Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.683
Filter
1.
Sci Rep ; 14(1): 20681, 2024 09 05.
Article in English | MEDLINE | ID: mdl-39237714

ABSTRACT

Subjects who have ischemia with non-obstructive coronary arteries (INOCA) experience angina pectoris with evidence of myocardial ischemia but without coronary stenosis. Few studies have investigated factors associated with its survival, especially insulin resistance. In this study, subjects with angina pectoris, without known diabetes mellites (DM), and with non-invasive tests showing myocardial ischemia were admitted for coronary angiography (CAG). Those whose CAG did not reveal stenosis and agreed to receive an oral glucose tolerance test (OGTT) 2 weeks after hospital discharge were enrolled for analysis. All-cause mortality was recorded, which served as the outcome of the study. A total of 587 subjects with INOCA, without known DM, and with OGTT data were analyzed. After OGTT and HbA1c tests, 86 subjects (14.7%) were newly diagnosed with DM and 59.8% had pre-DM. The median duration of follow-up was 7.03 years. Thirty-nine subjects died during the follow-up period. The incidence rate of mortality was 9.9 /1000 person-year. Those who died had a higher fasting glucose (101 ± 17 vs. 94 ± 13 mg/dl, p = 0.003) but a lower estimated glomerular filtration rate (eGFR) (54 ± 22 vs. 87 ± 30 ml/min, p < 0.001). In the Cox survival analysis, a higher fasting glucose (hazard ratio 1.053, p = 0.007) was associated with worse mortality for INOCA without DM (N = 501). On the contrary, a higher eGFR (hazard ratio 0.967, p = 0.012) was protective of better survival for non-diabetic INOCA (N = 501). In conclusion, for non-diabetic INOCA, higher fasting glucose was associated with worse mortality and higher eGFR was protective for better survival.


Subject(s)
Blood Glucose , Fasting , Glucose Tolerance Test , Humans , Male , Female , Blood Glucose/analysis , Blood Glucose/metabolism , Middle Aged , Fasting/blood , Aged , Myocardial Ischemia/mortality , Myocardial Ischemia/blood , Coronary Angiography , Coronary Vessels/pathology , Coronary Vessels/metabolism , Glomerular Filtration Rate , Diabetes Mellitus/mortality , Insulin Resistance
2.
Atherosclerosis ; 396: 118543, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39182474

ABSTRACT

BACKGROUND AND AIMS: Janus kinase 2 (JAK2) triggers endothelial pyroptosis and is associated with a multitude of pathological cardiovascular manifestations, including atherosclerosis. However, the associated transcriptional regulatory mechanisms remain unclear. In this study, we investigated a novel transcriptional regulator upstream of JAK2. METHODS: We validated the binding and regulation of Forkhead box C1 (FOXC1) and JAK2 using chromatin immunoprecipitation and luciferase reporter assays. Immunofluorescence was used to detect protein localization in cells and tissues. Immunohistochemistry, hematoxylin-eosin (HE), Masson's trichrome, and Oil Red O staining were used to identify tissue lesions. Transcriptional functions were investigated using in vitro and in vivo coronary artery disease (CAD) atherosclerosis models. RESULTS: The mRNA levels of JAK2 were considerably higher in both the cardiac tissues of mice and the peripheral blood of patients with CAD than in equivalent controls. JAK2 expression increased markedly in the coronary arteries of ApoeKO mice, whereas FOXC1 expression exhibited a decreasing trend. In vitro, FOXC1 bound to the JAK2 promoter region and inversely regulated the expression of JAK2. Mechanistic studies have revealed that the FOXC1-JAK2 pathway regulates pyroptosis and participates in the pathogenesis of human coronary artery endothelial cells (HCAECs). In vivo, the suppression of FOXC1 was confirmed to stimulate the levels of JAK2 and pyroptosis, contributing to the pathological progression of aortic and coronary artery damage. CONCLUSIONS: We established the FOXC1-JAK2 regulatory pathway and verified its reverse-regulatory function in CAD pyroptosis. Our data emphasizes that FOXC1 is critical for the treatment of pyroptosis-induced injury in patients with CAD.


Subject(s)
Coronary Artery Disease , Coronary Vessels , Forkhead Transcription Factors , Janus Kinase 2 , Pyroptosis , Animals , Janus Kinase 2/metabolism , Janus Kinase 2/genetics , Humans , Coronary Vessels/pathology , Coronary Vessels/metabolism , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Coronary Artery Disease/pathology , Coronary Artery Disease/metabolism , Coronary Artery Disease/genetics , Mice , Endothelial Cells/enzymology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Male , Signal Transduction , Disease Models, Animal , Mice, Knockout, ApoE , Mice, Inbred C57BL , Promoter Regions, Genetic
3.
PLoS One ; 19(8): e0309059, 2024.
Article in English | MEDLINE | ID: mdl-39186712

ABSTRACT

OBJECTIVE: To address the relationship between tissue accumulation of advanced glycation end-products, assessed by skin autofluorescence (SAF), and subclinical atherosclerosis quantified with coronary artery calcium score (CACS) in the general Dutch population. METHODS: A total of 3,839 participants of the LifeLines Cohort Study without diabetes or cardiovascular disease were included in this cross-sectional evaluation. They underwent SAF measurement and cardiac computed tomography to measure CACS. Associations between SAF and CACS was assessed using regression models. Participants at elevated risk for cardiovascular disease were selected by either CACS≥100, or SAF value in the top 15%; overlap and cardiovascular risk profile of these participants were compared. RESULTS: In univariate analysis, every 1 arbitrary unit (AU) increase in SAF resulted in an odds ratio of 2.91 (95% confidence interval 2.44-3.48, p<0.001) for coronary calcification. After adjustment for cardiovascular risk factors, there was still 20% higher odds of coronary calcification with 1 AU increase in SAF, but significance was lost. In total, 1025 (27%) participants either had high SAF and/or high CACS, of these 441 (12%) had only high SAF, 450 (12%) had only high CACS and 134 (3%) participants had high SAF and high CACS. CONCLUSION: In a population-based Dutch cohort, SAF was associated with the degree of coronary calcification. This association was largely explained by classical cardiovascular risk factors. Limited overlap was found in subgroups with high SAF or high CACS, indicating that SAF and CACS may have complementary role in identifying individuals at elevated cardiovascular risk.


Subject(s)
Coronary Artery Disease , Skin , Vascular Calcification , Humans , Male , Female , Middle Aged , Skin/metabolism , Skin/diagnostic imaging , Skin/pathology , Coronary Artery Disease/epidemiology , Coronary Artery Disease/diagnostic imaging , Cross-Sectional Studies , Vascular Calcification/diagnostic imaging , Vascular Calcification/epidemiology , Aged , Adult , Netherlands/epidemiology , Glycation End Products, Advanced/metabolism , Glycation End Products, Advanced/analysis , Optical Imaging , Risk Factors , Coronary Vessels/diagnostic imaging , Coronary Vessels/metabolism , Coronary Vessels/pathology
4.
Nat Commun ; 15(1): 7398, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39191789

ABSTRACT

Smooth muscle cell (SMC) phenotypic modulation, primarily driven by PDGFRß signaling, is implicated in occlusive cardiovascular diseases. However, the promotive and restrictive regulation mechanism of PDGFRß and the role of protein tyrosine phosphatase non-receptor type 14 (PTPN14) in neointimal hyperplasia remain unclear. Our study observes a marked upregulation of PTPN14 in SMCs during neointimal hyperplasia. PTPN14 overexpression exacerbates neointimal hyperplasia in a phosphatase activity-dependent manner, while SMC-specific deficiency of PTPN14 mitigates this process in mice. RNA-seq indicates that PTPN14 deficiency inhibits PDGFRß signaling-induced SMC phenotypic modulation. Moreover, PTPN14 interacts with intracellular region of PDGFRß and mediates its dephosphorylation on Y692 site. Phosphorylation of PDGFRßY692 negatively regulates PDGFRß signaling activation. The levels of both PTPN14 and phospho-PDGFRßY692 are correlated with the degree of stenosis in human coronary arteries. Our findings suggest that PTPN14 serves as a critical modulator of SMCs, promoting neointimal hyperplasia. PDGFRßY692, dephosphorylated by PTPN14, acts as a self-inhibitory site for controlling PDGFRß activation.


Subject(s)
Hyperplasia , Myocytes, Smooth Muscle , Neointima , Receptor, Platelet-Derived Growth Factor beta , Signal Transduction , Receptor, Platelet-Derived Growth Factor beta/metabolism , Receptor, Platelet-Derived Growth Factor beta/genetics , Animals , Hyperplasia/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Humans , Neointima/metabolism , Neointima/pathology , Mice , Phosphorylation , Male , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Mice, Inbred C57BL , Mice, Knockout , Coronary Vessels/pathology , Coronary Vessels/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology
5.
Circ Res ; 135(6): 671-684, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39092506

ABSTRACT

BACKGROUND: The elaborate patterning of coronary arteries critically supports the high metabolic activity of the beating heart. How coronary endothelial cells coordinate hierarchical vascular remodeling and achieve arteriovenous specification remains largely unknown. Understanding the molecular and cellular cues that pattern coronary arteries is crucial to develop innovative therapeutic strategies that restore functional perfusion within the ischemic heart. METHODS: Single-cell transcriptomics and histological validation were used to delineate heterogeneous transcriptional states of the developing and mature coronary endothelium with a focus on sprouting endothelium and arterial cell specification. Genetic lineage tracing and high-resolution 3-dimensional imaging were used to characterize the origin and mechanisms of coronary angiogenic sprouting, as well as to fate-map selective endothelial lineages. Integration of single-cell transcriptomic data from ischemic adult mouse hearts and human embryonic data served to assess the conservation of transcriptional states across development, disease, and species. RESULTS: We discover that coronary arteries originate from cells that have previously transitioned through a specific tip cell phenotype. We identify nonoverlapping intramyocardial and subepicardial tip cell populations with differential gene expression profiles and regulatory pathways. Esm1-lineage tracing confirmed that intramyocardial tip cells selectively contribute to coronary arteries and endocardial tunnels, but not veins. Notably, prearterial cells are detected from development stages to adulthood, increasingly in response to ischemic injury, and in human embryos, suggesting that tip cell-to-artery specification is a conserved mechanism. CONCLUSIONS: A tip cell-to-artery specification mechanism drives arterialization of the intramyocardial plexus and endocardial tunnels throughout life and is reactivated upon ischemic injury. Differential sprouting programs govern the formation and specification of the venous and arterial coronary plexus.


Subject(s)
Coronary Vessels , Neovascularization, Physiologic , Animals , Coronary Vessels/embryology , Coronary Vessels/metabolism , Humans , Mice , Single-Cell Analysis , Endothelial Cells/metabolism , Transcriptome , Cell Lineage , Mice, Inbred C57BL , Male , Female , Myocardium/metabolism , Myocardium/cytology
6.
Article in English | MEDLINE | ID: mdl-39147299

ABSTRACT

Mammalian and reptilian vascular tissues present basal release of 6-nitrodopamine, which is reduced when the tissues are pre-incubated with the NO synthase inhibitor L-NG-Nitro arginine methyl ester (L-NAME), or when the endothelium is mechanically removed. 6-Nitrodopamine induces vasorelaxation in pre-contracted vascular rings by antagonizing the dopaminergic D2-like receptor. Here it was investigated whether male swine vessels (including carotid, left descendent coronary, renal, and femoral arteries) release 6-nitrodopamine, dopamine, noradrenaline, and adrenaline, as measured by liquid chromatography coupled to tandem mass spectrometry. The in vitro vasorelaxant action of 6-nitrodopamine was evaluated in carotid, coronary, renal, and femoral arteries precontracted by U-46619 (3 nM), and compared to that induced by the dopamine D2-receptor antagonist L-741,626. Expression of tyrosine hydroxylase and the neuromaker calretinin was investigated by immunohistochemistry. All vascular tissues presented basal release of endothelium-derived catecholamines. The relaxation induced by 6-nitrodopamine was not affected by preincubation of the tissues with either L-NAME (100 µM, 30-min preincubation) or the heme-site inhibitor of soluble guanylyl cyclase ODQ (100 µM, 30-min preincubation). Electrical field stimulation (EFS)-induced contractions were significantly potentiated by previous incubation with L-NAME, but unaffected by ODQ preincubation. The contractions induced by EFS were reduced by preincubation with either 6-nitrodopamine or L-741,626. Immunohistochemistry in all arteries revealed the presence of tyrosine hydroxylase in the endothelium, whereas immunoreactivity for calretinin was negative. Swine vessels present basal release of endothelium-derived catecholamines and expression of tyrosine hydroxylase in the endothelium. The vasodilation induced by 6-nitrodopamine is due to blockade of dopaminergic D2-like receptors.


Subject(s)
Vasodilation , Animals , Male , Vasodilation/drug effects , Swine , Femoral Artery/drug effects , Femoral Artery/metabolism , Femoral Artery/physiology , Coronary Vessels/drug effects , Coronary Vessels/physiology , Coronary Vessels/metabolism , Renal Artery/drug effects , Renal Artery/metabolism , Renal Artery/physiology , Dopamine/metabolism , Carotid Arteries/drug effects , Carotid Arteries/metabolism , Carotid Arteries/physiology , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiology , Vasodilator Agents/pharmacology
7.
Sci Rep ; 14(1): 15344, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961220

ABSTRACT

Decreased myocardial capillary density has been reported as an important histopathological feature associated with various heart disorders. Quantitative assessment of cardiac capillarization typically involves double immunostaining of cardiomyocytes (CMs) and capillaries in myocardial slices. In contrast, single immunostaining of basement membrane protein is a straightforward approach to simultaneously label CMs and capillaries, presenting fewer challenges in background staining. However, subsequent image analysis always requires expertise and laborious manual work to identify and segment CMs/capillaries. Here, we developed an image analysis tool, AutoQC, for automatic identification and segmentation of CMs and capillaries in immunofluorescence images of basement membrane. Commonly used capillarization-related measurements can be derived from segmentation results. By leveraging the power of a pre-trained segmentation model (Segment Anything Model, SAM) via prompt engineering, the training of AutoQC required only a small dataset with bounding box annotations instead of pixel-wise annotations. AutoQC outperformed SAM (without prompt engineering) and YOLOv8-Seg, a state-of-the-art instance segmentation model, in both instance segmentation and capillarization assessment. Thus, AutoQC, featuring a weakly supervised algorithm, enables automatic segmentation and high-throughput, high-accuracy capillarization assessment in basement-membrane-immunostained myocardial slices. This approach reduces the training workload and eliminates the need for manual image analysis once AutoQC is trained.


Subject(s)
Basement Membrane , Image Processing, Computer-Assisted , Myocardium , Myocytes, Cardiac , Basement Membrane/metabolism , Animals , Myocytes, Cardiac/metabolism , Myocardium/metabolism , Myocardium/pathology , Image Processing, Computer-Assisted/methods , Capillaries/metabolism , Algorithms , Mice , Coronary Vessels/metabolism , Coronary Vessels/pathology
8.
Cardiovasc Diabetol ; 23(1): 236, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970123

ABSTRACT

BACKGROUND: Owing to its unique location and multifaceted metabolic functions, epicardial adipose tissue (EAT) is gradually emerging as a new metabolic target for coronary artery disease risk stratification. Microvascular obstruction (MVO) has been recognized as an independent risk factor for unfavorable prognosis in acute myocardial infarction patients. However, the concrete role of EAT in the pathogenesis of MVO formation in individuals with ST-segment elevation myocardial infarction (STEMI) remains unclear. The objective of the study is to evaluate the correlation between EAT accumulation and MVO formation measured by cardiac magnetic resonance (CMR) in STEMI patients and clarify the underlying mechanisms involved in this relationship. METHODS: Firstly, we utilized CMR technique to explore the association of EAT distribution and quantity with MVO formation in patients with STEMI. Then we utilized a mouse model with EAT depletion to explore how EAT affected MVO formation under the circumstances of myocardial ischemia/reperfusion (I/R) injury. We further investigated the immunomodulatory effect of EAT on macrophages through co-culture experiments. Finally, we searched for new therapeutic strategies targeting EAT to prevent MVO formation. RESULTS: The increase of left atrioventricular EAT mass index was independently associated with MVO formation. We also found that increased circulating levels of DPP4 and high DPP4 activity seemed to be associated with EAT increase. EAT accumulation acted as a pro-inflammatory mediator boosting the transition of macrophages towards inflammatory phenotype in myocardial I/R injury through secreting inflammatory EVs. Furthermore, our study declared the potential therapeutic effects of GLP-1 receptor agonist and GLP-1/GLP-2 receptor dual agonist for MVO prevention were at least partially ascribed to its impact on EAT modulation. CONCLUSIONS: Our work for the first time demonstrated that excessive accumulation of EAT promoted MVO formation by promoting the polarization state of cardiac macrophages towards an inflammatory phenotype. Furthermore, this study identified a very promising therapeutic strategy, GLP-1/GLP-2 receptor dual agonist, targeting EAT for MVO prevention following myocardial I/R injury.


Subject(s)
Adipose Tissue , Disease Models, Animal , Glucagon-Like Peptide-1 Receptor , Macrophages , Mice, Inbred C57BL , Myocardial Reperfusion Injury , Pericardium , ST Elevation Myocardial Infarction , Animals , Pericardium/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Male , Macrophages/metabolism , Macrophages/pathology , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , ST Elevation Myocardial Infarction/metabolism , ST Elevation Myocardial Infarction/pathology , ST Elevation Myocardial Infarction/diagnostic imaging , Adipose Tissue/metabolism , Adipose Tissue/pathology , Humans , Female , Middle Aged , Phenotype , Dipeptidyl Peptidase 4/metabolism , Aged , Coculture Techniques , Adiposity , Coronary Circulation , Signal Transduction , Microcirculation , Coronary Vessels/metabolism , Coronary Vessels/pathology , Coronary Vessels/diagnostic imaging , Incretins/pharmacology , Microvessels/metabolism , Microvessels/pathology , Cells, Cultured , Mice , Epicardial Adipose Tissue
9.
Eur J Pharmacol ; 979: 176832, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39038639

ABSTRACT

The contractile function of vascular smooth muscle cells (VSMCs) typically undergoes significant changes with advancing age, leading to severe vascular aging-related diseases. The precise role and mechanism of stromal interaction molecule-1 (STIM1) in age-mediated Ca2+ signaling and vasocontraction remain unclear. The connection between STIM1 and age-related vascular dysfunction was investigated using a multi-myograph system, immunohistochemical analysis, protein blotting, and SA-ß-gal staining. Results showed that vasoconstrictor responses in the thoracic aorta, intrarenal artery, and coronary artery decreased with age. STIM1 knockdown in the intrarenal and coronary arteries reduced vascular tone in young mice, while no change was observed in the thoracic aorta. A significant reduction in vascular tone occurred in the STIM1 knockout group with nifedipine. In the thoracic aorta, vasoconstriction significantly decreased with age following the use of nifedipine and thapsigargin and almost disappeared after STIM1 knockdown. The proportion of senescent VSMCs increased significantly in aged mice and further increased in sm-STIM1 KO aged mice. Moreover, the expression of senescence markers p21, p16, and IL-6 significantly increased with age, with p21 expression further increased in the STIM1 knockdown aged group, but not p16 or IL-6. These findings indicate that different arteries exhibit distinct organ-specific features and that STIM1 downregulation may contribute to age-related vasoconstrictive dysfunction through activation of the p21 pathway.


Subject(s)
Aging , Coronary Vessels , Down-Regulation , Stromal Interaction Molecule 1 , Vasoconstriction , Animals , Stromal Interaction Molecule 1/metabolism , Stromal Interaction Molecule 1/genetics , Vasoconstriction/drug effects , Mice , Coronary Vessels/metabolism , Coronary Vessels/physiopathology , Aging/metabolism , Male , Mice, Knockout , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Renal Artery/metabolism , Cellular Senescence/drug effects , Interleukin-6/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Aorta/metabolism , Aorta/drug effects
10.
Arterioscler Thromb Vasc Biol ; 44(9): 2053-2068, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38989581

ABSTRACT

BACKGROUND: In early atherosclerosis, circulating LDLs (low-density lipoproteins) traverse individual endothelial cells by an active process termed transcytosis. The CANTOS trial (Canakinumab Antiinflammatory Thrombosis Outcome Study) treated advanced atherosclerosis using a blocking antibody for IL-1ß (interleukin-1ß); this significantly reduced cardiovascular events. However, whether IL-1ß regulates early disease, particularly LDL transcytosis, remains unknown. METHODS: We used total internal reflection fluorescence microscopy to quantify transcytosis by human coronary artery endothelial cells exposed to IL-1ß. To investigate transcytosis in vivo, we injected wild-type and knockout mice with IL-1ß and LDL to visualize acute LDL deposition in the aortic arch. RESULTS: Exposure to picomolar concentrations of IL-1ß induced transcytosis of LDL but not of albumin by human coronary artery endothelial cells. Surprisingly, expression of the 2 known receptors for LDL transcytosis, ALK-1 (activin receptor-like kinase-1) and SR-BI (scavenger receptor BI), was unchanged or decreased. Instead, IL-1ß increased the expression of the LDLR (LDL receptor); this was unexpected because LDLR is not required for LDL transcytosis. Overexpression of LDLR had no effect on basal LDL transcytosis. However, knockdown of LDLR abrogated the effect of IL-1ß on transcytosis rates while the depletion of Cav-1 (caveolin-1) did not. Since LDLR was necessary but overexpression had no effect, we reasoned that another player must be involved. Using public RNA sequencing data to curate a list of Rab (Ras-associated binding) GTPases affected by IL-1ß, we identified Rab27a. Overexpression of Rab27a alone had no effect on basal transcytosis, but its knockdown prevented induction by IL-1ß. This was phenocopied by depletion of the Rab27a effector JFC1 (synaptotagmin-like protein 1). In vivo, IL-1ß increased LDL transcytosis in the aortic arch of wild-type but not Ldlr-/- or Rab27a-deficient mice. The JFC1 inhibitor nexinhib20 also blocked IL-1ß-induced LDL accumulation in the aorta. CONCLUSIONS: IL-1ß induces LDL transcytosis by a distinct pathway requiring LDLR and Rab27a; this route differs from basal transcytosis. We speculate that induction of transcytosis by IL-1ß may contribute to the acceleration of early disease.


Subject(s)
Coronary Vessels , Endothelial Cells , Interleukin-1beta , Lipoproteins, LDL , Mice, Knockout , Receptors, LDL , Signal Transduction , Transcytosis , rab GTP-Binding Proteins , Interleukin-1beta/metabolism , Animals , Humans , Receptors, LDL/genetics , Receptors, LDL/metabolism , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Lipoproteins, LDL/metabolism , Coronary Vessels/metabolism , Coronary Vessels/drug effects , Cells, Cultured , Mice, Inbred C57BL , Caveolin 1/metabolism , Caveolin 1/genetics , Aortic Diseases/metabolism , Aortic Diseases/genetics , Aortic Diseases/pathology , Disease Models, Animal , Aorta, Thoracic/metabolism , Aorta, Thoracic/drug effects , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , Male , Mice
12.
Circ Res ; 135(6): 639-650, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39069898

ABSTRACT

BACKGROUND: Youth-onset type 2 diabetes (Y-T2D) is associated with increased risk for coronary atherosclerotic disease, but the timing of the earliest pathological features and evidence of cardiac endothelial dysfunction have not been evaluated in this population. Endothelial function magnetic resonance imaging may detect early and direct endothelial dysfunction in the absence of classical risk factors (severe hyperglycemia, hypertension, and hyperlipidemia). Using endothelial function magnetic resonance imaging, we evaluated peripheral and coronary artery structure and endothelial function in young adults with Y-T2D diagnosed ≤5 years compared with age-matched healthy peers. We isolated and characterized plasma-derived small extracellular vesicles and evaluated their effects on inflammatory and signaling biomarkers in healthy human coronary artery endothelial cells to validate the imaging findings. METHODS: Right coronary wall thickness, coronary artery flow-mediated dilation, and brachial artery flow-mediated dilation were measured at baseline and during isometric handgrip exercise using a 3.0T magnetic resonance imaging. Human coronary artery endothelial cells were treated with Y-T2D plasma-derived small extracellular vesicles. Protein expression was measured by Western blot analysis, oxidative stress was measured using the redox-sensitive probe dihydroethidium, and nitric oxide levels were measured by 4-amino-5-methylamino-2',7'-difluororescein diacetate. RESULTS: Y-T2D (n=20) had higher hemoglobin A1c and high-sensitivity C-reactive protein, but similar total and LDL (low-density lipoprotein)-cholesterol compared with healthy peers (n=16). Y-T2D had greater coronary wall thickness (1.33±0.13 versus 1.22±0.13 mm; P=0.04) and impaired endothelial function: lower coronary artery flow-mediated dilation (-3.1±15.5 versus 15.9±17.3%; P<0.01) and brachial artery flow-mediated dilation (6.7±14.7 versus 26.4±15.2%; P=0.001). Y-T2D plasma-derived small extracellular vesicles reduced phosphorylated endothelial nitric oxide synthase expression and nitric oxide levels, increased reactive oxygen species production, and elevated ICAM (intercellular adhesion molecule)-mediated inflammatory pathways in human coronary artery endothelial cells. CONCLUSIONS: Coronary and brachial endothelial dysfunction was evident in Y-T2D who were within 5 years of diagnosis and did not have severe hyperglycemia or dyslipidemia. Plasma-derived small extracellular vesicles induced markers of endothelial dysfunction, which corroborated accelerated subclinical coronary atherosclerosis as an early feature in Y-T2D. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02830308 and NCT01399385.


Subject(s)
Diabetes Mellitus, Type 2 , Endothelium, Vascular , Humans , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Male , Female , Endothelium, Vascular/physiopathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Young Adult , Translational Research, Biomedical , Adolescent , Coronary Vessels/diagnostic imaging , Coronary Vessels/physiopathology , Coronary Vessels/pathology , Coronary Vessels/metabolism , Extracellular Vesicles/metabolism , Magnetic Resonance Imaging , Cells, Cultured , Adult , Age of Onset , Endothelial Cells/metabolism , Endothelial Cells/pathology , Oxidative Stress , Nitric Oxide/metabolism
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167437, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39067539

ABSTRACT

OBJECTIVE: Since diabetic patients with coronary microvascular dysfunction (CMD) exhibit high cardiac mortality and women have higher prevalence of non-obstructive coronary artery disease than men, we tried to expand the limited understanding about the etiology and the sex difference of diabetic CMD. APPROACH AND RESULTS: Accumulated methylglyoxal (MGO) due to diabetes promotes vascular damage and it was used for mimicking diabetic status. Flow cytometry analysis and isometric tension measurement were performed to evaluate coronary artery endothelial injury. MGO induced apoptosis of coronary endothelial cells, accompanied by downregulation of androgen receptor (AR). Lentivirus-mediated stable expression of AR in coronary endothelial cells increased anti-apoptotic Bcl-2 expression and attenuated MGO-induced cell apoptosis. cPLA2 activation was the downstream of AR downregulation by MGO treatment. Moreover, MGO also activated cPLA2 rapidly to impair endothelium-dependent vasodilation of coronary arteries from mice. Reactive oxygen species (ROS) overproduction was demonstrated to account for MGO-mediated cPLA2 activation and endothelial dysfunction. Importantly, AR blockade increased endothelial ROS production whereas AR activation protected coronary artery endothelial vasodilatory function from the MGO-induced injury. Although galectin-3 upregulation was confirmed by siRNA knockdown in endothelial cells not to participate in MGO-induced endothelial apoptosis, pharmacological inhibitor of galectin-3 further enhanced MGO-triggered ROS generation and coronary artery endothelial impairment. CONCLUSIONS: Our data proposed the AR downregulation-ROS overproduction-cPLA2 activation pathway as one of the mechanisms underlying diabetic CMD and postulated a possible reason for the sex difference of CMD-related angina. Meanwhile, MGO-induced galectin-3 activation played a compensatory role against coronary endothelial dysfunction.


Subject(s)
Apoptosis , Coronary Vessels , Endothelial Cells , Pyruvaldehyde , Receptors, Androgen , Signal Transduction , Pyruvaldehyde/metabolism , Animals , Apoptosis/drug effects , Mice , Male , Signal Transduction/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelial Cells/drug effects , Humans , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Coronary Vessels/pathology , Coronary Vessels/metabolism , Female , Phospholipases A2, Cytosolic/metabolism , Phospholipases A2, Cytosolic/genetics , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL
14.
Sci Rep ; 14(1): 15847, 2024 07 09.
Article in English | MEDLINE | ID: mdl-38982274

ABSTRACT

Atherosclerosis is rare in internal thoracic arteries (ITA) even in patients with severe atherosclerotic coronary artery (ACA) disease. To explore cellular differences, ITA SMC from 3 distinct donors and ACA SMC from 3 distinct donors were grown to sub-confluence and growth arrested for 48 h. Proliferation and thrombospondin-1 (TSP1) production were determined using standard techniques. ITA SMC were larger, grew more slowly and survived more passages than ACA SMC. ACA SMC had a more pronounced proliferative response to 10% serum than ITA SMC. Both ACA SMC and ITA SMC proliferated in response to exogenous TSP1 (12.5 µg/ml and 25 µg/ml) and platelet derived growth factor-BB (PDGF-BB; 20 ng/ml) but TSP1- and PDGF-BB-induced proliferation were partially inhibited by anti-TSP1 antibody A4.1, microRNA-21(miR-21)-3p inhibitors and miR-21-5p inhibitors in each of the 3 ACA SMC lines, but not in any of the ITA SMC lines. PDGF-BB stimulated TSP1 production in ACA SMC but not in ITA SMC but there was no increase in TSP1 levels in conditioned media in either SMC type. In summary, there are significant differences in morphology, proliferative capacity and in responses to TSP1 and PDGF-BB in SMC derived from ITA compared to SMC derived from ACA.


Subject(s)
Becaplermin , Cell Proliferation , Coronary Vessels , Myocytes, Smooth Muscle , Thrombospondin 1 , Becaplermin/metabolism , Thrombospondin 1/metabolism , Thrombospondin 1/genetics , Humans , Cell Proliferation/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Coronary Vessels/metabolism , Coronary Vessels/pathology , Coronary Vessels/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Mammary Arteries/metabolism , Mammary Arteries/drug effects , Coronary Artery Disease/metabolism , Coronary Artery Disease/pathology , Atherosclerosis/metabolism , Atherosclerosis/pathology , Cells, Cultured , Male
15.
Biomed Khim ; 70(3): 156-160, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38940204

ABSTRACT

The cytokine profile of primary coronary artery endothelial cells cultivated in the presence of doxorubicin (2 µg/ml and 6 µg/ml) was evaluated using enzyme-linked immunosorbent assay and qPCR. Cultivation of cells in the presence of these concentrations of doxorubicin for 24 h, upregulated expression of the following genes: IL6 (by 2.30 and 2.66 times, respectively), IL1B (by 1.25 and 3.44 times), and CXCL8 (by 6.47 times and 6.42 times), MIF (2.34 and 2.28 times), CCL2 (4.22 and 3.98 times). Under these conditions the following genes were downregulated: IL10, IL1R2, TNF. Cultivation of cells in the presence of doxorubicin (2 µg/ml and 6 µg/ml) for 24 h also increased the secretion of IL-6.


Subject(s)
Coronary Vessels , Doxorubicin , Endothelial Cells , Interleukin-6 , Humans , Doxorubicin/pharmacology , Coronary Vessels/cytology , Coronary Vessels/drug effects , Coronary Vessels/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Interleukin-6/metabolism , Interleukin-6/genetics , Cells, Cultured , Interleukin-1beta/metabolism , Interleukin-1beta/pharmacology , Cytokines/metabolism , Cytokines/genetics , Gene Expression Regulation/drug effects , Interleukin-8/metabolism , Interleukin-8/genetics , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Interleukin-10/metabolism , Interleukin-10/genetics
16.
Am J Cardiol ; 225: 98-104, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38885922

ABSTRACT

Higher coronary artery calcium (CAC) scores and progression of CAC are associated with higher mortality. We previously reported that subjects with coronary artery disease randomly allocated to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) supplementation or none had similar significant increases in CAC score over 30 months. Whether these findings are influenced by diabetes status is unknown. A total of 242 subjects with coronary artery disease who were on statin therapy were randomly allocated to to 1.86 g EPA and 1.5 g DHA daily or none (control). The CAC score was measured at baseline and 30-month follow-up using noncontrast, cardiac computed tomography. A significant interaction term between diabetes status and treatment arm was noted in the prediction of the CAC score (p <0.001). A total of 176 subjects (85.8% men) had no diabetes and 66 subjects (80.3% men) had diabetes. The mean age was 62.9 ± 7.9 versus 63.2 ± 7.1 years, respectively. The mean low-density lipoprotein cholesterol and median triglyceride levels were not significantly different between those without and with diabetes: 77.7 ± 25.9 versus 77.1 ± 30.2 mg/100 ml, respectively, and 117.0 (78.0 to 158.0) versus 119.0 (84.5 to 201.5) mg/100 ml, respectively. Subjects with diabetes on EPA+DHA had a greater increase in CAC score than subjects with diabetes in the control group (median 380.7 vs 183.5, respectively, p = 0.021). In contrast, no difference occurred between the EPA+DHA and control groups in subjects without diabetes (175.7 vs 201.1, respectively, p = 0.41). In conclusion, EPA+DHA supplementation was associated with greater CAC progression in subjects with diabetes than subjects with diabetes in the control group over a 30-month period; whether this indicates progression of the disease burden or plaque stabilization requires further study.


Subject(s)
Coronary Artery Disease , Dietary Supplements , Disease Progression , Docosahexaenoic Acids , Eicosapentaenoic Acid , Humans , Male , Female , Eicosapentaenoic Acid/therapeutic use , Docosahexaenoic Acids/therapeutic use , Docosahexaenoic Acids/administration & dosage , Coronary Artery Disease/diagnostic imaging , Middle Aged , Vascular Calcification/diagnostic imaging , Aged , Follow-Up Studies , Coronary Vessels/diagnostic imaging , Coronary Vessels/metabolism , Treatment Outcome , Diabetes Mellitus/epidemiology , Tomography, X-Ray Computed , Coronary Angiography
17.
Circ Res ; 135(2): e4-e23, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38860377

ABSTRACT

BACKGROUND: Cell phenotype switching is increasingly being recognized in atherosclerosis. However, our understanding of the exact stimuli for such cellular transformations and their significance for human atherosclerosis is still evolving. Intraplaque hemorrhage is thought to be a major contributor to plaque progression in part by stimulating the influx of CD163+ macrophages. Here, we explored the hypothesis that CD163+ macrophages cause plaque progression through the induction of proapoptotic endothelial-to-mesenchymal transition (EndMT) within the fibrous cap. METHODS: Human coronary artery sections from CVPath's autopsy registry were selected for pathological analysis. Athero-prone ApoE-/- and ApoE-/-/CD163-/- mice were used for in vivo studies. Human peripheral blood mononuclear cell-induced macrophages and human aortic endothelial cells were used for in vitro experiments. RESULTS: In 107 lesions with acute coronary plaque rupture, 55% had pathological evidence of intraplaque hemorrhage in nonculprit vessels/lesions. Thinner fibrous cap, greater CD163+ macrophage accumulation, and a larger number of CD31/FSP-1 (fibroblast specific protein-1) double-positive cells and TUNEL (terminal deoxynucleotidyl transferase-dUTP nick end labeling) positive cells in the fibrous cap were observed in nonculprit intraplaque hemorrhage lesions, as well as in culprit rupture sections versus nonculprit fibroatheroma sections. Human aortic endothelial cells cultured with supernatants from hemoglobin/haptoglobin-exposed macrophages showed that increased mesenchymal marker proteins (transgelin and FSP-1) while endothelial markers (VE-cadherin and CD31) were reduced, suggesting EndMT induction. Activation of NF-κB (nuclear factor kappa ß) signaling by proinflammatory cytokines released from CD163+ macrophages directly regulated the expression of Snail, a critical transcription factor during EndMT induction. Western blot analysis for cleaved caspase-3 and microarray analysis of human aortic endothelial cells indicated that apoptosis was stimulated during CD163+ macrophage-induced EndMT. Additionally, CD163 deletion in athero-prone mice suggested that CD163 is required for EndMT and plaque progression. Using single-cell RNA sequencing from human carotid endarterectomy lesions, a population of EndMT was detected, which demonstrated significant upregulation of apoptosis-related genes. CONCLUSIONS: CD163+ macrophages provoke EndMT, which may promote plaque progression through fibrous cap thinning.


Subject(s)
Antigens, CD , Antigens, Differentiation, Myelomonocytic , Macrophages , Plaque, Atherosclerotic , Receptors, Cell Surface , Humans , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, Differentiation, Myelomonocytic/genetics , Animals , Antigens, CD/metabolism , Antigens, CD/genetics , Macrophages/metabolism , Macrophages/pathology , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/metabolism , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Mice , Cells, Cultured , Endothelial Cells/metabolism , Endothelial Cells/pathology , Male , Mice, Knockout, ApoE , Mice, Inbred C57BL , Apoptosis , Female , Epithelial-Mesenchymal Transition , Coronary Vessels/pathology , Coronary Vessels/metabolism
18.
Exp Cell Res ; 440(2): 114147, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38944174

ABSTRACT

Coronary artery calcification (CAC) is a hallmark event in the pathogenesis of cardiovascular disease, involving the phenotypic transformation of vascular smooth muscle cells (VSMC) towards an osteogenic state. Despite this understanding, the molecular mechanisms governing the VSMC osteogenic switch remain incompletely elucidated. Here, we sought to examine the potential role of circular RNA (circRNA) in the context of CAC. Through transcriptome analysis of circRNA-seq, we identified circTOP1 as a potential candidate circRNA in individuals with CAC. Furthermore, we observed that overexpression of circTOP1 exacerbated vascular calcification in a CAC model. Subsequent pull-down assays revealed an interaction between circTOP1 and PTBP1, a putative target gene of circTOP1 in the context of CAC. In both in vivo and in vitro experiments, we observed heightened expression of circTOP1 and PTBP1 in the CAC model, and noted that reducing circTOP1 expression effectively reduced calcium salt deposits and mineralized nodules in model mice. Additionally, in vitro experiments demonstrated that overexpression of PTBP1 reversed the weakening of signaling caused by silencing circTOP1, thereby exacerbating the osteogenic transition and calcification of VSMC. Collectively, our findings suggested that circTOP1 promotes CAC by modulating PTBP1 expression to mediate VSMC transdifferentiation.


Subject(s)
Heterogeneous-Nuclear Ribonucleoproteins , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Polypyrimidine Tract-Binding Protein , RNA, Circular , Vascular Calcification , Animals , Humans , Male , Mice , Coronary Artery Disease/genetics , Coronary Artery Disease/pathology , Coronary Artery Disease/metabolism , Coronary Vessels/pathology , Coronary Vessels/metabolism , Disease Progression , Gene Expression Regulation/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Osteogenesis/genetics , Polypyrimidine Tract-Binding Protein/genetics , Polypyrimidine Tract-Binding Protein/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Vascular Calcification/genetics , Vascular Calcification/pathology , Vascular Calcification/metabolism
19.
Elife ; 132024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864841

ABSTRACT

Bone releases calcium and phosphate in response to pro-inflammatory cytokine-mediated inflammation. The body develops impaired urinary excretion of phosphate with age and chronic inflammation given the reduction of the kidney protein Klotho, which is essential to phosphate excretion. Phosphate may also play a role in the development of the resistance of the parathyroid calcium-sensing receptor (CaSR) to circulating calcium thus contributing to calcium retention in the circulation. Phosphate can contribute to vascular smooth muscle dedifferentiation with manifestation of osteoblastogenesis and ultimately endovascular calcium phosphate precipitation. Thus phosphate, along with calcium, contributes to the calcification and inflammation of atherosclerotic plaques and the origin of these elements is likely the bone, which serves as storage for the majority of the body's supply of extracellular calcium and phosphate. Early cardiac evaluation of patients with chronic inflammation and attempts at up-regulating the parathyroid CaSR with calcimimetics or introducing earlier anti-resorptive treatment with bone active pharmacologic agents may serve to delay onset or reduce the quantity of atherosclerotic plaque calcification in these patients.


Subject(s)
Calcium , Inflammation , Phosphates , Receptors, Calcium-Sensing , Vascular Calcification , Humans , Vascular Calcification/metabolism , Phosphates/metabolism , Calcium/metabolism , Inflammation/metabolism , Receptors, Calcium-Sensing/metabolism , Animals , Coronary Vessels/metabolism
20.
PLoS One ; 19(5): e0304551, 2024.
Article in English | MEDLINE | ID: mdl-38814895

ABSTRACT

Coronary microvascular dysfunction (CMD) is a critical pathogenesis of cardiovascular diseases. Lower endothelial nitric oxide synthase (eNOS) phosphorylation leads to reduced endothelium-derived relaxing factor nitric oxide (NO) generation, causing and accelerating CMD. Endoplasmic reticulum stress (ER stress) has been shown to reduce NO production in umbilical vein endothelial cells. Oxidized low-density lipoprotein (ox-LDL) damages endothelial cell function. However, the relationship between ox-LDL and coronary microcirculation has yet to be assessed. Short-chain fatty acid (SCFA), a fermentation product of the gut microbiome, could improve endothelial-dependent vasodilation in human adipose arterioles, but the effect of SCFA on coronary microcirculation is unclear. In this study, we found ox-LDL stimulated expression of ER chaperone GRP78. Further, we activated downstream PERK/eIF2a, IRE1/JNK, and ATF6 signaling pathways, decreasing eNOS phosphorylation and NO production in human cardiac microvascular endothelial. Furthermore, SCFA-propionate can inhibit ox-LDL-induced eNOS phosphorylation reduction and raise NO production; the mechanism is related to the inhibition of ER stress and downstream signaling pathways PERK/eIF2a, IRE1/JNK, and ATF6. In summary, we demonstrate that ox-LDL induced CMD by activating ER stress, propionate can effectively counteract the adverse effects of ox-LDL and protect coronary microcirculation function via inhibiting ER stress.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Lipoproteins, LDL , Nitric Oxide Synthase Type III , Nitric Oxide , Propionates , Signal Transduction , Humans , Endoplasmic Reticulum Stress/drug effects , Lipoproteins, LDL/metabolism , Nitric Oxide Synthase Type III/metabolism , Propionates/pharmacology , Nitric Oxide/metabolism , Signal Transduction/drug effects , Phosphorylation/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Coronary Vessels/drug effects , Coronary Vessels/metabolism , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/pharmacology , eIF-2 Kinase/metabolism , Activating Transcription Factor 6/metabolism , Microcirculation/drug effects , Heat-Shock Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL