Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.660
Filter
1.
Scand Cardiovasc J ; 58(1): 2373082, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38962961

ABSTRACT

OBJECTIVES: The diagnostic performance of fractional flow reserve with computed tomography (FFR-CT) is affected by the presence of calcified plaque. Subtraction can remove the influence of calcification in coronary computed tomography angiography (CCTA) to increase confidence in the diagnosis of coronary artery stenosis. Our purpose is to investigate the accuracy of post-subtraction FFR-CT in predicting early revascularization. DESIGN: Based on CCTA data of 237 vessels from 79 patients with coronary artery disease, subtraction CCTA images were obtained at a local post-processing workstation, and the conventional and post-subtraction FFR-CT measurements and the difference in proximal and distal FFR-CT values of the narrowest segment of the vessel (ΔFFR-CT) were analyzed for their accuracy in predicting early coronary artery hemodynamic reconstruction. RESULTS: With FFR-CT ≤ 0.8 as the criterion, the accuracy of conventional and post-subtraction FFR-CT measurements in predicting early revascularization was 73.4% and 77.2% at the patient level, and 64.6% and 72.2% at the vessel level, respectively. The specificity of post-subtraction FFR-CT measurements was significantly higher than that of conventional FFR-CT at both the patient and vessel levels (P of 0.013 and 0.015, respectively). At the vessel level, the area under the curve of receiver operating characteristic was 0.712 and 0.797 for conventional and post-subtraction ΔFFR-CT, respectively, showing a difference (P = 0.047), with optimal cutoff values of 0.07 and 0.11, respectively. CONCLUSION: The post-subtraction FFR-CT measurements enhance the specificity in predicting early revascularization. The post-subtraction ΔFFR-CT value of the stenosis segment > 0.11 may be an important indicator for early revascularization.


Subject(s)
Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Myocardial Revascularization , Predictive Value of Tests , Humans , Male , Female , Middle Aged , Aged , Coronary Artery Disease/physiopathology , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/therapy , Coronary Stenosis/diagnostic imaging , Coronary Stenosis/physiopathology , Coronary Stenosis/therapy , Reproducibility of Results , Coronary Vessels/physiopathology , Coronary Vessels/diagnostic imaging , Vascular Calcification/diagnostic imaging , Vascular Calcification/physiopathology , Vascular Calcification/therapy , Retrospective Studies , Multidetector Computed Tomography , Severity of Illness Index , Time-to-Treatment , Angiography, Digital Subtraction
2.
J Am Heart Assoc ; 13(13): e029941, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38904250

ABSTRACT

BACKGROUND: Computational fluid dynamics can compute fractional flow reserve (FFR) accurately. However, existing models are limited by either the intravascular hemodynamic phenomarkers that can be captured or the fidelity of geometries that can be modeled. METHODS AND RESULTS: This study aimed to validate a new coronary angiography-based FFR framework, FFRHARVEY, and examine intravascular hemodynamics to identify new biomarkers that could augment FFR in discerning unrevascularized patients requiring intervention. A 2-center cohort was used to examine diagnostic performance of FFRHARVEY compared with reference wire-based FFR (FFRINVASIVE). Additional biomarkers, longitudinal vorticity, velocity, and wall shear stress, were evaluated for their ability to augment FFR and indicate major adverse cardiac events. A total of 160 patients with 166 lesions were investigated. FFRHARVEY was compared with FFRINVASIVE by investigators blinded to the invasive FFR results with a per-stenosis area under the curve of 0.91, positive predictive value of 90.2%, negative predictive value of 89.6%, sensitivity of 79.3%, and specificity of 95.4%. The percentage ofdiscrepancy for continuous values of FFR was 6.63%. We identified a hemodynamic phenomarker, longitudinal vorticity, as a metric indicative of major adverse cardiac events in unrevascularized gray-zone cases. CONCLUSIONS: FFRHARVEY had high performance (area under the curve: 0.91, positive predictive value: 90.2%, negative predictive value: 89.6%) compared with FFRINVASIVE. The proposed framework provides a robust and accurate way to compute a complete set of intravascular phenomarkers, in which longitudinal vorticity was specifically shown to differentiate vessels predisposed to major adverse cardiac events.


Subject(s)
Coronary Angiography , Fractional Flow Reserve, Myocardial , Predictive Value of Tests , Humans , Fractional Flow Reserve, Myocardial/physiology , Male , Female , Middle Aged , Aged , Coronary Artery Disease/physiopathology , Coronary Artery Disease/diagnosis , Coronary Artery Disease/diagnostic imaging , Coronary Stenosis/physiopathology , Coronary Stenosis/diagnostic imaging , Coronary Stenosis/diagnosis , Models, Cardiovascular , Reproducibility of Results , Coronary Vessels/physiopathology , Coronary Vessels/diagnostic imaging , Hemodynamics/physiology
3.
Clin Res Cardiol ; 113(7): 1081-1091, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38832995

ABSTRACT

BACKGROUND: Despite the recommendation of coronary physiology to guide revascularization in angiographically intermediate stenoses without established correlation to ischemia, its uptake in clinical practice is slow. AIMS: This study aimed to analyze the use of coronary physiology in clinical practice. METHODS: Based on a multicenter registry (Fractional Flow Reserve Fax Registry, F(FR)2, ClinicalTrials.gov identifier NCT03055910), clinical use, consequences, and complications of coronary physiology were systematically analyzed. RESULTS: F(FR)2 enrolled 2,000 patients with 3,378 intracoronary pressure measurements. Most measurements (96.8%) were performed in angiographically intermediate stenoses. Out of 3,238 lesions in which coronary physiology was used to guide revascularization, revascularization was deferred in 2,643 (78.2%) cases. Fractional flow reserve (FFR) was the most common pressure index used (87.6%), with hyperemia induced by an intracoronary bolus of adenosine in 2,556 lesions (86.4%) and intravenous adenosine used for 384 measurements (13.0%). The route of adenosine administration did not influence FFR results (change-in-estimate -3.1% for regression model predicting FFR from diameter stenosis). Agreement with the subsequent revascularization decision was 93.4% for intravenous and 95.0% for intracoronary adenosine (p = 0.261). Coronary artery occlusion caused by the pressure wire was reported in two cases (0.1%) and dissection in three cases (0.2%), which was fatal once (0.1%). CONCLUSIONS: In clinical practice, intracoronary pressure measurements are mostly used to guide revascularization decisions in angiographically intermediate stenoses. Intracoronary and intravenous administration of adenosine seem equally suited. While the rate of serious complications of wire-based intracoronary pressure measurements in clinical practice seems to be low, it is not negligible.


Subject(s)
Coronary Angiography , Coronary Stenosis , Coronary Vessels , Fractional Flow Reserve, Myocardial , Registries , Humans , Fractional Flow Reserve, Myocardial/physiology , Male , Female , Coronary Stenosis/physiopathology , Coronary Stenosis/diagnosis , Middle Aged , Coronary Vessels/physiopathology , Coronary Vessels/diagnostic imaging , Aged , Adenosine/administration & dosage , Myocardial Revascularization/methods , Cardiac Catheterization/methods , Vasodilator Agents/administration & dosage
4.
Clin Cardiol ; 47(6): e24305, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38884449

ABSTRACT

BACKGROUND: The coronary artery disease-reporting and data system (CAD-RADS) 2.0 is used to standardize the reporting of coronary computed tomography angiography (CCTA) results. Artificial intelligence software can quantify the plaque composition, fat attenuation index, and fractional flow reserve. OBJECTIVE: To analyze plaque features of varying severity in patients with a combination of CAD-RADS stenosis and plaque burden categorization and establish a random forest classification model. METHODS: The data of 100 patients treated between April 2021 and February 2022 were retrospectively collected. The most severe plaque observed in each patient was the target lesion. Patients were categorized into three groups according to CAD-RADS: CAD-RADS 1-2 + P0-2, CAD-RADS 3-4B + P0-2, and CAD-RADS 3-4B + P3-4. Differences and correlations between variables were assessed between groups. AUC, accuracy, precision, recall, and F1 score were used to evaluate the diagnostic performance. RESULTS: A total of 100 patients and 178 arteries were included. The differences of computed tomography fractional flow reserve (CT-FFR) (H = 23.921, p < 0.001), the volume of lipid component (H = 12.996, p = 0.002), the volume of fibro-lipid component (H = 8.692, p = 0.013), the proportion of lipid component volume (H = 22.038, p < 0.001), the proportion of fibro-lipid component volume (H = 11.731, p = 0.003), the proportion of calcification component volume (H = 11.049, p = 0.004), and plaque type (χ2 = 18.110, p = 0.001) was statistically significant. CONCLUSION: CT-FFR, volume and proportion of lipid and fibro-lipid components of plaques, the proportion of calcified components, and plaque type were valuable for CAD-RADS stenosis + plaque burden classification, especially CT-FFR, volume, and proportion of lipid and fibro-lipid components. The model built using the random forest was better than the clinical model (AUC: 0.874 vs. 0.647).


Subject(s)
Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease , Coronary Stenosis , Coronary Vessels , Fractional Flow Reserve, Myocardial , Plaque, Atherosclerotic , Severity of Illness Index , Humans , Male , Female , Fractional Flow Reserve, Myocardial/physiology , Retrospective Studies , Computed Tomography Angiography/methods , Middle Aged , Coronary Angiography/methods , Coronary Stenosis/physiopathology , Coronary Stenosis/diagnostic imaging , Coronary Stenosis/diagnosis , Coronary Artery Disease/physiopathology , Coronary Artery Disease/diagnosis , Coronary Artery Disease/diagnostic imaging , Coronary Vessels/diagnostic imaging , Coronary Vessels/physiopathology , Vascular Calcification/diagnostic imaging , Vascular Calcification/physiopathology , Aged
5.
Echocardiography ; 41(6): e15864, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38889092

ABSTRACT

This systematic review investigates the diagnostic and prognostic utility of coronary flow reserve (CFR) assessment through echocardiography in patients with left bundle branch block (LBBB), a condition known to complicate the clinical evaluation of coronary artery disease (CAD). The literature search was performed on PubMed, EMBASE, Web of Science, Scopus, and Google Scholar, was guided by PRISMA standards up to March 2024, and yielded six observational studies that met inclusion criteria. These studies involved a diverse population of patients with LBBB, employing echocardiographic protocols to clarify the impact of LBBB on coronary flow dynamics. The findings emphasize the importance of CFR in stratifying cardiovascular risk and guiding clinical decision-making in patients with LBBB. Pooled results reveal that patients with LBBB and significant left anterior descending (LAD) artery stenosis exhibited a marked decrease in stress-peak diastolic velocity (MD = -19.03 [-23.58; -14.48] cm/s; p < .0001) and CFR (MD = -.60 [-.71; -.50]; p < .0001), compared to those without significant LAD lesions, suggesting the efficacy of stress echocardiography CFR assessment in the identification of clinically significant CAD among the LBBB population. This review highlights the clinical relevance of echocardiography CFR assessment as a noninvasive tool for evaluating CAD and stratifying risk in the presence of LBBB and underscores the need for standardized protocols in CFR measurement.


Subject(s)
Bundle-Branch Block , Coronary Circulation , Echocardiography , Humans , Bundle-Branch Block/physiopathology , Bundle-Branch Block/diagnostic imaging , Bundle-Branch Block/complications , Coronary Circulation/physiology , Echocardiography/methods , Fractional Flow Reserve, Myocardial/physiology , Coronary Artery Disease/physiopathology , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/complications , Blood Flow Velocity/physiology , Coronary Vessels/physiopathology , Coronary Vessels/diagnostic imaging
6.
Circ Cardiovasc Imaging ; 17(6): e016635, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38889213

ABSTRACT

BACKGROUND: Despite recent guideline recommendations, quantitative perfusion (QP) estimates of myocardial blood flow from cardiac magnetic resonance (CMR) have only been sparsely validated. Furthermore, the additional diagnostic value of utilizing QP in addition to the traditional visual expert interpretation of stress-perfusion CMR remains unknown. The aim was to investigate the correlation between myocardial blood flow measurements estimated by CMR, positron emission tomography, and invasive coronary thermodilution. The second aim is to investigate the diagnostic performance of CMR-QP to identify obstructive coronary artery disease (CAD). METHODS: Prospectively enrolled symptomatic patients with >50% diameter stenosis on computed tomography angiography underwent dual-bolus CMR and positron emission tomography with rest and adenosine-stress myocardial blood flow measurements. Subsequently, an invasive coronary angiography (ICA) with fractional flow reserve and thermodilution-based coronary flow reserve was performed. Obstructive CAD was defined as both anatomically severe (>70% diameter stenosis on quantitative coronary angiography) or hemodynamically obstructive (ICA with fractional flow reserve ≤0.80). RESULTS: About 359 patients completed all investigations. Myocardial blood flow and reserve measurements correlated weakly between estimates from CMR-QP, positron emission tomography, and ICA-coronary flow reserve (r<0.40 for all comparisons). In the diagnosis of anatomically severe CAD, the interpretation of CMR-QP by an expert reader improved the sensitivity in comparison to visual analysis alone (82% versus 88% [P=0.03]) without compromising specificity (77% versus 74% [P=0.28]). In the diagnosis of hemodynamically obstructive CAD, the accuracy was only moderate for a visual expert read and remained unchanged when additional CMR-QP measurements were interpreted. CONCLUSIONS: CMR-QP correlates weakly to myocardial blood flow measurements by other modalities but improves diagnosis of anatomically severe CAD. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03481712.


Subject(s)
Coronary Angiography , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Myocardial Perfusion Imaging , Positron-Emission Tomography , Thermodilution , Aged , Female , Humans , Male , Middle Aged , Blood Flow Velocity , Computed Tomography Angiography , Coronary Angiography/methods , Coronary Circulation/physiology , Coronary Stenosis/physiopathology , Coronary Stenosis/diagnostic imaging , Coronary Vessels/physiopathology , Coronary Vessels/diagnostic imaging , Fractional Flow Reserve, Myocardial/physiology , Myocardial Perfusion Imaging/methods , Positron-Emission Tomography/methods , Predictive Value of Tests , Prospective Studies , Reproducibility of Results , Severity of Illness Index
7.
EuroIntervention ; 20(11): e690-e698, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38840575

ABSTRACT

BACKGROUND: It has been suggested that coronary microvascular function decreases with age, irrespective of the presence of epicardial atherosclerosis. AIMS: Our aim is to quantitatively investigate the effects of age on microvascular function in patients with normal coronary arteries. METHODS: In 314 patients with angina with no obstructive coronary artery disease (ANOCA), microcirculatory function was tested using the continuous thermodilution method. In 305 patients, the association between age and both resting and hyperaemic myocardial blood flow (Q), microvascular resistance (Rµ), absolute coronary flow reserve (CFR) and microvascular resistance reserve (MRR) was assessed. In addition, patients were divided into 3 groups to test for differences based on age quartiles (≤52 years [24.9%], 53-64 years [49.2%], ≥65 years [25.9%]). RESULTS: The mean age was 59±9 years with a range from 22 to 79 years. The mean resting Q (Qrest) was not different in the 3 age groups (88±34 mL/min, 82±29 mL/min, and 86±38 mL/min, R2=0.001; p=0.62). A trend towards a decreasing mean hyperaemic Q (Qmax) was observed with increasing age (223±79 mL/min, 209±84 mL/min, 200±80 mL/min, R2=0.010; p=0.083). The mean resting Rµ (Rµ,rest) were 1,204±460 Wood units (WU), 1,260±411 WU, and 1,289±455 WU (p=0.23). The mean hyperaemic Rµ (Rµ,hyp) increased significantly with advancing age (429±149 WU, 464±164 WU, 503±162 WU, R2=0.026; p=0.005). Consequently, MRR decreased with age (3.2±1.2, 3.1±1.0, 2.9±0.9; p=0.038). This trend was present in both the patients with (n=121) and without (n=184) coronary microvascular dysfunction (CMD). CONCLUSIONS: There is an age-dependent physiological increase in minimal microvascular resistance and decrease in microvascular function, which is represented by a decreased MRR and is independent of atherosclerosis. The age-dependent decrease in MRR was present in both patients with and without CMD and was most evident in patients with smooth coronary arteries.


Subject(s)
Coronary Circulation , Coronary Vessels , Microcirculation , Vascular Resistance , Humans , Middle Aged , Male , Female , Aged , Coronary Vessels/physiopathology , Coronary Vessels/diagnostic imaging , Adult , Coronary Circulation/physiology , Age Factors , Vascular Resistance/physiology , Young Adult , Coronary Artery Disease/physiopathology , Angina Pectoris/physiopathology
8.
Adv Exp Med Biol ; 1441: 817-831, 2024.
Article in English | MEDLINE | ID: mdl-38884751

ABSTRACT

Coronary blood vessels are in charge of sustaining cardiac homeostasis. It is thus logical that coronary congenital anomalies (CCA) directly or indirectly associate with multiple cardiac conditions, including sudden death. The coronary vascular system is a sophisticated, highly patterned anatomical entity, and therefore a wide range of congenital malformations of the coronary vasculature have been described. Despite the clinical interest of CCA, very few attempts have been made to relate specific embryonic developmental mechanisms to the congenital anomalies of these blood vessels. This is so because developmental data on the morphogenesis of the coronary vascular system derive from complex studies carried out in animals (mostly transgenic mice), and are not often accessible to the clinician, who, in turn, possesses essential information on the significance of CCA. During the last decade, advances in our understanding of normal embryonic development of coronary blood vessels have provided insight into the cellular and molecular mechanisms underlying coronary arteries anomalies. These findings are the base for our attempt to offer plausible embryological explanations to a variety of CCA as based on the analysis of multiple animal models for the study of cardiac embryogenesis, and present them in an organized manner, offering to the reader developmental mechanistic explanations for the pathogenesis of these anomalies.


Subject(s)
Coronary Vessel Anomalies , Coronary Vessels , Animals , Humans , Mice , Coronary Vessel Anomalies/pathology , Coronary Vessel Anomalies/genetics , Coronary Vessel Anomalies/embryology , Coronary Vessels/embryology , Coronary Vessels/pathology , Coronary Vessels/physiopathology , Disease Models, Animal
12.
Rheum Dis Clin North Am ; 50(3): 519-533, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38942582

ABSTRACT

Ischemic heart disease (IHD) affects more than 20 million adults in the United States. Although classically attributed to atherosclerosis of the epicardial coronary arteries, nearly half of patients with stable angina and IHD who undergo invasive coronary angiography do not have obstructive epicardial coronary artery disease. Ischemia with nonobstructive coronary arteries is frequently caused by microvascular angina with underlying coronary microvascular dysfunction (CMD). Greater understanding the pathophysiology, diagnosis, and treatment of CMD holds promise to improve clinical outcomes of patients with ischemic heart disease.


Subject(s)
Coronary Artery Disease , Microcirculation , Humans , Microcirculation/physiology , Coronary Artery Disease/physiopathology , Coronary Artery Disease/diagnosis , Coronary Circulation/physiology , Myocardial Ischemia/physiopathology , Myocardial Ischemia/diagnosis , Coronary Angiography , Coronary Vessels/diagnostic imaging , Coronary Vessels/physiopathology
13.
Arterioscler Thromb Vasc Biol ; 44(7): 1617-1627, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38721707

ABSTRACT

BACKGROUND: While it has been hypothesized that high plaque stress and strain may be related to plaque rupture, its direct verification using in vivo coronary plaque rupture data and full 3-dimensional fluid-structure interaction models is lacking in the current literature due to difficulty in obtaining in vivo plaque rupture imaging data from patients with acute coronary syndrome. This case-control study aims to use high-resolution optical coherence tomography-verified in vivo plaque rupture data and 3-dimensional fluid-structure interaction models to seek direct evidence for the high plaque stress/strain hypothesis. METHODS: In vivo coronary plaque optical coherence tomography data (5 ruptured plaques, 5 no-rupture plaques) were acquired from patients using a protocol approved by the local institutional review board with informed consent obtained. The ruptured caps were reconstructed to their prerupture morphology using neighboring plaque cap and vessel geometries. Optical coherence tomography-based 3-dimensional fluid-structure interaction models were constructed to obtain plaque stress, strain, and flow shear stress data for comparative analysis. The rank-sum test in the nonparametric test was used for statistical analysis. RESULTS: Our results showed that the average maximum cap stress and strain values of ruptured plaques were 142% (457.70 versus 189.22 kPa; P=0.0278) and 48% (0.2267 versus 0.1527 kPa; P=0.0476) higher than that for no-rupture plaques, respectively. The mean values of maximum flow shear stresses for ruptured and no-rupture plaques were 145.02 dyn/cm2 and 81.92 dyn/cm2 (P=0.1111), respectively. However, the flow shear stress difference was not statistically significant. CONCLUSIONS: This preliminary case-control study showed that the ruptured plaque group had higher mean maximum stress and strain values. Due to our small study size, larger scale studies are needed to further validate our findings.


Subject(s)
Coronary Artery Disease , Coronary Vessels , Plaque, Atherosclerotic , Stress, Mechanical , Tomography, Optical Coherence , Humans , Coronary Vessels/diagnostic imaging , Coronary Vessels/physiopathology , Coronary Vessels/pathology , Rupture, Spontaneous , Case-Control Studies , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/physiopathology , Male , Female , Middle Aged , Models, Cardiovascular , Aged , Predictive Value of Tests , Acute Coronary Syndrome/diagnostic imaging , Acute Coronary Syndrome/physiopathology , Acute Coronary Syndrome/etiology
14.
Med Eng Phys ; 128: 104164, 2024 06.
Article in English | MEDLINE | ID: mdl-38789211

ABSTRACT

In computational fluid dynamic studies related to blood flow, investigating the behavior of blood particles is crucial, especially red blood cells as they constitute a significant proportion of blood particles. Additionally, studying red blood cell movements is necessary, especially in stenotic artery geometries. A new multiphase scheme was utilized to demonstrate the effect of red blood cells on hemodynamics in complex coronary arteries and investigate the consequence of their motion. To investigate the effect of red blood cell movement on flow, the dense discrete phase model (DDPM) was used. This simulation was performed in 3D coronary arteries with different degrees of stenosis, utilizing blood pressure as inlet and outlet boundary conditions while assuming the arterial wall to be rigid. The model prediction shows good agreement with experimental data. Velocity values were comparable in both single-phase and two-phase flow simulations, but the shear stress in two-phase modeling had higher values. In the two-phase DDPM modeling, the recirculation areas indicated a higher probability of atherosclerosis plaque re-formation in the pre-stenosis area compared to the stenosis and post-stenosis areas. The DDPM model was found to be more effective in obtaining shear stress values in the artery. Additionally, this model provides good results compared to the single-phase model in investigating the movement of particles along the artery as well as recirculation areas that lead to the deposition of particles.


Subject(s)
Coronary Stenosis , Coronary Vessels , Coronary Stenosis/physiopathology , Coronary Vessels/physiopathology , Humans , Hydrodynamics , Hemodynamics , Erythrocytes , Models, Cardiovascular , Stress, Mechanical , Models, Biological
15.
JACC Cardiovasc Interv ; 17(12): 1425-1436, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38752972

ABSTRACT

BACKGROUND: The role of quantitative flow ratio (QFR) in the treatment of nonculprit vessels of patients with myocardial infarction (MI) is a topic of ongoing discussion. OBJECTIVES: This study aimed to investigate the predictive capability of QFR for adverse events and its noninferiority compared to wire-based functional assessment in nonculprit vessels of MI patients. METHODS: The FIRE (Functional Assessment in Elderly MI Patients With Multivessel Disease) trial randomized 1,445 older MI patients to culprit-only (n = 725) or physiology-guided complete revascularization (n = 720). In the culprit-only arm, angiographic projections of nonculprit vessels were prospectively collected, centrally reviewed for QFR computation, and associated with endpoints. In the complete revascularization arm, endpoints were compared between nonculprit vessels investigated with QFR or wire-based functional assessment. The primary endpoint was the vessel-oriented composite endpoint (VOCE) at 1 year. RESULTS: QFR was measured on 903 nonculprit vessels from 685 patients in the culprit-only arm. Overall, 366 (40.5%) nonculprit vessels showed a QFR value ≤0.80, with a significantly higher incidence of VOCEs (22.1% vs 7.1%; P < 0.001). QFR ≤0.80 emerged as an independent predictor of VOCEs (HR: 2.79; 95% CI: 1.64-4.75). In the complete arm, QFR was used in 320 (35.2%) nonculprit vessels to guide revascularization. When compared with propensity-matched nonculprit vessels in which treatment was guided by wire-based functional assessment, no significant difference was observed (HR: 0.57; 95% CI: 0.28-1.15) in VOCEs. CONCLUSIONS: This prespecified subanalysis of the FIRE trial provides evidence supporting the safety and efficacy of QFR-guided interventions for the treatment of nonculprit vessels in MI patients. (Functional Assessment in Elderly MI Patients With Multivessel Disease [FIRE]; NCT03772743).


Subject(s)
Coronary Angiography , Percutaneous Coronary Intervention , Predictive Value of Tests , Humans , Female , Male , Aged , Treatment Outcome , Time Factors , Prospective Studies , Percutaneous Coronary Intervention/adverse effects , Percutaneous Coronary Intervention/instrumentation , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/therapy , Coronary Artery Disease/physiopathology , Risk Factors , Aged, 80 and over , Coronary Vessels/diagnostic imaging , Coronary Vessels/physiopathology , Fractional Flow Reserve, Myocardial , Cardiac Catheterization/adverse effects , Cardiac Catheterization/instrumentation , Myocardial Infarction/physiopathology , Myocardial Infarction/diagnostic imaging
16.
Curr Med Sci ; 44(3): 561-567, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38809380

ABSTRACT

OBJECTIVE: The study sought to investigate the clinical predictive value of quantitative flow ratio (QFR) for the long-term target vessel failure (TVF) outcome in patients with in-stent restenosis (ISR) by using drug-coated balloon (DCB) treatment after a long-term follow-up. METHODS: This was a retrospective study. A total of 186 patients who underwent DCB angioplasty for ISR in two hospitals from March 2014 to September 2019 were enrolled. The QFR of the entire target vessel was measured offline. The primary endpoint was TVF, including target vessel-cardiac death (TV-CD), target vessel-myocardial infarction (TV-MI), and clinically driven-target vessel revascularization (CD-TVR). RESULTS: The follow-up time was 3.09±1.53 years, and 50 patients had TVF. The QFR immediately after percutaneous coronary intervention (PCI) was significantly lower in the TVF group than in the no-TVF group. Multivariable Cox regression analysis indicated that the QFR immediately after PCI was an excellent predictor for TVF after the long-term follow-up [hazard ratio (HR): 5.15×10-5 (6.13×10-8-0.043); P<0.01]. Receiver-operating characteristic (ROC) curve analysis demonstrated that the optimal cut-off value of the QFR immediately after PCI for predicting the long-term TVF was 0.925 (area under the curve: 0.886, 95% confidence interval: 0.834-0.938; sensitivity: 83.40%, specificity: 88.00; P<0.01). In addition, QFR≤0.925 post-PCI was strongly correlated with the TVF, including TV-MI and CD-TVR (P<0.01). CONCLUSION: The QFR immediately after PCI showed a high predictive value of TVF after a long-term follow-up in ISR patients who underwent DCB angioplasty. A lower QFR immediately after PCI was associated with a worse TVF outcome.


Subject(s)
Angioplasty, Balloon, Coronary , Coronary Restenosis , Humans , Male , Female , Middle Aged , Coronary Restenosis/etiology , Coronary Restenosis/diagnostic imaging , Retrospective Studies , Aged , Angioplasty, Balloon, Coronary/methods , Angioplasty, Balloon, Coronary/adverse effects , Drug-Eluting Stents , Follow-Up Studies , Percutaneous Coronary Intervention/adverse effects , Percutaneous Coronary Intervention/methods , Coronary Vessels/diagnostic imaging , Coronary Vessels/physiopathology , Coronary Vessels/surgery
17.
Int J Cardiol ; 409: 132199, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38782068

ABSTRACT

BACKGROUND: Despite prompt reperfusion, the risk of adverse clinical outcomes following ST-segment-elevation myocardial infarction (STEMI) remains pronounced, owing partly to suboptimal reperfusion. However, coronary functional evaluation is seldom feasible during primary percutaneous coronary intervention (PPCI). We aimed to examine the clinical implication of a simple coronary assessment based on single-angiographic view (µQFR) during PPCI in discriminating impaired coronary flow and adverse outcomes for STEMI. METHODS: STEMI Patients undergoing successful PPCI were enrolled and followed up prospectively from 4 medical centers in China. Post-PPCI µQFR of culprit vessels were analyzed. The primary outcome was major adverse cardiovascular events (MACE), defined as a composite of cardiac death, non-fatal MI, ischemia-driven target-vessel revascularization and readmission for heart failure. RESULTS: A total of 570 patients with STEMI were enrolled, and post-PCI µQFR was analyzable in 557 (97.7%) patients, with a median of 0.94. Patients with low post-PCI µQFR showed higher incidence of adverse outcomes than those with high µQFR, showing a 2.5-fold increase in the risk for MACE (hazard ratio: 2.51, 95% confidence intervals: 1.33 to 4.72; P = 0.004). Moreover, post-PCI µQFR significantly increased discriminant ability for the occurrence of MACE when added to traditional GRACE risk score for STEMI (integrated discrimination improvement: 0.029; net reclassification index: 0.229; P < 0.05). CONCLUSIONS: A low µQFR of culprit vessel in PPCI is independently associated with worse clinical outcomes in patients with STEMI. The single-angiographic-view-based coronary evaluation is a feasible tool for discriminating poor prognosis and could serve as a valuable complement in risk stratification for STEMI.


Subject(s)
Coronary Angiography , Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction , Humans , ST Elevation Myocardial Infarction/surgery , ST Elevation Myocardial Infarction/diagnostic imaging , ST Elevation Myocardial Infarction/physiopathology , ST Elevation Myocardial Infarction/mortality , ST Elevation Myocardial Infarction/diagnosis , Male , Female , Percutaneous Coronary Intervention/methods , Middle Aged , Aged , Prognosis , Prospective Studies , Coronary Angiography/methods , Follow-Up Studies , Coronary Circulation/physiology , Coronary Vessels/diagnostic imaging , Coronary Vessels/physiopathology , Time Factors , China/epidemiology
18.
Kardiologiia ; 64(4): 14-21, 2024 Apr 30.
Article in English, English | MEDLINE | ID: mdl-38742511

ABSTRACT

AIM: To assess the levels of matrix metalloproteinases (MMP), vascular endothelial growth factor (VEGF), and miRNA-34a expression in patients with ischemic heart disease (IHD) and obstructive and nonobstructive coronary artery (CA) disease. MATERIAL AND METHODS: This cross-sectional observational study included 64 patients with IHD (diagnosis verified by coronary angiography or multislice computed tomography coronary angiography), of which 33 (51.6%) were men aged 64.9±8.1 years. 20 patients had nonobstructive CA disease (stenosis <50%), and 44 had hemodynamically significant stenoses. The control group consisted of 30 healthy volunteers. MMP-1, -9, -13, and -14, miRNA-34a, and VEGF were measured in all patients. RESULTS: The concentration of MMP-1 was significantly higher in patients with ischemia and nonobstructive CA disease (INOCAD) (p=0.016), and the concentration of MMP-9 was the highest in the group with obstructive CA disease (p<0.001). The concentrations of MMP-13 and MMP-14 did not differ significantly between the groups. The highest VEGF concentrations were observed in the INOCAD group (p<0.001). The expression of miRNA-34a significantly differed between the IHD groups with different types of CA disease and controls (p <0.001). Patients with hemodynamically significant stenosis showed moderate relationships between the concentrations of MMP-14 and VEGF (ρ=0.418; p=0.024), as well as between VEGF and miRNA-34a (ρ=0.425; p=0.022). Patients with INOCAD had a significant negative correlation between the concentrations of MMP-13 and VEGF (ρ= -0.659; p=0.003). Correlation analysis showed in all IHD patients a moderate relationship of the concentrations of MMP-1 and MMP-14 with VEGF (ρ=0.449; p=0.002 and p=0.341; p=0.019, respectively). According to ROC analysis, a MMP-9 concentration above 4.83 ng/ml can be a predictor for the presence of hemodynamically significant CA obstruction in IHD patients; a VEGF concentration higher than 27.23 pg/ml suggests the absence of hemodynamically significant CA stenosis. CONCLUSION: IHD patients with INOCAD had the greatest increase in MMP-1, whereas patients with obstructive CA disease had the highest level of MMP-9. According to our data, concentrations of MMP-9 and VEGF can be used to predict the degree of CA obstruction. The expression of miRNA-34a was significantly higher in IHD patients with INOCAD and CA obstruction than in the control group, which suggested a miRNA-34a contribution to the development and progression of coronary atherosclerosis. In the future, it may be possible to use this miRNA as a diagnostic marker for IHD.


Subject(s)
Coronary Angiography , MicroRNAs , Vascular Endothelial Growth Factor A , Humans , Male , Middle Aged , Female , Vascular Endothelial Growth Factor A/genetics , MicroRNAs/genetics , Cross-Sectional Studies , Aged , Coronary Artery Disease/genetics , Coronary Artery Disease/physiopathology , Coronary Artery Disease/diagnosis , Matrix Metalloproteinases/genetics , Biomarkers , Coronary Stenosis/genetics , Coronary Stenosis/physiopathology , Coronary Vessels/diagnostic imaging , Coronary Vessels/physiopathology
19.
Prog Cardiovasc Dis ; 84: 51-59, 2024.
Article in English | MEDLINE | ID: mdl-38754532

ABSTRACT

Coronary computed tomography angiography (CCTA) has emerged as a pivotal tool in the non-invasive evaluation of coronary artery disease (CAD). Recent advancements in imaging techniques, quantitative plaque assessment methods, assessment of coronary physiology, and perivascular coronary inflammation have propelled CCTA to the forefront of CAD management, enabling precise risk stratification, disease monitoring, and evaluation of treatment response. However, challenges persist, including the need for cardiovascular outcomes data for therapy modifications based on CCTA findings and the lack of standardized quantitative plaque assessment techniques to establish universal guidelines for treatment strategies. This review explores the current utilization of CCTA in clinical practice, highlighting its clinical impact and discussing challenges and opportunities for future development. By addressing these nuances, CCTA holds promise for revolutionizing coronary imaging and improving CAD management in the years to come. Ultimately, the goal is to provide precise risk stratification, optimize medical therapy, and improve cardiovascular outcomes while ensuring cost-effectiveness for healthcare systems.


Subject(s)
Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease , Predictive Value of Tests , Humans , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/therapy , Coronary Angiography/methods , Coronary Vessels/diagnostic imaging , Coronary Vessels/physiopathology , Prognosis , Plaque, Atherosclerotic/diagnostic imaging , Diffusion of Innovation , Risk Assessment , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...