approach confirms previous observations of extensive vertebrate conserved noncoding elements loss early in teleost evolution, but also reveals massive conserved noncoding elements gain in the teleost stem-group over 300 million years ago. Using synteny-based association to link conserved noncoding elements to their putatively regulated target genes, we show the most teleost gained conserved noncoding elements are found in the vicinity of orthologous loci involved in transcriptional regulation and embryonic development that are also associated with conserved noncoding elements in other vertebrates. Moreover, teleost and vertebrate conserved noncoding elements share a highly similar motif and transcription factor binding site vocabulary. We suggest that early teleost conserved noncoding element gains reflect a restructuring of the ancestral conserved noncoding element repertoire through both extreme divergence and de novo emergence. Finally, we support newly identified pan-teleost conserved noncoding elements have potential for accurate resolution of teleost phylogenetic placements in par with coding sequences, unlike ancestral only elements shared with spotted gar. This work provides new insight into conserved noncoding element evolution with great value for follow-up work on phylogenomics, comparative genomics, and the study of gene regulation evolution in teleosts.


Conserved Sequence , Evolution, Molecular , Fishes , Phylogeny , Animals , Fishes/genetics , Genome , Synteny
15.
Dev Cell ; 59(10): 1345-1359.e6, 2024 May 20.
Article En | MEDLINE | ID: mdl-38579721

The plant cell wall is a dynamic structure that plays an essential role in development, but the mechanism regulating cell wall formation remains poorly understood. We demonstrate that two transcription factors, SlERF.H5 and SlERF.H7, control cell wall formation and tomato fruit firmness in an additive manner. Knockout of SlERF.H5, SlERF.H7, or both genes decreased cell wall thickness, firmness, and cellulose contents in fruits during early development, especially in double-knockout lines. Overexpressing either gene resulted in thicker cell walls and greater fruit firmness with elevated cellulose levels in fruits but severely dwarf plants with lower gibberellin contents. We further identified that SlERF.H5 and SlERF.H7 activate the cellulose biosynthesis gene SlCESA3 but repress the gibberellin biosynthesis gene GA20ox1. Moreover, we identified a conserved LPL motif in these ERFs responsible for their activities as transcriptional activators and repressors, providing insight into how bifunctional transcription factors modulate distinct developmental processes.


Cell Wall , Fruit , Gene Expression Regulation, Plant , Gibberellins , Plant Proteins , Solanum lycopersicum , Transcription Factors , Solanum lycopersicum/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Gibberellins/metabolism , Cell Wall/metabolism , Cell Wall/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Fruit/metabolism , Fruit/genetics , Fruit/growth & development , Cellulose/metabolism , Cellulose/biosynthesis , Plants, Genetically Modified/metabolism , Conserved Sequence , Amino Acid Motifs
16.
J Inorg Biochem ; 256: 112539, 2024 Jul.
Article En | MEDLINE | ID: mdl-38593609

Motivated by the ambition to establish an enzyme-driven bioleaching pathway for copper extraction, properties of the Type-1 copper protein rusticyanin from Acidithiobacillus ferrooxidans (AfR) were compared with those from an ancestral form of this enzyme (N0) and an archaeal enzyme identified in Ferroplasma acidiphilum (FaR). While both N0 and FaR show redox potentials similar to that of AfR their electron transport rates were significantly slower. The lack of a correlation between the redox potentials and electron transfer rates indicates that AfR and its associated electron transfer chain evolved to specifically facilitate the efficient conversion of the energy of iron oxidation to ATP formation. In F. acidiphilum this pathway is not as efficient unless it is up-regulated by an as of yet unknown mechanism. In addition, while the electrochemical properties of AfR were consistent with previous data, previously unreported behavior was found leading to a form that is associated with a partially unfolded form of the protein. The cyclic voltammetry (CV) response of AfR immobilized onto an electrode showed limited stability, which may be connected to the presence of the partially unfolded state of this protein. Insights gained in this study may thus inform the engineering of optimized rusticyanin variants for bioleaching processes as well as enzyme-catalyzed solubilization of copper-containing ores such as chalcopyrite.


Azurin , Models, Molecular , Kinetics , Electrochemistry , Azurin/chemistry , Azurin/genetics , Azurin/metabolism , Actinobacteria/chemistry , Thermoplasmales/chemistry , Electron Spin Resonance Spectroscopy , Protein Structure, Tertiary , Iron/metabolism , Oxidation-Reduction , Biotechnology , Protein Stability , Conserved Sequence/genetics
17.
Chem Biol Interact ; 394: 110989, 2024 May 01.
Article En | MEDLINE | ID: mdl-38574836

Although few resistance mechanisms for histone deacetylase inhibitors (HDACis) have been described, we recently demonstrated that TMT1A (formerly METTL7A) and TMT1B (formerly METTL7B) can mediate resistance to HDACis with a thiol as the zinc-binding group by methylating and inactivating the drug. TMT1A and TMT1B are poorly characterized, and their normal physiological role has yet to be determined. As animal model systems are often used to determine the physiological function of proteins, we investigated whether the ability of these methyltransferases to methylate thiol-based HDACis is conserved across different species. We found that TMT1A was conserved across rats, mice, chickens, and zebrafish, displaying 85.7%, 84.8%, 60.7%, and 51.0% amino acid sequence identity, respectively, with human TMT1A. Because TMT1B was not found in the chicken or zebrafish, we focused our studies on the TMT1A homologs. HEK-293 cells were transfected to express mouse, rat, chicken, or zebrafish homologs of TMT1A and all conferred resistance to the thiol-based HDACIs NCH-51, KD-5170, and romidepsin compared to empty vector-transfected cells. Additionally, all homologs blunted the downstream effects of HDACi treatment such as increased p21 expression, increased acetylated histone H3, and cell cycle arrest. Increased levels of dimethylated romidepsin were also found in the culture medium of cells transfected to express any of the TMT1A homologs after a 24 h incubation with romidepsin compared to empty-vector transfected cells. Our results indicate that the ability of TMT1A to methylate molecules is conserved across species. Animal models may therefore be useful in elucidating the role of these enzymes in humans.


Chickens , Histone Deacetylase Inhibitors , Methyltransferases , Zebrafish , Animals , Humans , Mice , Rats , Amino Acid Sequence , Conserved Sequence , Depsipeptides/pharmacology , HEK293 Cells , Histone Deacetylase Inhibitors/pharmacology , Methylation , Methyltransferases/metabolism , Methyltransferases/genetics , Species Specificity , Sulfhydryl Compounds/metabolism , Zebrafish/metabolism
18.
J Mol Biol ; 436(10): 168575, 2024 May 15.
Article En | MEDLINE | ID: mdl-38641238

DNA mismatch repair endonuclease MutL is a member of GHKL ATPase superfamily. Mutations of MutL homologs are causative of a hereditary cancer, Lynch syndrome. We characterized MutL homologs from human and a hyperthermophile, Aquifex aeolicus, (aqMutL) to reveal the catalytic mechanism for the ATPase activity. Although involvement of a basic residue had not been conceived in the catalytic mechanism, analysis of the pH dependence of the aqMutL ATPase activity revealed that the reaction is catalyzed by a residue with an alkaline pKa. Analyses of mutant aqMutLs showed that Lys79 is the catalytic residue, and the corresponding residues were confirmed to be critical for activities of human MutL homologs, on the basis of which a catalytic mechanism for MutL ATPase is proposed. These and other results described here would contribute to evaluating the pathogenicity of Lynch syndrome-associated missense mutations. Furthermore, it was confirmed that the catalytic lysine residue is conserved among DNA gyrases and microrchidia ATPases, other members of GHKL ATPases, indicating that the catalytic mechanism proposed here is applicable to these members of the superfamily.


Adenosine Triphosphatases , Lysine , Lysine/metabolism , Lysine/genetics , Humans , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , MutL Proteins/genetics , MutL Proteins/metabolism , MutL Proteins/chemistry , Catalytic Domain , Amino Acid Sequence , Conserved Sequence , Hydrogen-Ion Concentration , Catalysis , Transcription Factors
19.
Genome Biol ; 25(1): 83, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38566111

BACKGROUND: The rise of large-scale multi-species genome sequencing projects promises to shed new light on how genomes encode gene regulatory instructions. To this end, new algorithms are needed that can leverage conservation to capture regulatory elements while accounting for their evolution. RESULTS: Here, we introduce species-aware DNA language models, which we trained on more than 800 species spanning over 500 million years of evolution. Investigating their ability to predict masked nucleotides from context, we show that DNA language models distinguish transcription factor and RNA-binding protein motifs from background non-coding sequence. Owing to their flexibility, DNA language models capture conserved regulatory elements over much further evolutionary distances than sequence alignment would allow. Remarkably, DNA language models reconstruct motif instances bound in vivo better than unbound ones and account for the evolution of motif sequences and their positional constraints, showing that these models capture functional high-order sequence and evolutionary context. We further show that species-aware training yields improved sequence representations for endogenous and MPRA-based gene expression prediction, as well as motif discovery. CONCLUSIONS: Collectively, these results demonstrate that species-aware DNA language models are a powerful, flexible, and scalable tool to integrate information from large compendia of highly diverged genomes.


DNA , Regulatory Sequences, Nucleic Acid , Binding Sites , Sequence Alignment , Algorithms , Conserved Sequence/genetics , Evolution, Molecular
...