Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117.439
Filter
1.
Comp Med ; 74(3): 148-155, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-39107941

ABSTRACT

Leishmaniasis, a disease of global relevance, results from infection with the protozoan parasite, Leishmania, which is transmitted to susceptible hosts through the bite of sand flies. Multiple forms of leishmaniasis may occur, including cutaneous, mucocutaneous, and visceral. Research with animal models remains an important approach to help define basic pathophysi- ologic processes associated with infection and disease. In this regard, mice and hamsters represent the most commonly used models. The severity of leishmaniasis in animal models depends on several factors, including genotype of the host and parasite and the dose and route of administration of the parasite to the host, and severity of outcome may range from subclinical to severe illness. This review provides basic background on leishmaniasis, relevant animal models, the pathophysiology and clinical signs in animals used as models of leishmaniasis, and general approaches to mitigate risk to personnel.


Subject(s)
Disease Models, Animal , Leishmaniasis , Animals , Mice , Cricetinae , Humans , Leishmania
2.
PLoS Negl Trop Dis ; 18(8): e0012333, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39121159

ABSTRACT

American tegumentary leishmaniasis (ATL) is highly endemic in the Amazon basin and occurs in all South American countries, except Chile and Uruguay. Most Brazilian ATL cases are due to Leishmania (Viannia) braziliensis, however other neglected Amazonian species are being increasingly reported. They belong to the subgenus L. (Viannia) and information on suitable models to understand immunopathology are scarce. Here, we explored the use of the golden hamster Mesocricetus auratus and its macrophages as a model for L. (Viannia) species. We also studied the interaction of parasite glycoconjugates (LPGs and GIPLs) in murine macrophages. The following strains were used: L. (V.) braziliensis (MHOM/BR/2001/BA788), L. (V.) guyanensis (MHOM/BR/85/M9945), L. (V.) shawi (MHOM/BR/96/M15789), L. (V.) lindenbergi (MHOM/BR/98/M15733) and L. (V.) naiffi (MDAS/BR/79/M5533). In vivo infections were initiated by injecting parasites into the footpad and were followed up at 20- and 40-days PI. Parasites were mixed with salivary gland extract (SGE) from wild-captured Nyssomyia neivai prior to in vivo infections. Animals were euthanized for histopathological evaluation of the footpads, spleen, and liver. The parasite burden was evaluated in the skin and draining lymph nodes. In vitro infections used resident peritoneal macrophages and THP-1 monocytes infected with all species using a MOI (1:10). For biochemical studies, glycoconjugates (LPGs and GIPLs) were extracted, purified, and biochemically characterized using fluorophore-assisted carbohydrate electrophoresis (FACE). They were functionally evaluated after incubation with macrophages from C57BL/6 mice and knockouts (TLR2-/- and TLR4-/-) for nitric oxide (NO) and cytokine/chemokine production. All species, except L. (V.) guyanensis, failed to generate evident macroscopic lesions 40 days PI. The L. (V.) guyanensis lesions were swollen but did not ulcerate and microscopically were characterized by an intense inflammatory exudate. Despite the fact the other species did not produce visible skin lesions there was no or mild pro-inflammatory infiltration at the inoculation site and parasites survived in the hamster skin/lymph nodes and even visceralized. Although none of the species caused severe disease in the hamster, they differentially infected peritoneal macrophages in vitro. LPGs and GIPLs were able to differentially trigger NO and cytokine production via TLR2/TLR4 and TLR4, respectively. The presence of a sidechain in L. (V.) lainsoni LPG (type II) may be responsible for its higher proinflammatory activity. After Principal Component analyses using all phenotypic features, the clustering of L. (V.) lainsoni was separated from all the other L. (Viannia) species. We conclude that M. auratus was a suitable in vivo model for at least four dermotropic L. (Viannia) species. However, in vitro studies using peritoneal cells are a suitable alternative for understanding interactions of the six L. (Viannia) species used here. LRV1 presence was found in L. (V.) guyanensis and L. (V.) shawi with no apparent correlation with virulence in vitro and in vivo. Finally, parasite glycoconjugates were able to functionally trigger various innate immune responses in murine macrophages via TLRs consistent with their inflammatory profile in vivo.


Subject(s)
Disease Models, Animal , Leishmania , Macrophages , Mesocricetus , Animals , Macrophages/parasitology , Macrophages/immunology , Mice , Leishmania/pathogenicity , Cricetinae , Virulence , Female , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/pathology , Leishmaniasis, Cutaneous/immunology , Glycoconjugates , Male
3.
Biotechnol J ; 19(8): e2400196, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39115350

ABSTRACT

Instability of transgene expression is a major challenge for the biopharmaceutical industry, which can impact yields and regulatory approval. Some tRNA genes (tDNAs) can resist epigenetic silencing, the principal mechanism of expression instability, and protect adjacent genes against the spread of repressive heterochromatin. We have taken two naturally occurring clusters of human tDNAs and tested their ability to reduce epigenetic silencing of transgenes integrated into the genome of Chinese hamster ovary (CHO) cells. We find sustained improvements in productivity both in adherent CHO-K1 cells and in an industrially relevant CHO-DG44 expression system (Apollo X, FUJIFILM Diosynth Biotechnologies). We conclude that specific tDNA clusters offer potential to mitigate the widespread problem of production instability.


Subject(s)
Cricetulus , RNA, Transfer , Transgenes , CHO Cells , Animals , RNA, Transfer/genetics , Humans , Cricetinae , Epigenesis, Genetic/genetics , Gene Silencing , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
4.
J Exp Clin Cancer Res ; 43(1): 233, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39160581

ABSTRACT

BACKGROUND: Betel quid and its major ingredient, areca nut, are recognized by IARC as major risk factors in oral cancer development. Areca nut extract (ANE) exposure has been linked to OPMD progression and malignant transformation to OSCC. However, the detailed mechanism through which ANE acts on other cell types in the oral microenvironment to promote oral carcinogenesis remains elusive. METHODS: Immunoprofiling of macrophages associated with OPMD and OSCC was carried out by immunohistochemical and immunofluorescence staining. Phosphokinase and cytokine arrays and western blotting were performed to determine the underlying mechanisms. Transwell assays were used to evaluate the migration-promoting effect of ANE. Hamster model was finally applied to confirm the in vivo effect of ANE. RESULTS: We reported that M2 macrophages positively correlated with oral cancer progression. ANE induced M2 macrophage differentiation, CREB phosphorylation and VCAM-1 secretion and increased mitochondrial metabolism. Conditioned medium and VCAM-1 from ANE-treated macrophages promoted migration and mesenchymal phenotypes in oral precancer cells. In vivo studies showed that ANE enhanced M2 polarization and related signaling pathways in the oral buccal tissues of hamsters. CONCLUSION: Our study provides novel mechanisms for areca nut-induced oral carcinogenesis, demonstrating that areca nut promotes M2 macrophage differentiation and secretion of oncogenic cytokines that critically activate malignant transformation of oral premalignant cells.


Subject(s)
Areca , Cell Differentiation , Cell Transformation, Neoplastic , Macrophages , Mouth Neoplasms , Animals , Areca/adverse effects , Areca/chemistry , Cell Transformation, Neoplastic/metabolism , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Humans , Macrophages/metabolism , Cricetinae , Disease Models, Animal , Nuts , Male , Metabolic Reprogramming
5.
Biotechnol Bioeng ; 121(9): 2848-2867, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39138873

ABSTRACT

The fast-growing Chinese hamster lung (CHL)-YN cell line was recently developed for monoclonal antibody production. In this study, we applied a serum-free fed-batch cultivation process to immunoglobulin (Ig)G1-producing CHL-YN cells, which were then used to design a dynamic glucose supply system to stabilize the extracellular glucose concentration based on glucose consumption. Glucose consumption of the cultures rapidly oscillated following three phases of glutamine metabolism: consumption, production, and re-consumption. Use of the dynamic glucose supply prolonged the viability of the CHL-YN-IgG1 cell cultures and increased IgG1 production. Liquid chromatography with tandem mass spectrometry-based target metabolomics analysis of the extracellular metabolites during the first glutamine shift was conducted to search for depleted compounds. The results suggest that the levels of four amino acids, namely arginine, aspartate, methionine, and serine, were sharply decreased in CHL-YN cells during glutamine production. Supporting evidence from metabolic and gene expression analyses also suggest that CHL-YN cells acquired ornithine- and cystathionine-production abilities that differed from those in Chinese hamster ovary-K1 cells, potentially leading to proline and cysteine biosynthesis.


Subject(s)
Antibodies, Monoclonal , Cricetulus , Glucose , Animals , Glucose/metabolism , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/metabolism , Cricetinae , Cell Line , Culture Media, Serum-Free , Metabolomics/methods , Lung/metabolism , Lung/cytology , Metabolome , Immunoglobulin G/metabolism , CHO Cells , Batch Cell Culture Techniques/methods , Glutamine/metabolism
6.
Methods Mol Biol ; 2838: 77-89, 2024.
Article in English | MEDLINE | ID: mdl-39126624

ABSTRACT

Epizootic hemorrhagic disease virus (EHDV), like other orbiviruses, infects and replicates in mammalian and insect vector cells. Within its ruminant hosts EHDV, like bluetongue virus (BTV), it has mainly been associated with infection of endothelial cells of capillaries as well as leukocyte subsets. Furthermore, EHDV infects and replicates within its biological vector, Culicoides biting midges and Culicoides-derived cells. A wide range of common laboratory cell lines such as BHK, BSR, and Vero cells are susceptible to infection with certain EHDV strains. Cell culture supernatants of infected cells are commonly used for both in vivo and in vitro infection studies. For specific virological or immunological studies, using highly purified virus particles, however, might be beneficial or even required. Here we describe a purification method for EHDV particles, which had been originally developed for certain strains of BTV.


Subject(s)
Hemorrhagic Disease Virus, Epizootic , Virion , Animals , Hemorrhagic Disease Virus, Epizootic/isolation & purification , Cell Line , Virion/isolation & purification , Chlorocebus aethiops , Vero Cells , Orbivirus/isolation & purification , Ceratopogonidae/virology , Insecta/virology , Reoviridae Infections/virology , Reoviridae Infections/veterinary , Cricetinae
7.
Methods Mol Biol ; 2838: 65-75, 2024.
Article in English | MEDLINE | ID: mdl-39126623

ABSTRACT

Virus isolation is used to assist in the diagnosis and confirmation of viral infections. Successful isolation of a virus is highly dependent upon the quality of starting material. Here we describe the preparation and isolation of epizootic hemorrhagic disease virus (EHDV) from blood and tissue samples in tissue culture flasks (TCFs) through the inoculation of susceptible cell lines including Vero, BHK, and KC cells.


Subject(s)
Hemorrhagic Disease Virus, Epizootic , Animals , Hemorrhagic Disease Virus, Epizootic/isolation & purification , Chlorocebus aethiops , Cell Line , Vero Cells , Reoviridae Infections/virology , Reoviridae Infections/veterinary , Cell Culture Techniques/methods , Cricetinae , Virus Cultivation/methods
8.
Int J Mol Sci ; 25(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39126087

ABSTRACT

Marburg virus (MARV), a filovirus, was first identified in 1967 in Marburg, Germany, and Belgrade, former Yugoslavia. Since then, MARV has caused sporadic outbreaks of human disease with high case fatality rates in parts of Africa, with the largest outbreak occurring in 2004/05 in Angola. From 2021 to 2023, MARV outbreaks occurred in Guinea, Ghana, New Guinea, and Tanzania, emphasizing the expansion of its endemic area into new geographical regions. There are currently no approved vaccines or therapeutics targeting MARV, but several vaccine candidates have shown promise in preclinical studies. We compared three vaccine platforms simultaneously by vaccinating hamsters with either a single dose of an adenovirus-based (ChAdOx-1 MARV) vaccine, an alphavirus replicon-based RNA (LION-MARV) vaccine, or a recombinant vesicular stomatitis virus-based (VSV-MARV) vaccine, all expressing the MARV glycoprotein as the antigen. Lethal challenge with hamster-adapted MARV 4 weeks after vaccination resulted in uniform protection of the VSV-MARV and LION-MARV groups and 83% of the ChAdOx-1 MARV group. Assessment of the antigen-specific humoral response and its functionality revealed vaccine-platform-dependent differences, particularly in the Fc effector functions.


Subject(s)
Marburg Virus Disease , Marburgvirus , Viral Vaccines , Animals , Cricetinae , Viral Vaccines/immunology , Marburgvirus/immunology , Marburg Virus Disease/prevention & control , Marburg Virus Disease/immunology , Disease Models, Animal , Adenoviridae/genetics , Adenoviridae/immunology , Vesiculovirus/immunology , Vesiculovirus/genetics , Antibodies, Viral/immunology , Vaccination/methods
9.
Appl Microbiol Biotechnol ; 108(1): 434, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120640

ABSTRACT

Chinese hamster ovary (CHO) cells, widely acknowledged as the preferred host system for industrial recombinant protein manufacturing, play a crucial role in developing pharmaceuticals, including anticancer therapeutics. Nevertheless, mammalian cell-based biopharmaceutical production methods are still beset by cellular constraints such as limited growth and poor productivity. MicroRNA-21 (miR-21) has a major impact on a variety of malignancies, including glioblastoma multiforme (GBM). However, reduced productivity and growth rate have been linked to miR-21 overexpression in CHO cells. The current study aimed to engineer a recombinant CHO (rCHO) cell using the CRISPR-mediated precise integration into target chromosome (CRIS-PITCh) system coupled with the Bxb1 recombinase-mediated cassette exchange (RMCE) to express a circular miR-21 decoy (CM21D) with five bulged binding sites for miR-21 sponging. Implementing the ribonucleoprotein (RNP) delivery method, a landing pad was inserted into the genome utilizing the CRIS-PITCh technique. Subsequently, the CM21D cassette flanked by Bxb1 attB was then retargeted into the integrated landing pad using the RMCE/Bxb1 system. This strategy raised the targeting efficiency by 1.7-fold, and off-target effects were decreased. The miR-21 target genes (Pdcd4 and Atp11b) noticed a significant increase in expression upon the miR-21 sponging through CM21D. Following the expression of CM21D, rCHO cells showed a substantial decrease in doubling time and a 1.3-fold increase in growth rate. Further analysis showed an increased yield of hrsACE2, a secretory recombinant protein, by 2.06-fold. Hence, we can conclude that sponging-induced inhibition of miR-21 may lead to a growth rate increase that could be linked to increased CHO cell productivity. For industrial cell lines, including CHO cells, an increase in productivity is crucial. The results of our research indicate that CM21D is an auspicious CHO engineering approach. KEY POINTS: • CHO is an ideal host cell line for producing industrial therapeutics manufacturing, and miR-21 is downregulated in CHO cells, which produce recombinant proteins. • The miR-21 target genes noticed a significant increase in expression upon the miR-21 sponging through CM21D. Additionally, sponging of miR-21 by CM21D enhanced the growth rate of CHO cells. • Productivity and growth rate were increased in CHO cells expressing recombinant hrs-ACE2 protein after CM21D knocking in.


Subject(s)
CRISPR-Cas Systems , Cricetulus , MicroRNAs , CHO Cells , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Engineering/methods , Gene Editing/methods , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinases/genetics , Recombinases/metabolism , Cricetinae
10.
Sci Rep ; 14(1): 17450, 2024 08 12.
Article in English | MEDLINE | ID: mdl-39134590

ABSTRACT

Because of the advent of genome-editing technology, gene knockout (KO) hamsters have become attractive research models for diverse diseases in humans. This study established a new KO model of diabetes by disrupting the insulin receptor substrate-2 (Irs2) gene in the golden (Syrian) hamster. Homozygous KO animals were born alive but with delayed postnatal growth until adulthood. They showed hyperglycemia, high HbA1c, and impaired glucose tolerance. However, they normally responded to insulin stimulation, unlike Irs2 KO mice, an obese type 2 diabetes (T2D) model. Consistent with this, Irs2 KO hamsters did not increase serum insulin levels upon glucose administration and showed ß-cell hypoplasia in their pancreas. Thus, our Irs2 KO hamster provide a unique T2D animal model that is distinct from the obese T2D models. This model may contribute to a better understanding of the pathophysiology of human non-obese T2D with ß-cell dysfunction, the most common type of T2D in East Asian countries, including Japan.


Subject(s)
Diabetes Mellitus, Type 2 , Disease Models, Animal , Insulin Receptor Substrate Proteins , Insulin-Secreting Cells , Mesocricetus , Animals , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Insulin Receptor Substrate Proteins/metabolism , Insulin Receptor Substrate Proteins/genetics , Cricetinae , Insulin/metabolism , Gene Knockout Techniques , Male , Humans , Blood Glucose/metabolism
11.
Nutrients ; 16(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125351

ABSTRACT

Syrian hamsters are valuable models for studying lipid metabolism due to their sensitivity to dietary cholesterol, yet the precise impact of varying cholesterol levels has not been comprehensively assessed. This study examined the impact of varying dietary cholesterol levels on lipid metabolism in Syrian hamsters. Diets ranging from 0% to 1% cholesterol were administered to assess lipid profiles and oxidative stress markers. Key findings indicate specific cholesterol thresholds for inducing distinct lipid profiles: below 0.13% for normal lipids, 0.97% for elevated LDL-C, 0.43% for increased VLDL-C, and above 0.85% for heightened hepatic lipid accumulation. A cholesterol supplementation of 0.43% induced hypercholesterolemia without adverse liver effects or abnormal lipoprotein expression. Furthermore, cholesterol supplementation significantly increased liver weight, plasma total cholesterol, LDL-C, and VLDL-C levels while reducing the HDL-C/LDL-C ratio. Fecal cholesterol excretion increased, with stable bile acid levels. High cholesterol diets correlated with elevated plasma ALT activities, reduced hepatic lipid peroxidation, and altered leptin and CETP levels. These findings underscore Syrian hamsters as robust models for hyperlipidemia research, offering insights into experimental methodologies. The identified cholesterol thresholds facilitate precise lipid profile manipulation, enhancing the hamster's utility in lipid metabolism studies and potentially informing clinical approaches to managing lipid disorders.


Subject(s)
Cholesterol, Dietary , Lipid Metabolism , Liver , Mesocricetus , Animals , Cholesterol, Dietary/administration & dosage , Liver/metabolism , Male , Cricetinae , Feces/chemistry , Oxidative Stress , Hypercholesterolemia/metabolism , Hypercholesterolemia/blood , Cholesterol, LDL/blood , Lipid Peroxidation , Cholesterol/blood , Cholesterol/metabolism , Bile Acids and Salts/metabolism , Leptin/blood , Leptin/metabolism , Cholesterol Ester Transfer Proteins/metabolism
12.
Int J Mol Sci ; 25(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39125956

ABSTRACT

Cancer-specific monoclonal antibodies (CasMabs) that recognize cancer-specific antigens with in vivo antitumor efficacy are innovative therapeutic strategies for minimizing adverse effects. We previously established a cancer-specific anti-human epidermal growth factor receptor 2 (HER2) monoclonal antibody (mAb), H2Mab-250/H2CasMab-2. In flow cytometry and immunohistochemistry, H2Mab-250 reacted with HER2-positive breast cancer cells but did not show reactivity to normal epithelial cells. In contrast, a clinically approved anti-HER2 mAb, trastuzumab, strongly recognizes both breast cancer and normal epithelial cells in flow cytometry. The human IgG1 version of H2Mab-250 (H2Mab-250-hG1) possesses compatible in vivo antitumor effects against breast cancer xenografts to trastuzumab despite the lower affinity and effector activation than trastuzumab in vitro. This study compared the antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cellular cytotoxicity (CDC) between H2Mab-250-hG1 and trastuzumab. Both H2Mab-250-hG1 and trastuzumab showed ADCC activity against HER2-overexpressed Chinese hamster ovary -K1 and breast cancer cell lines (BT-474 and SK-BR-3) in the presence of human natural killer cells. Some tendency was observed where trastuzumab showed a more significant ADCC effect compared to H2Mab-250-hG1. Importantly, H2Mab-250-hG1 exhibited superior CDC activity in these cells compared to trastuzumab. Similar results were obtained in the mouse IgG2a types of both H2Mab-250 and trastuzumab. These results suggest the different contributions of ADCC and CDC activities to the antitumor effects of H2Mab-250-hG1 and trastuzumab, and indicate a future direction for the clinical development of H2Mab-250-hG1 against HER2-positive tumors.


Subject(s)
Antibody-Dependent Cell Cytotoxicity , Cricetulus , Receptor, ErbB-2 , Trastuzumab , Trastuzumab/pharmacology , Animals , Humans , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/immunology , Antibody-Dependent Cell Cytotoxicity/drug effects , CHO Cells , Cell Line, Tumor , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Antineoplastic Agents, Immunological/pharmacology , Antibodies, Monoclonal/pharmacology , Complement System Proteins/metabolism , Complement System Proteins/immunology , Mice , Cricetinae
13.
Nat Commun ; 15(1): 6503, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090095

ABSTRACT

The COVID-19 pandemic has led to the deaths of millions of people and severe global economic impacts. Small molecule therapeutics have played an important role in the fight against SARS-CoV-2, the virus responsible for COVID-19, but their efficacy has been limited in scope and availability, with many people unable to access their benefits, and better options are needed. EDP-235 is specifically designed to inhibit the SARS-CoV-2 3CLpro, with potent nanomolar activity against all SARS-CoV-2 variants to date, as well as clinically relevant human and zoonotic coronaviruses. EDP-235 maintains potency against variants bearing mutations associated with nirmatrelvir resistance. Additionally, EDP-235 demonstrates a ≥ 500-fold selectivity index against multiple host proteases. In a male Syrian hamster model of COVID-19, EDP-235 suppresses SARS-CoV-2 replication and viral-induced hamster lung pathology. In a female ferret model, EDP-235 inhibits production of SARS-CoV-2 infectious virus and RNA at multiple anatomical sites. Furthermore, SARS-CoV-2 contact transmission does not occur when naïve ferrets are co-housed with infected, EDP-235-treated ferrets. Collectively, these results demonstrate that EDP-235 is a broad-spectrum coronavirus inhibitor with efficacy in animal models of primary infection and transmission.


Subject(s)
Antiviral Agents , COVID-19 , Coronavirus 3C Proteases , SARS-CoV-2 , Virus Replication , Animals , Cricetinae , Female , Humans , Male , Antiviral Agents/pharmacology , Chlorocebus aethiops , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , COVID-19/virology , COVID-19/transmission , COVID-19 Drug Treatment , Disease Models, Animal , Ferrets , Lactams , Leucine , Lung/virology , Lung/drug effects , Lung/pathology , Mesocricetus , Nitriles , Organic Chemicals , Pandemics/prevention & control , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Pneumonia, Viral/transmission , Pneumonia, Viral/prevention & control , Proline , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Vero Cells , Virus Replication/drug effects
14.
Biophys Chem ; 312: 107287, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38981174

ABSTRACT

Although intracellular ultrastructures have typically been studied using microscopic techniques, it is difficult to observe ultrastructures at the submicron scale of living cells due to spatial resolution (fluorescence microscopy) or high vacuum environment (electron microscopy). We investigate the nanometer scale intracellular ultrastructures of living CHO cells in various osmolality using small-angle X-ray scattering (SAXS), and especially the structures of ribosomes, DNA double helix, and plasma membranes in-cell environment are observed. Ribosomes expand and contract in response to osmotic pressure, and the inter-ribosomal correlation occurs under isotonic and hyperosmolality. The DNA double helix is not dependent on the osmotic pressure. Under high osmotic pressure, the plasma membrane folds into form a multilamellar structure with a periodic length of about 6 nm. We also study the ultrastructural changes caused by formaldehyde fixation, freezing and heating.


Subject(s)
Cell Membrane , Cricetulus , Osmotic Pressure , Scattering, Small Angle , X-Ray Diffraction , Animals , CHO Cells , Cricetinae , Cell Membrane/chemistry , DNA/chemistry , Ribosomes/chemistry , Ribosomes/metabolism , Formaldehyde/chemistry , Freezing
15.
Sci Adv ; 10(31): eadp1290, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39083604

ABSTRACT

COVID-19 vaccines have successfully reduced severe disease and death after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Nonetheless, COVID-19 vaccines are variably effective in preventing transmission and symptomatic SARS-CoV-2 infection. Here, we evaluated the impact of mucosal or intramuscular vaccine immunization on airborne infection and transmission of SARS-CoV-2 in Syrian hamsters. Immunization of the primary contact hamsters with a mucosal chimpanzee adenoviral-vectored vaccine (ChAd-CoV-2-S), but not intramuscular messenger RNA (mRNA) vaccine, reduced infectious virus titers ~100-fold and 100,000-fold in the upper and lower respiratory tract of the primary contact hamster following SARS-CoV-2 exposure. This reduction in virus titer in the mucosal immunized contact animals was sufficient to eliminate subsequent transmission to vaccinated and unvaccinated hamsters. In contrast, sequential transmission occurred after systemic immunization with the mRNA vaccine. Thus, immunization with a mucosal COVID-19 vaccine protects against cycles of respiratory transmission of SARS-CoV-2 and can potentially limit the community spread of the virus.


Subject(s)
COVID-19 Vaccines , COVID-19 , Mesocricetus , SARS-CoV-2 , Animals , COVID-19/prevention & control , COVID-19/transmission , COVID-19/virology , COVID-19/immunology , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Cricetinae , Immunization , Vaccination , Humans , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood
16.
Proc Natl Acad Sci U S A ; 121(32): e2310917121, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39078681

ABSTRACT

Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) has developed substantial antigenic variability. As the majority of the population now has pre-existing immunity due to infection or vaccination, the use of experimentally generated animal immune sera can be valuable for measuring antigenic differences between virus variants. Here, we immunized Syrian hamsters by two successive infections with one of nine SARS-CoV-2 variants. Their sera were titrated against 16 SARS-CoV-2 variants, and the resulting titers were visualized using antigenic cartography. The antigenic map shows a condensed cluster containing all pre-Omicron variants (D614G, Alpha, Delta, Beta, Mu, and an engineered B.1+E484K variant) and considerably more diversity among a selected panel of Omicron subvariants (BA.1, BA.2, BA.4/BA.5, the BA.5 descendants BF.7 and BQ.1.18, the BA.2.75 descendant BN.1.3.1, the BA.2-derived recombinants XBB.2 and EG.5.1, and the BA.2.86 descendant JN.1). Some Omicron subvariants were as antigenically distinct from each other as the wildtype is from the Omicron BA.1 variant. Compared to titers measured in human sera, titers in hamster sera are of higher magnitude, show less fold change, and result in a more compact antigenic map topology. The results highlight the potential of sera from hamsters for the continued antigenic characterization of SARS-CoV-2.


Subject(s)
Antigenic Variation , COVID-19 , Mesocricetus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/immunology , COVID-19/virology , Cricetinae , Antigenic Variation/immunology , Antigenic Variation/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Antigens, Viral/immunology , Antigens, Viral/genetics , Antibodies, Viral/blood , Antibodies, Viral/immunology , Humans , Immune Sera/immunology
17.
J Comp Physiol B ; 194(4): 501-518, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38967807

ABSTRACT

Djungarian hamsters (Phodopus sungorus) living at constant 15 °C Ta in short photoperiod (8:16 h L:D) showed pronounced ultradian rhythms (URs) of metabolic rate (MR), body temperature (Tb) and locomotor activity. The ultradian patterns differed between individuals and varied over time. The period length of URs for MR, Tb and activity was similar although not identical. Wavelet analysis showed that three different URs are existing in parallel, URs of small amplitude and short duration (URsmall), URs of medium amplitude and medium duration (URmedium) and URs of large amplitude (URlarge), superimposed on each other. URlarge were accompanied by an increase in locomotor activity, whereas URsmall and URmedium were of metabolic origin with lacking or delayed responses of activity. An energetic challenge to cold which raised total energy requirements by about 50% did not accelerate the period length of URs, but extended the amplitude of URsmall and URmedium. URlarge corresponds with the URs of activity, feeding and drinking, sleep and arousal as described in previous studies, which are related to midbrain dopaminergic signalling and hypothalamic ultradian signalling. The cause and control of URmedium and URsmall is unknown. Their periods are similar to periods of central and peripheral endocrine ultradian signalling, suggesting a link with URs of metabolism.


Subject(s)
Body Temperature , Motor Activity , Phodopus , Ultradian Rhythm , Animals , Phodopus/physiology , Ultradian Rhythm/physiology , Cricetinae , Male , Motor Activity/physiology , Photoperiod , Basal Metabolism , Cold Temperature , Energy Metabolism
18.
J Comp Physiol B ; 194(4): 519-535, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38972930

ABSTRACT

Ultradian rhythms of metabolism, body temperature and activity are attenuated or disappear completely during torpor in Djungarian hamsters, for all three ultradian periodicities (URsmall, URmedium and URlarge). URsmall and URmedium disappear during entrance into torpor, whereas URlarge disappear later or continue with a low amplitude. This suggests a tight functional link between torpor and the expression of ultradian rhythms, i.e. torpor is achieved by suppression of metabolic rate as well as silencing of ultradian rhythms. Spontaneous torpor is often initiated after an ultradian burst of activity and metabolic rate, beginning with a period of motionless rest and accompanied by a decrease of metabolic rate and body temperature. To extend previous findings on the potential role of the adrenergic system on torpor induction we analysed the influence of the ß3-adrenergic agonist Mirabegron on torpor in Djungarian hamsters, as compared to the influence of the ß-adrenergic antagonist Propranolol. Hamsters were implanted with 10 day release pellets of Mirabegron (0.06 mg day-1) or Propranolol (0.3 mg day-1). Mirabegron transiently supressed and accelerated ultradian rhythms but had no effect on torpor behaviour. Propranolol did not affect torpor behaviour nor the expression of ultradian rhythms with the dosage applied during this study.


Subject(s)
Phodopus , Torpor , Ultradian Rhythm , Animals , Torpor/physiology , Phodopus/physiology , Cricetinae , Male , Ultradian Rhythm/physiology , Propranolol/pharmacology , Adrenergic beta-Antagonists/pharmacology , Body Temperature , Motor Activity , Basal Metabolism
19.
J Biotechnol ; 392: 180-189, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39038661

ABSTRACT

Sialylation during N-glycosylation plays an important role in the half-life of therapeutic glycoproteins in vivo and has sparked interest in the production of therapeutic proteins using recombinant Chinese hamster ovary (rCHO) cells. To improve the sialylation of therapeutic proteins, we examined the effect of sialyllactose supplementation on sialylation of Fc-fusion glycoproteins produced in rCHO cells. Two enzymatically-synthesized sialyllactoses, 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL), were administered separately to two rCHO cell lines producing the same Fc-fusion glycoprotein derived from DUKX-B11 and DG44, respectively. Two sialyllactoses successfully increased sialylation of Fc-fusion glycoprotein in both cell lines, as evidenced by isoform distribution, sialylated N-glycan formation, and sialic acid content. Increased sialylation by adding sialyllactose was likely the result of increased amount of intracellular CMP-sialic acid (CMP-SA), the direct nucleotide sugar for sialylation. Furthermore, the degree of sialylation enhanced by sialyllactoses was slightly effective or nearly similar compared with the addition of N-acetylmannosamine (ManNAc), a representative nucleotide sugar precursor, to increase sialylation of glycoproteins. The effectiveness of sialyllactose was also confirmed using three commercially available CHO cell culture media. Taken together, these results suggest that enzymatically-synthesized sialyllactose represents a promising candidate for culture media supplementation to increase sialylation of glycoproteins in rCHO cell culture.


Subject(s)
Cricetulus , Immunoglobulin Fc Fragments , Lactose , Animals , CHO Cells , Lactose/analogs & derivatives , Lactose/metabolism , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/metabolism , Cricetinae , Glycosylation , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Glycoproteins/metabolism , Glycoproteins/genetics , Culture Media/chemistry , Sialic Acids/metabolism , N-Acetylneuraminic Acid/metabolism , Oligosaccharides
20.
Int J Biol Macromol ; 275(Pt 2): 133581, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960262

ABSTRACT

Secretory immunoglobulin A [sIgA] is a promising candidate for enteric therapeutics applications, and several sIgA-based constructs are currently being developed by groups utilizing clarified Chinese hamster ovary [CHO] cell culture supernatants. To the monoclonal antibody downstream processing typically entails chromatography-based purification processes beginning with Protein A chromatography. In this paper, aqueous two-phase systems [ATPS] were employed for the preliminary purification of secretory immunoglobulin A [sIgA] monoclonal antibody [mAb] from clarified CHO-cell culture supernatants. A 24 full factorial design was utilized. The influence of various process parameters such as pH, PEG molecular weight [MPEG], PEG concentration [CPEG], and phosphate salt concentration [CPHO], on the sIgA partition coefficient [K sIgA] and the recovery index [Y] in the PEG phase were evaluated. The Elisa assay revealed that, in the ATPS conditions tested, sIgA mAb was mostly detected in PEG upper phase. Run 14 with the highest sIgA activity exhibited the following conditions: MPEG 8.000 g/mol, CPEG 12,5 %, pH 7,0 and CPHO 10 %, and a sIgA K of 94.50 and a recovery index [Y] of 33.52 %. The proposed platform provides straightforward implementation, yields comparable results, and offers significantly improved economics for manufacturing sIgA mAb biotherapeutics.


Subject(s)
Antibodies, Monoclonal , Cricetulus , Immunoglobulin A, Secretory , Polyethylene Glycols , Animals , CHO Cells , Immunoglobulin A, Secretory/chemistry , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/isolation & purification , Polyethylene Glycols/chemistry , Culture Media/chemistry , Hydrogen-Ion Concentration , Cricetinae , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL