Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.829
Filter
1.
Tissue Eng Regen Med ; 21(5): 723-735, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38834902

ABSTRACT

BACKGROUND: A drug-eluting stent (DES) is a highly beneficial medical device used to widen or unblock narrowed blood vessels. However, the drugs released by the implantation of DES may hinder the re-endothelialization process, increasing the risk of late thrombosis. We have developed a tacrolimus-eluting stent (TES) that as acts as a potent antiproliferative and immunosuppressive agent, enhancing endothelial regeneration. In addition, we assessed the safety and efficacy of TES through both in vitro and in vivo tests. METHODS: Tacrolimus and Poly(lactic-co-glycolic acid) (PLGA) were applied to the metal stent using electrospinning equipment. The surface morphology of the stent was examined before and after coating using a scanning electron microscope (SEM) and energy dispersive X-rays (EDX). The drug release test was conducted through high-performance liquid chromatography (HPLC). Cell proliferation and migration assays were performed using smooth muscle cells (SMC). The stent was then inserted into the porcine coronary artery and monitored for a duration of 4 weeks. RESULTS: SEM analysis confirmed that the coating surface was uniform. Furthermore, EDX analysis showed that the surface was coated with both polymer and drug components. The HPCL analysis of TCL at a wavelength of 215 nm revealed that the drug was continuously released over a period of 4 weeks. Smooth muscle cell migration was significantly decreased in the tacrolimus group (54.1% ± 11.90%) compared to the non-treated group (90.1% ± 4.86%). In animal experiments, the stenosis rate was significantly reduced in the TES group (29.6% ± 7.93%) compared to the bare metal stent group (41.3% ± 10.18%). Additionally, the fibrin score was found to be lower in the TES group compared to the group treated with a sirolimus-eluting stent (SES). CONCLUSION: Similar to SES, TES reduces neointimal proliferation in a porcine coronary artery model, specifically decreasing the fibrins score. Therefore, tacrolimus could be considered a promising drug for reducing restenosis and thrombosis.


Subject(s)
Cell Proliferation , Coronary Vessels , Drug-Eluting Stents , Tacrolimus , Animals , Tacrolimus/pharmacology , Coronary Vessels/drug effects , Swine , Cell Proliferation/drug effects , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/cytology , Cell Movement/drug effects
2.
J Pharmacol Sci ; 155(4): 148-151, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38880549

ABSTRACT

We examined the inhibitory effects of α-linolenic acid (ALA) on the contractions of pig coronary arteries. ALA concentration-dependently inhibited the contractions elicited by U46619 and prostaglandin F2α without affecting those elicited by 80 mM KCl, histamine, acetylcholine, and serotonin. ALA rightward shifted the concentration-response curve of U46619, and Schild plot analysis revealed that ALA competitively antagonized U46619. Furthermore, ALA inhibited the increase in intracellular Ca2+ concentration caused by TP receptor stimulation but not that caused by FP receptor stimulation. These results suggest that ALA behaves as a selective antagonist of TP receptors in coronary arteries.


Subject(s)
15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid , Calcium , Coronary Vessels , Receptors, Thromboxane , alpha-Linolenic Acid , Animals , Coronary Vessels/drug effects , alpha-Linolenic Acid/pharmacology , Swine , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Calcium/metabolism , Receptors, Thromboxane/antagonists & inhibitors , Receptors, Thromboxane/metabolism , Dose-Response Relationship, Drug , Male , Dinoprost/pharmacology , Muscle Contraction/drug effects
3.
Biomed Khim ; 70(3): 156-160, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38940204

ABSTRACT

The cytokine profile of primary coronary artery endothelial cells cultivated in the presence of doxorubicin (2 µg/ml and 6 µg/ml) was evaluated using enzyme-linked immunosorbent assay and qPCR. Cultivation of cells in the presence of these concentrations of doxorubicin for 24 h, upregulated expression of the following genes: IL6 (by 2.30 and 2.66 times, respectively), IL1B (by 1.25 and 3.44 times), and CXCL8 (by 6.47 times and 6.42 times), MIF (2.34 and 2.28 times), CCL2 (4.22 and 3.98 times). Under these conditions the following genes were downregulated: IL10, IL1R2, TNF. Cultivation of cells in the presence of doxorubicin (2 µg/ml and 6 µg/ml) for 24 h also increased the secretion of IL-6.


Subject(s)
Coronary Vessels , Doxorubicin , Endothelial Cells , Interleukin-6 , Humans , Doxorubicin/pharmacology , Coronary Vessels/cytology , Coronary Vessels/drug effects , Coronary Vessels/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Interleukin-6/metabolism , Interleukin-6/genetics , Cells, Cultured , Interleukin-1beta/metabolism , Interleukin-1beta/pharmacology , Cytokines/metabolism , Cytokines/genetics , Gene Expression Regulation/drug effects , Interleukin-8/metabolism , Interleukin-8/genetics , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Interleukin-10/metabolism , Interleukin-10/genetics
5.
Prog Cardiovasc Dis ; 84: 2-6, 2024.
Article in English | MEDLINE | ID: mdl-38754533

ABSTRACT

Personalizing risk assessment and treatment decisions for the primary prevention of atherosclerotic cardiovascular disease (ASCVD) rely on pooled cohort equations and increasingly coronary artery calcium (CAC) score. A growing body of evidence supports that elevated CAC scores correspond to progressively elevated ASCVD risk, and that scores of ≥100, ≥300, and ≥1000 denote risk that is equivalent to certain secondary prevention populations. This has led consensus guidelines to incorporate CAC score thresholds for guiding escalation of preventive therapy for lowering low-density lipoprotein cholesterol goals, initiation of non-statin lipid lowering medications, and use of low-dose daily aspirin. As data on CAC continues to grow, more decision pathways will incorporate CAC score cutoffs to guide management of blood pressure and cardiometabolic medications. CAC score is also being used to enrich clinical trial study populations for elevated ASCVD risk, and to screen for subclinical coronary atherosclerosis in patients who received chest imaging for other diagnostic purposes.


Subject(s)
Aspirin , Biomarkers , Cholesterol, LDL , Coronary Artery Disease , Practice Guidelines as Topic , Vascular Calcification , Humans , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/diagnosis , Vascular Calcification/diagnostic imaging , Vascular Calcification/diagnosis , Aspirin/therapeutic use , Aspirin/adverse effects , Aspirin/administration & dosage , Cholesterol, LDL/blood , Biomarkers/blood , Risk Assessment , Platelet Aggregation Inhibitors/therapeutic use , Platelet Aggregation Inhibitors/adverse effects , Treatment Outcome , Primary Prevention/standards , Dyslipidemias/drug therapy , Dyslipidemias/blood , Dyslipidemias/diagnosis , Risk Factors , Predictive Value of Tests , Coronary Vessels/diagnostic imaging , Coronary Vessels/drug effects
6.
Eur J Med Res ; 29(1): 280, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735968

ABSTRACT

OBJECTIVES: Data on side-branch (SB) ostial effect after drug-coated balloon (DCB) treatment in the context of de novo coronary bifurcation lesions are limited. We aimed to investigate the angiographic outcomes of SB ostium after DCB treatment compared with drug-eluting stents (DESs) implantation in the main vessel (MV) or optimal medical therapy (OMT) for the treatment of de novo coronary bifurcation lesions. METHODS: Serial angiographic changes in the SB ostium were compared between DCB, DES, and medication alone for MV treatment. Δ value was calculated by subtracting the follow-up value from the pre-procedure value. RESULTS: A total of 132 bifurcation lesions were included for analysis (44 lesions in DCB group; 38 lesions in DES group; 50 lesions in OMT group). The minimal lumen diameter (MLD) of SB ostium showed an increase at follow-up in the DCB group, whereas a decrease was observed in both the DES and OMT groups (ΔMLD: -0.16 ± 0.45 mm for DCB group vs. 0.50 ± 0.52 mm for DES group vs. 0.08 ± 0.38 mm for OMT group, p < 0.001). The diameter stenosis (DS) of SB ostium showed a marked decrease at follow-up in the DCB group, in contrast to an increase observed in both the DES and OMT groups (ΔDS: 8.01 ± 18.96% for DCB group vs. -18.68 ± 18.60% for DES group vs. -2.05 ± 14.58% for OMT group, p < 0.001). CONCLUSIONS: In de novo coronary bifurcation lesions, DCB treatment on the MV demonstrated favorable angiographic outcomes in the SB ostium at 6-9 month follow-up compared to DES implantation or OMT.


Subject(s)
Angioplasty, Balloon, Coronary , Coronary Angiography , Drug-Eluting Stents , Humans , Drug-Eluting Stents/adverse effects , Male , Female , Coronary Angiography/methods , Middle Aged , Aged , Angioplasty, Balloon, Coronary/methods , Coronary Artery Disease/therapy , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/surgery , Treatment Outcome , Coronary Vessels/diagnostic imaging , Coronary Vessels/drug effects , Coronary Vessels/pathology
7.
Ther Adv Cardiovasc Dis ; 18: 17539447241249650, 2024.
Article in English | MEDLINE | ID: mdl-38708947

ABSTRACT

Currently, cardiovascular risk stratification to guide preventive therapy relies on clinical scores based on cardiovascular risk factors. However, the discriminative power of these scores is relatively modest. The use of coronary artery calcium score (CACS) and coronary CT angiography (CCTA) has surfaced as methods for enhancing the estimation of risk and potentially providing insights for personalized treatment in individual patients. CACS improves overall cardiovascular risk prediction and may be used to improve the yield of statin therapy in primary prevention, and possibly identify patients with a favorable risk/benefit relationship for antiplatelet therapies. CCTA holds promise to guide anti-atherosclerotic therapies and to monitor individual response to these treatments by assessing individual plaque features, quantifying total plaque volume and composition, and assessing peri-coronary adipose tissue. In this review, we aim to summarize current evidence regarding the use of CACS and CCTA for guiding lipid-lowering and antiplatelet therapy and discuss the possibility of using plaque burden and plaque phenotyping to monitor response to anti-atherosclerotic therapies.


Subject(s)
Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease , Coronary Vessels , Plaque, Atherosclerotic , Predictive Value of Tests , Vascular Calcification , Humans , Vascular Calcification/diagnostic imaging , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/therapy , Coronary Vessels/diagnostic imaging , Coronary Vessels/drug effects , Risk Assessment , Platelet Aggregation Inhibitors/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Heart Disease Risk Factors , Treatment Outcome , Clinical Decision-Making , Patient Selection
8.
BMC Cardiovasc Disord ; 24(1): 269, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778265

ABSTRACT

INTRODUCTION: Surgery remains the primary treatment modality for thymic carcinoma, with adjuvant radiotherapy being recommended to effectively mitigate local recurrence and metastasis rates subsequent to incomplete or complete resection. Chemoradiotherapy has the potential to induce coronary artery occlusion, thereby potentially impacting patients' long-term survival rates. The existing literature currently lacks comprehensive research on the lesion characteristics of coronary artery injury resulting from chemoradiotherapy. CASE PRESENTATION: The male patient, aged 55, was admitted to the hospital due to recurrent chest tightness and pain persisting for one week. Notably, the patient had previously undergone curative resection surgery for thymic carcinoma seven years ago. After the surgical procedure, the patient underwent a course of adjuvant chemotherapy comprising docetaxel and platinum. 11 months later, imaging examination diagnosed tumor recurrence, and concurrent chemoradiotherapy was administered at a total dose of 62 Gy/31F for planning gross target volume (PGTV) and 54 Gy/31F for planning target volume (PTV) with 2 cycles of paclitaxel and cisplatin. Re-admission of the patient occurred after a 7-year interval subsequent to the completion of concurrent chemoradiotherapy, leading to a subsequent diagnosis of acute non-ST segment elevation myocardial infarction. Following administration of antiplatelet, anticoagulant, and anti-myocardial ischemia therapy, coronary angiography revealed the presence of a bifurcation lesion at the distal end of the left main trunk. Intravascular ultrasound (IVUS) examination demonstrated significant negative remodeling of both the main trunk and its branches at the bifurcation site, characterized by minimal atherosclerotic plaque components. CONCLUSIONS: Chemoradiotherapy may induce damage to endothelial cells, resulting in an inflammatory response. Negative remodeling of blood vessels is likely to occur, primarily characterized by vasoconstriction but with less atherosclerotic plaque burden. Routine stent implantation in negatively remodeled areas may lead to vascular rupture, necessitating intravascular imaging examination.


Subject(s)
Thymoma , Thymus Neoplasms , Humans , Male , Thymus Neoplasms/therapy , Thymus Neoplasms/diagnostic imaging , Middle Aged , Treatment Outcome , Time Factors , Thymoma/therapy , Thymoma/diagnostic imaging , Coronary Angiography , Vascular System Injuries/etiology , Vascular System Injuries/diagnostic imaging , Vascular System Injuries/therapy , Coronary Vessels/diagnostic imaging , Coronary Vessels/injuries , Coronary Vessels/drug effects , Chemoradiotherapy/adverse effects
9.
PLoS One ; 19(5): e0304551, 2024.
Article in English | MEDLINE | ID: mdl-38814895

ABSTRACT

Coronary microvascular dysfunction (CMD) is a critical pathogenesis of cardiovascular diseases. Lower endothelial nitric oxide synthase (eNOS) phosphorylation leads to reduced endothelium-derived relaxing factor nitric oxide (NO) generation, causing and accelerating CMD. Endoplasmic reticulum stress (ER stress) has been shown to reduce NO production in umbilical vein endothelial cells. Oxidized low-density lipoprotein (ox-LDL) damages endothelial cell function. However, the relationship between ox-LDL and coronary microcirculation has yet to be assessed. Short-chain fatty acid (SCFA), a fermentation product of the gut microbiome, could improve endothelial-dependent vasodilation in human adipose arterioles, but the effect of SCFA on coronary microcirculation is unclear. In this study, we found ox-LDL stimulated expression of ER chaperone GRP78. Further, we activated downstream PERK/eIF2a, IRE1/JNK, and ATF6 signaling pathways, decreasing eNOS phosphorylation and NO production in human cardiac microvascular endothelial. Furthermore, SCFA-propionate can inhibit ox-LDL-induced eNOS phosphorylation reduction and raise NO production; the mechanism is related to the inhibition of ER stress and downstream signaling pathways PERK/eIF2a, IRE1/JNK, and ATF6. In summary, we demonstrate that ox-LDL induced CMD by activating ER stress, propionate can effectively counteract the adverse effects of ox-LDL and protect coronary microcirculation function via inhibiting ER stress.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Lipoproteins, LDL , Nitric Oxide Synthase Type III , Nitric Oxide , Propionates , Signal Transduction , Humans , Endoplasmic Reticulum Stress/drug effects , Lipoproteins, LDL/metabolism , Nitric Oxide Synthase Type III/metabolism , Propionates/pharmacology , Nitric Oxide/metabolism , Signal Transduction/drug effects , Phosphorylation/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Coronary Vessels/drug effects , Coronary Vessels/metabolism , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/pharmacology , eIF-2 Kinase/metabolism , Activating Transcription Factor 6/metabolism , Microcirculation/drug effects , Heat-Shock Proteins/metabolism
10.
Colloids Surf B Biointerfaces ; 238: 113908, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677153

ABSTRACT

In response to the critical demand for advancements in coronary artery stents, this study addresses the challenges associated with arterial recoil and restenosis post-angioplasty and the imperative to encourage rapid re-endothelialization for minimizing thrombosis risks. We employed an innovative approach inspired by mussel adhesion, incorporating placental anticoagulant protein (AnnexinV) on stent design. The introduction of a post-translationally modified catecholic amino acid L-3,4-dihydroxyphenylalanine (L-Dopa), mimicking mussel characteristics, allowed for effective surface modification of Stainless steel stents through genetic code engineering in AnnexinV (AnxDopa). The efficacy of AnxDopa was analyzed through microscale thermophoresis and flow cytometry, confirming AnxDopa's exceptional binding with phosphatidylserine and activated platelets. AnxDopa coated stainless steel demonstrates remarkable bio-, hemo-, and immuno-compatibility, preventing smooth muscle cell proliferation, platelet adhesion, and fibrin formation. It acts as an interface between the stent and biological fluid, which facilitates the anticoagulation and rapid endothelialization. Surface modification of SS verified through XPS analysis and contact angle measurement attests to the efficacy of AnxDopa mediated surface modification. The hydrophilic nature of the AnxDopa-coated surface enhanced the endothelialization through increased protein absorption. This approach represents a significant stride in developing coronary stents with improved biocompatibility and reduced restenosis risks, offering valuable contributions to scientific and clinical realms alike.


Subject(s)
Coated Materials, Biocompatible , Stents , Humans , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Coronary Vessels/drug effects , Platelet Adhesiveness/drug effects , Anticoagulants/pharmacology , Anticoagulants/chemistry , Surface Properties , Cell Proliferation/drug effects , Stainless Steel/chemistry , Blood Platelets/drug effects , Blood Platelets/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/cytology , Animals , Levodopa/chemistry , Levodopa/pharmacology
11.
Front Immunol ; 15: 1383505, 2024.
Article in English | MEDLINE | ID: mdl-38686379

ABSTRACT

Acute myocardial infarction (MI) results in tissue damage to affected areas of the myocardium. The initial inflammatory response is the most damaging for residual cardiac function, while at later stages inflammation is a prerequisite for proper healing and scar formation. Balancing the extent and duration of inflammation during various stages after MI is thus pivotal for preserving cardiac function. Recently, a signaling lymphocytic activation molecule 1 (SLAMF1)-derived peptide (P7) was shown to reduce the secretion of inflammatory cytokines and protected against acute lipopolysaccharide-induced death in mice. In the present study, we experimentally induced MI by permanent ligation of the left anterior descending artery (LAD) in mice and explored the beneficial effect of immediately administering P7, with the aim of dampening the initial inflammatory phase without compromising the healing and remodeling phase. Blood samples taken 9 h post-LAD surgery and P7 administration dampened the secretion of inflammatory cytokines, but this dampening effect of P7 was diminished after 3 days. Echocardiography revealed less deterioration of cardiac contraction in mice receiving P7. In line with this, less myocardial damage was observed histologically in P7-treated mice. In conclusion, the administration of a SLAMF1-derived peptide (P7) immediately after induction of MI reduces the initial myocardial inflammation, reduces infarct expansion, and leads to less deterioration of cardiac contraction.


Subject(s)
Disease Models, Animal , Myocardial Infarction , Animals , Mice , Male , Cytokines/metabolism , Mice, Inbred C57BL , Antigens, CD/metabolism , Ligation , Myocardium/pathology , Myocardium/metabolism , Peptides/pharmacology , Receptors, Cell Surface/metabolism , Coronary Vessels/drug effects , Coronary Vessels/pathology
12.
Eur J Pharmacol ; 973: 176610, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38663541

ABSTRACT

Aripiprazole, a third-generation antipsychotic, has been widely used to treat schizophrenia. In this study, we evaluated the effect of aripiprazole on voltage-gated potassium (Kv) channels in rabbit coronary arterial smooth muscle cells using the patch clamp technique. Aripiprazole reduced the Kv current in a concentration-dependent manner with a half-maximal inhibitory concentration of 0.89 ± 0.20 µM and a Hill coefficient of 1.30 ± 0.25. The inhibitory effect of aripiprazole on Kv channels was voltage-dependent, and an additional aripiprazole-induced decrease in the Kv current was observed in the voltage range of full channel activation. The decay rate of Kv channel inactivation was accelerated by aripiprazole. Aripiprazole shifted the steady-state activation curve to the right and the inactivation curve to the left. Application of a repetitive train of pulses (1 and 2 Hz) promoted inhibition of the Kv current by aripiprazole. Furthermore, the recovery time constant from inactivation increased in the presence of aripiprazole. Pretreatment of Kv1.5 subtype inhibitor reduced the inhibitory effect of aripiprazole. However, pretreatment with Kv 7 and Kv2.1 subtype inhibitors did not change the degree of aripiprazole-induced inhibition of the Kv current. We conclude that aripiprazole inhibits Kv channels in a concentration-, voltage-, time-, and use (state)-dependent manner by affecting the gating properties of the channels.


Subject(s)
Aripiprazole , Coronary Vessels , Myocytes, Smooth Muscle , Potassium Channel Blockers , Potassium Channels, Voltage-Gated , Animals , Aripiprazole/pharmacology , Rabbits , Potassium Channels, Voltage-Gated/metabolism , Potassium Channels, Voltage-Gated/antagonists & inhibitors , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Coronary Vessels/drug effects , Coronary Vessels/cytology , Potassium Channel Blockers/pharmacology , Male , Antipsychotic Agents/pharmacology , Dose-Response Relationship, Drug
13.
J Am Heart Assoc ; 13(9): e033744, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38686853

ABSTRACT

BACKGROUND: The heart can metabolize the microbiota-derived short-chain fatty acid butyrate. Butyrate may have beneficial effects in heart failure, but the underlying mechanisms are unknown. We tested the hypothesis that butyrate elevates cardiac output by mechanisms involving direct stimulation of cardiac contractility and vasorelaxation in rats. METHODS AND RESULTS: We examined the effects of butyrate on (1) in vivo hemodynamics using parallel echocardiographic and invasive blood pressure measurements, (2) isolated perfused hearts in Langendorff systems under physiological conditions and after ischemia and reperfusion, and (3) isolated coronary arteries mounted in isometric wire myographs. We tested Na-butyrate added to injection solutions or physiological buffers and compared its effects with equimolar doses of NaCl. Butyrate at plasma concentrations of 0.56 mM increased cardiac output by 48.8±14.9%, stroke volume by 38.5±12.1%, and left ventricular ejection fraction by 39.6±6.2%, and lowered systemic vascular resistance by 33.5±6.4% without affecting blood pressure or heart rate in vivo. In the range between 0.1 and 5 mM, butyrate increased left ventricular systolic pressure by up to 23.7±3.4% in isolated perfused hearts and by 9.4±2.9% following ischemia and reperfusion, while reducing myocardial infarct size by 81.7±16.9%. Butyrate relaxed isolated coronary septal arteries concentration dependently with an EC50=0.57 mM (95% CI, 0.23-1.44). CONCLUSIONS: We conclude that butyrate elevates cardiac output through mechanisms involving increased cardiac contractility and vasorelaxation. This effect of butyrate was not associated with adverse myocardial injury in damaged hearts exposed to ischemia and reperfusion.


Subject(s)
Butyrates , Cardiotonic Agents , Myocardial Contraction , Vasodilation , Vasodilator Agents , Ventricular Function, Left , Animals , Male , Myocardial Contraction/drug effects , Ventricular Function, Left/drug effects , Vasodilation/drug effects , Cardiotonic Agents/pharmacology , Butyrates/pharmacology , Vasodilator Agents/pharmacology , Isolated Heart Preparation , Rats , Myocardial Reperfusion Injury/physiopathology , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Cardiac Output/drug effects , Stroke Volume/drug effects , Rats, Wistar , Coronary Vessels/drug effects , Coronary Vessels/physiopathology , Dose-Response Relationship, Drug , Disease Models, Animal , Rats, Sprague-Dawley
14.
Br J Pharmacol ; 181(15): 2478-2491, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38583945

ABSTRACT

BACKGROUND AND PURPOSE: Calcitonin gene-related peptide (CGRP) is a potent vasodilator. While its signalling is assumed to be mediated via increases in cAMP, this study focused on elucidating the actual intracellular signalling pathways involved in CGRP-induced relaxation of human isolated coronary arteries (HCA). EXPERIMENTAL APPROACH: HCA were obtained from heart valve donors (27 M, 25 F, age 54 ± 2 years). Concentration-response curves to human α-CGRP or forskolin were constructed in HCA segments, incubated with different inhibitors of intracellular signalling pathways, and intracellular cAMP levels were measured with and without stimulation. RESULTS: Adenylyl cyclase (AC) inhibitors SQ22536 + DDA and MDL-12330A, and PKA inhibitors Rp-8-Br-cAMPs and H89, did not inhibit CGRP-induced relaxation of HCA, nor did the guanylyl cyclase inhibitor ODQ, PKG inhibitor KT5823, EPAC1/2 inhibitor ESI09, potassium channel blockers TRAM-34 + apamin, iberiotoxin or glibenclamide, or the Gαq inhibitor YM-254890. Phosphodiesterase inhibitors induced a concentration-dependent decrease in the response to KCl but did not potentiate relaxation to CGRP. Relaxation to forskolin was not blocked by PKA or AC inhibitors, although AC inhibitors significantly inhibited the increase in cAMP. Inhibition of Gßγ subunits using gallein significantly inhibited the relaxation to CGRP in human coronary arteries. CONCLUSION: While CGRP signalling is generally assumed to act via cAMP, the CGRP-induced vasodilation in HCA was not inhibited by targeting this intracellular signalling pathway at different levels. Instead, inhibition of Gßγ subunits did inhibit the relaxation to CGRP, suggesting a different mechanism of CGRP-induced relaxation than generally believed.


Subject(s)
Calcitonin Gene-Related Peptide , Coronary Vessels , Cyclic AMP , GTP-Binding Protein beta Subunits , GTP-Binding Protein gamma Subunits , Vasodilation , Humans , Coronary Vessels/drug effects , Coronary Vessels/metabolism , Coronary Vessels/physiology , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/pharmacology , Male , Middle Aged , Cyclic AMP/metabolism , Vasodilation/drug effects , Female , GTP-Binding Protein gamma Subunits/metabolism , GTP-Binding Protein beta Subunits/metabolism , Signal Transduction/drug effects , In Vitro Techniques , Vasodilator Agents/pharmacology
15.
Am J Cardiol ; 219: 71-76, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38522651

ABSTRACT

The diagnosis of vasospastic angina (VSA) according to Japanese guidelines involves an initial intracoronary acetylcholine (ACh) provocation test in the left coronary artery (LCA) followed by testing in the right coronary artery (RCA). However, global variations in test protocols often lead to the omission of ACh provocation in the RCA, potentially resulting in the underdiagnosis of VSA. This study assessed the validity of the LCA-only ACh provocation approach for the VSA diagnosis and whether vasoreactivity in the LCA aids in determining further provocation in the RCA. A total of 273 patients who underwent sequential intracoronary ACh provocation testing in the LCA and RCA were included. Patients with a positive ACh provocation test in the LCA were excluded. Relations between vasoreactivity in the LCA and ACh test outcomes (positivity and adverse events) in the RCA were evaluated. In patients with negative ACh test results in the LCA, subsequent ACh testing was positive in the RCA in 23 of 273 (8.4%) patients. In patients with minimal LCA vasoconstriction (<25%), only 3.0% had a positive ACh test in the RCA, whereas the ACh test in the RCA was positive in 13.5% of those with LCA constriction of 25% to 90% (p = 0.002). No major adverse events occurred during ACh testing in the RCA. In conclusion, for the VSA diagnosis, the omission of ACh provocation in the RCA may be clinically acceptable, particularly when vasoconstriction induced by ACh injection was minimal in the LCA. Further studies are needed to define ACh provocation protocols worldwide.


Subject(s)
Acetylcholine , Coronary Vasospasm , Coronary Vessels , Vasoconstriction , Humans , Acetylcholine/administration & dosage , Acetylcholine/pharmacology , Female , Male , Coronary Vasospasm/diagnosis , Coronary Vasospasm/physiopathology , Coronary Vasospasm/chemically induced , Coronary Vessels/physiopathology , Coronary Vessels/drug effects , Aged , Middle Aged , Vasoconstriction/physiology , Vasoconstriction/drug effects , Coronary Angiography , Vasodilator Agents/administration & dosage , Retrospective Studies , Angina Pectoris/physiopathology , Angina Pectoris/diagnosis
16.
Atherosclerosis ; 392: 117504, 2024 May.
Article in English | MEDLINE | ID: mdl-38513436

ABSTRACT

BACKGROUND AND AIMS: The effects of protein convertase subtilisin/kexin type 9 (PCSK9) inhibitors on endothelial function as assessed by flow-mediated dilation (FMD) in patients with acute myocardial infarction (AMI) are unknown. Therefore, we aimed to investigate the effects of the PCSK9 inhibitor alirocumab added to high-intensity statin on FMD, and its association with coronary atherosclerosis in non-infarct related arteries using intracoronary intravascular ultrasound (IVUS), near-infrared spectroscopy (NIRS), and optical coherence tomography (OCT). METHODS: This was a pre-specified substudy among patients recruited at Bern University Hospital, Switzerland, for the randomized-controlled, double-blind, PACMAN-AMI trial, which compared the effects of biweekly alirocumab 150 mg vs. placebo added to rosuvastatin. Brachial artery FMD was measured at 4 and 52 weeks, and intracoronary imaging at baseline and 52 weeks. RESULTS: 139/173 patients completed the substudy. There was no difference in FMD at 52 weeks in the alirocumab (n = 68, 5.44 ± 2.24%) versus placebo (n = 71, 5.45 ± 2.19%) group (difference = -0.21%, 95% CI -0.77 to 0.35, p = 0.47). FMD improved throughout 52 weeks in both groups similarly (p < 0.001). There was a significant association between 4 weeks FMD and baseline plaque burden (IVUS) (n = 139, slope = -1.00, p = 0.006), but not with lipid pool (NIRS) (n = 139, slope = -7.36, p = 0.32), or fibrous cap thickness (OCT) (n = 81, slope = -1.57, p = 0.62). CONCLUSIONS: Among patients with AMI, the addition of alirocumab did not result in further improvement of FMD as compared to 52 weeks secondary preventative medical therapy including high-intensity statin therapy. FMD was significantly associated with coronary plaque burden at baseline, but not with lipid pool or fibrous cap thickness.


Subject(s)
Antibodies, Monoclonal, Humanized , Coronary Artery Disease , Endothelium, Vascular , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Myocardial Infarction , PCSK9 Inhibitors , Rosuvastatin Calcium , Ultrasonography, Interventional , Humans , Male , Female , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Middle Aged , Coronary Artery Disease/drug therapy , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/complications , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiopathology , Double-Blind Method , Aged , Myocardial Infarction/drug therapy , Myocardial Infarction/complications , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/physiopathology , Rosuvastatin Calcium/therapeutic use , Treatment Outcome , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Tomography, Optical Coherence , Vasodilation/drug effects , Drug Therapy, Combination , Spectroscopy, Near-Infrared , Plaque, Atherosclerotic/drug therapy , Coronary Vessels/diagnostic imaging , Coronary Vessels/drug effects , Coronary Vessels/physiopathology , Brachial Artery/drug effects , Brachial Artery/physiopathology , Brachial Artery/diagnostic imaging , Time Factors , Proprotein Convertase 9
17.
Clin Hemorheol Microcirc ; 87(2): 141-170, 2024.
Article in English | MEDLINE | ID: mdl-38339922

ABSTRACT

BACKGROUND: Angiotensin-converting enzyme inhibitors (ACEIs) were reported to protect from hypoxia-induced oxidative stress in coronary endothelial cells (CECs) after acute myocardial infarction (AMI). Nrf2 shows a protective effect in hypoxia-induced CECs after AMI. Plasmalemma vesicle-associated protein (PLVAP) plays a pivotal role in angiogenesis after AMI. AIM: To explore the protective effect of ACEIs and the involved mechanisms under hypoxia challenge. METHODS: Human coronary endothelial cells (HCAECs) were used to establish hypoxia-induced oxidative stress injury in vitro. Flow cytometry was used to evaluate the protective effect of ACEI on hypoxia conditions.ET-1, NO, ROS, and VEGF were detected by ELISA. HO-1, Nrf2, and Keap-1, the pivotal member in the Nrf2 signaling pathway, eNOS and PLVAP were detected in HEAECs treated with ACEI by immunofluorescence, qPCR, and western blotting. RESULTS: The hypoxia ACEI or Nrf2 agonist groups showed higher cell viability compared with the hypoxia control group at 24 (61.75±1.16 or 61.23±0.59 vs. 44.24±0.58, both P < 0.05) and 48 h (41.85±1.19 or 59.64±1.13 vs. 22.98±0.25, both P < 0.05). ACEI decreased the levels of ET-1 and ROS under hypoxia challenge at 24 and 48 h (all P < 0.05); ACEI increased the VEGF and NO levels (all P < 0.05). ACEI promoted the expression level of eNOS, HO-1, Nrf2 and PLVAP but inhibited Keap-1 expression at the mRNA and protein levels (all P < 0.05). Blockade of the Nrf2 signaling pathway significantly decreased the expression level of PLVAP. CONCLUSION: ACEI protects hypoxia-treated HEAECs by activating the Nrf2 signaling pathway and upregulating the expression of PLVAP.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Coronary Vessels , Endothelial Cells , NF-E2-Related Factor 2 , Signal Transduction , Humans , NF-E2-Related Factor 2/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Signal Transduction/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Coronary Vessels/drug effects , Oxidative Stress/drug effects , Membrane Proteins/metabolism , Cell Hypoxia/drug effects , Cells, Cultured
18.
Br J Pharmacol ; 181(12): 1720-1733, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38320397

ABSTRACT

BACKGROUND AND PURPOSE: Multiple drugs targeting the calcitonin gene-related peptide (CGRP) receptor have been developed for migraine treatment. Here, the effect of the monoclonal antibody erenumab on CGRP-induced vasorelaxation was investigated in human isolated blood vessels, as well as the effect of combining erenumab with the small molecule drugs, namely rimegepant, olcegepant, or sumatriptan. EXPERIMENTAL APPROACH: Concentration-response curves to CGRP, adrenomedullin or pramlintide were constructed in human coronary artery (HCA) and human middle meningeal artery (HMMA) segments, incubated with or without erenumab and/or olcegepant. pA2 or pKb values were calculated to determine the potency of erenumab in both tissues. To study whether acutely acting antimigraine drugs exerted additional CGRP-blocking effects on top of erenumab, HCA segments were incubated with a maximally effective concentration of erenumab (3 µM), precontracted with KCl and exposed to CGRP, followed by rimegepant, olcegepant, or sumatriptan in increasing concentrations. KEY RESULTS: Erenumab shifted the concentration-response curve to CGRP in both vascular tissues. However, in HCA, the Schild plot slope was significantly smaller than unity, whereas this was not the case in HMMA, indicating different CGRP receptor mechanisms in these tissues. In HCA, rimegepant, olcegepant and sumatriptan exerted additional effects on CGRP on top of a maximal effect of erenumab. CONCLUSIONS AND IMPLICATIONS: Gepants have additional effects on top of erenumab for CGRP-induced relaxation and could be effective in treating migraine attacks in patients already using erenumab as prophylaxis.


Subject(s)
Antibodies, Monoclonal, Humanized , Calcitonin Gene-Related Peptide Receptor Antagonists , Coronary Vessels , Meningeal Arteries , Sumatriptan , Humans , Antibodies, Monoclonal, Humanized/pharmacology , Coronary Vessels/drug effects , Meningeal Arteries/drug effects , Calcitonin Gene-Related Peptide Receptor Antagonists/pharmacology , Sumatriptan/pharmacology , Male , Middle Aged , Female , Dose-Response Relationship, Drug , Piperidines/pharmacology , Antibodies, Monoclonal/pharmacology , Calcitonin Gene-Related Peptide/metabolism , Vasodilation/drug effects , Piperazines/pharmacology , Quinazolines/pharmacology , Migraine Disorders/drug therapy , Migraine Disorders/metabolism , In Vitro Techniques , Aged , Adult , Pyridines
19.
JACC Clin Electrophysiol ; 10(5): 885-896, 2024 May.
Article in English | MEDLINE | ID: mdl-38385916

ABSTRACT

BACKGROUND: In treating atrial fibrillation, pulsed-field ablation (PFA) has comparable efficacy to conventional thermal ablation, but with important safety advantages: no esophageal injury or pulmonary vein stenosis, and rare phrenic nerve injury. However, when PFA is delivered in proximity to coronary arteries using a pentaspline catheter, which generates a broad electrical field, severe vasospasm can be provoked. OBJECTIVES: The authors sought to study the vasospastic potential of a focal PFA catheter with a narrower electrical field and develop a preventive strategy with nitroglycerin. METHODS: During atrial fibrillation ablation, a focal PFA catheter was used for cavotricuspid isthmus ablation. Angiography of the right coronary artery (some with fractional flow reserve measurement) was performed before, during, and after PFA. Beyond no nitroglycerin (n = 5), and a few testing strategies (n = 8), 2 primary nitroglycerin administration strategies were studied: 1) multiple boluses (3-2 mg every 2 min) into the right atrium (n = 10), and 2) a bolus (3 mg) into the right atrium with continuous peripheral intravenous infusion (1 mg/min; n = 10). RESULTS: Without nitroglycerin, cavotricuspid isthmus ablation provoked moderate-severe vasospasm in 4 of 5 (80%) patients (fractional flow reserve 0.71 ± 0.08). With repetitive nitroglycerin boluses, severe spasm did not occur, and mild-moderate vasospasm occurred in only 2 of 10 (20%). Using the bolus + infusion strategy, severe and mild-moderate spasm occurred in 1 and 3 of 10 patients (aggregate 40%). No patient had ST-segment changes. CONCLUSIONS: Ablation of the cavotricuspid isthmus using a focal PFA catheter routinely provokes right coronary vasospasm. Pretreatment with high doses of parenteral nitroglycerin prevents severe spasm.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Coronary Vasospasm , Nitroglycerin , Humans , Atrial Fibrillation/surgery , Nitroglycerin/administration & dosage , Nitroglycerin/therapeutic use , Coronary Vasospasm/prevention & control , Male , Middle Aged , Female , Catheter Ablation/methods , Catheter Ablation/adverse effects , Aged , Vasodilator Agents/therapeutic use , Vasodilator Agents/administration & dosage , Coronary Angiography , Coronary Vessels/drug effects , Coronary Vessels/surgery , Coronary Vessels/physiopathology
20.
BMC Cardiovasc Disord ; 22(1): 38, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35148671

ABSTRACT

BACKGROUND: Left atrial appendage closure (LAAC) combined with radiofrequency catheter ablation (RFCA) as a hybrid procedure is commonly performed to treat atrial fibrillation (AF). Although this treatment carries a low risk of coronary artery spasm (CAS), and has never been observed in LAAC procedure, caution still needed to be taken. We presented a case of CAS that occurred in an AF patient during the hybrid procedure. CASE PRESENTATION: The patient was a 65-year-old man with paroxysmal AF who developed CAS during RFCA and LAAC. In this case, LAAC was performed ahead of RFCA. After atrial septal puncture, the occluder was advanced into left atrium through delivery sheath, and successfully deployed in the LAA. After verifying the assessment of "PASS" criteria, we decided to release the device. However, before releasing the occluder in LAAC, the patient's blood pressure (BP) fell to 70/45 mmHg with heart rate (HR) drop and ST-segment elevation in II, III, and aVF and reciprocal ST-segment depression in I and aVL. Isotonic sodium chloride load was administered. After 3 min, the BP and HR raised, and ST-segment returned to normal. The occluder was successfully released after the stable condition of the patient. Then, RFCA was sequentially performed. When isolating the right pulmonary veins, the patient's BP and HR fell again with ST-segment elevation in inferior leads. Spontaneous ventricular tachycardia and fibrillation developed rapidly and defibrillation was performed immediately with success. Coronary angiography revealed the obstruction of the right coronary artery which disappeared completely after intracoronary nitroglycerin injection (1 mg). Under systemic diltiazem infusion, the RFCA procedure was accomplished. After the procedure, the patient recovered without any neurologic deficit, and CAS has never recurred with isosorbide mononitrate treatment during follow-up. CONCLUSIONS: CAS is a rare complication associated with AF hybrid procedure. Attention should be paid to this rare but potentially life-threatening complication.


Subject(s)
Atrial Appendage/surgery , Atrial Fibrillation/surgery , Catheter Ablation/adverse effects , Coronary Vasospasm/etiology , Coronary Vessels/physiopathology , Pulmonary Veins/surgery , Vasoconstriction , Aged , Atrial Appendage/physiopathology , Atrial Fibrillation/diagnosis , Atrial Fibrillation/physiopathology , Coronary Angiography , Coronary Vasospasm/diagnostic imaging , Coronary Vasospasm/drug therapy , Coronary Vasospasm/physiopathology , Coronary Vessels/diagnostic imaging , Coronary Vessels/drug effects , Electrocardiography , Humans , Male , Pulmonary Veins/physiopathology , Treatment Outcome , Vasoconstriction/drug effects , Vasodilator Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...