Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.314
Filter
1.
Arch Microbiol ; 206(8): 341, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967784

ABSTRACT

Soil salinization poses a great threat to global agricultural ecosystems, and finding ways to improve the soils affected by salt and maintain soil health and sustainable productivity has become a major challenge. Various physical, chemical and biological approaches are being evaluated to address this escalating environmental issue. Among them, fully utilizing salt-tolerant plant growth-promoting bacteria (PGPB) has been labeled as a potential strategy to alleviate salt stress, since they can not only adapt well to saline soil environments but also enhance soil fertility and plant development under saline conditions. In the last few years, an increasing number of salt-tolerant PGPB have been excavated from specific ecological niches, and various mechanisms mediated by such bacterial strains, including but not limited to siderophore production, nitrogen fixation, enhanced nutrient availability, and phytohormone modulation, have been intensively studied to develop microbial inoculants in agriculture. This review outlines the positive impacts and growth-promoting mechanisms of a variety of salt-tolerant PGPB and opens up new avenues to commercialize cultivable microbes and reduce the detrimental impacts of salt stress on plant growth. Furthermore, considering the practical limitations of salt-tolerant PGPB in the implementation and potential integration of advanced biological techniques in salt-tolerant PGPB to enhance their effectiveness in promoting sustainable agriculture under salt stress are also accentuated.


Subject(s)
Bacteria , Crops, Agricultural , Salt Stress , Soil Microbiology , Crops, Agricultural/microbiology , Crops, Agricultural/growth & development , Bacteria/metabolism , Bacteria/genetics , Bacteria/growth & development , Plant Development , Salt Tolerance , Plant Growth Regulators/metabolism , Soil/chemistry , Salt-Tolerant Plants/microbiology , Salt-Tolerant Plants/growth & development , Salinity
2.
Sci Rep ; 14(1): 14645, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918548

ABSTRACT

Soil salinity is a major environmental stressor impacting global food production. Staple crops like wheat experience significant yield losses in saline environments. Bioprospecting for beneficial microbes associated with stress-resistant plants offers a promising strategy for sustainable agriculture. We isolated two novel endophytic bacteria, Bacillus cereus (ADJ1) and Priestia aryabhattai (ADJ6), from Agave desmettiana Jacobi. Both strains displayed potent plant growth-promoting (PGP) traits, such as producing high amounts of indole-3-acetic acid (9.46, 10.00 µgml-1), ammonia (64.67, 108.97 µmol ml-1), zinc solubilization (Index of 3.33, 4.22, respectively), ACC deaminase production and biofilm formation. ADJ6 additionally showed inorganic phosphate solubilization (PSI of 2.77), atmospheric nitrogen fixation, and hydrogen cyanide production. Wheat seeds primed with these endophytes exhibited enhanced germination, improved growth profiles, and significantly increased yields in field trials. Notably, both ADJ1 and ADJ6 tolerated high salinity (up to 1.03 M) and significantly improved wheat germination and seedling growth under saline stress, acting both independently and synergistically. This study reveals promising stress-tolerance traits within endophytic bacteria from A. desmettiana. Exploiting such under-explored plant microbiomes offers a sustainable approach to developing salt-tolerant crops, mitigating the impact of climate change-induced salinization on global food security.


Subject(s)
Crops, Agricultural , Salt Tolerance , Triticum , Triticum/microbiology , Triticum/growth & development , Crops, Agricultural/microbiology , Crops, Agricultural/growth & development , Bacillus/isolation & purification , Bacillus/physiology , Bacillus/metabolism , Endophytes/physiology , Salinity , Indoleacetic Acids/metabolism , Soil Microbiology , Nitrogen Fixation , Germination , Bacillus cereus/physiology , Bacillus cereus/growth & development , Bacillus cereus/isolation & purification , Seedlings/microbiology , Seedlings/growth & development , Carbon-Carbon Lyases/metabolism
3.
Microbiol Spectr ; 12(7): e0052024, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38832787

ABSTRACT

Rice anaerobic fermentation is a significant source of greenhouse gas (GHG) emissions, and in order to efficiently utilize crop residue resources to reduce GHG emissions, rice straw anaerobic fermentation was regulated using lactic acid bacteria (LAB) inoculants (FG1 and TH14), grass medium (GM) to culture LAB, and Acremonim cellulolyticus (AC). Microbial community, GHG emission, dry matter (DM) loss, and anaerobic fermentation were analyzed using PacBio single-molecule real-time and anaerobic fermentation system. The epiphytic microbial diversity of fresh rice straw was extremely rich and contained certain nutrients and minerals. During ensiling, large amounts of GHG such as carbon dioxide are produced due to plant respiration, enzymatic hydrolysis reactions, and proliferation of aerobic bacteria, resulting in energy and DM loss. Addition of FG1, TH14, and AC alone improved anaerobic fermentation by decreasing pH and ammonia nitrogen content (P < 0.05) and increased lactic acid content (P < 0.05) when compared to the control, and GM showed the same additive effect as LAB inoculants. Microbial additives formed a co-occurrence microbial network system dominated by LAB, enhanced the biosynthesis of secondary metabolites, diversified the microbial metabolic environment and carbohydrate metabolic pathways, weakened the amino acid metabolic pathways, and made the anaerobic fermentation cleaner. This study is of great significance for the effective utilization of crop straw resources, the promotion of sustainable livestock production, and the reduction of GHG emissions.IMPORTANCETo effectively utilize crop by-product resources, we applied microbial additives to silage fermentation of fresh rice straw. Fresh rice straw is extremely rich in microbial diversity, which was significantly reduced after silage fermentation, and its nutrients were well preserved. Silage fermentation was improved by microbial additives, where the combination of cellulase and lactic acid bacteria acted as enzyme-bacteria synergists to promote lactic acid fermentation and inhibit the proliferation of harmful bacteria, such as protein degradation and gas production, thereby reducing GHG emissions and DM losses. The microbial additives accelerated the formation of a symbiotic microbial network system dominated by lactic acid bacteria, which regulated silage fermentation and improved microbial metabolic pathways for carbohydrates and amino acids, as well as biosynthesis of secondary metabolites.


Subject(s)
Fermentation , Greenhouse Gases , Oryza , Oryza/microbiology , Oryza/metabolism , Greenhouse Gases/metabolism , Anaerobiosis , Crops, Agricultural/microbiology , Crops, Agricultural/metabolism , Lactobacillales/metabolism , Microbiota/physiology , Carbon Dioxide/metabolism , Carbon Dioxide/analysis , Silage/microbiology
4.
World J Microbiol Biotechnol ; 40(8): 251, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910228

ABSTRACT

Genetic diversity in Sclerotium rolfsii is useful for understanding its population structure, identifying different mycelial compatibility groups (MCGs), and developing targeted strategies for disease management in affected crops. In our study, a comprehensive genetic analysis was conducted on 50 isolates of S. rolfsii, collected from various geographic regions and host plants. Two specific genes, TEF1α and RPB2, were utilized to assess the genetic diversity and relationships among these isolates. Notably, out of 1225 pairings examined, only 154 exhibited a compatible reaction, while the majority displayed antagonistic reactions, resulting in the formation of a barrier zone. The isolates were grouped into 10 distinct MCGs. These MCGs were further characterized using genetic sequencing. TEF1α sequences distinguished the isolates into 17 distinct clusters, and RPB2 sequences classified them into 20 clusters. Some MCGs shared identical gene sequences within each gene, while others exhibited unique sequences. Intriguingly, when both TEF1α and RPB2 sequences were combined, all 10 MCGs were effectively differentiated, even those that appeared identical with single-gene analysis. This combined approach provided a comprehensive understanding of the genetic diversity and relationships among the S. rolfsii isolates, allowing for precise discrimination between different MCGs. The results shed light on the population structure and genetic variability within this plant pathogenic fungus, providing valuable insights for disease management and control strategies. This study highlights the significance of comprehending the varied virulence characteristics within S. rolfsii isolates, categorizing them into specific virulence groups based on disease severity index (DSI) values. The association with MCGs provides additional insights into the genetic underpinnings of virulence in this pathogen. Furthermore, the identification of geographical patterns in virulence implies the influence of region-specific factors, with potential implications for disease control and crop protection strategies.Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 1 Given name: [G. M. Sandeep] Last name [Kumar]. Author 2 Given name: [Praveen Kumar] Last name [Singh]. Also, kindly confirm the details in the metadata are correct.I confirm that the given names are accurate and presented in the correct sequence.


Subject(s)
Basidiomycota , Genetic Variation , Multilocus Sequence Typing , Phylogeny , Plant Diseases , Plant Diseases/microbiology , Basidiomycota/genetics , Basidiomycota/isolation & purification , Basidiomycota/classification , Mycelium/genetics , Fungal Proteins/genetics , DNA, Fungal/genetics , Crops, Agricultural/microbiology
5.
Curr Microbiol ; 81(8): 222, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874817

ABSTRACT

In the present scenario, growing population demands more food, resulting in the need for sustainable agriculture. Numerous approaches are explored in response to dangers and obstacles to sustainable agriculture. A viable approach is to be exploiting microbial consortium, which generate diverse biostimulants with growth-promoting characteristics for plants. These bioinoculants play an indispensable role in optimizing nutrient uptake efficiency mitigating environmental stress. Plant productivity is mostly determined by the microbial associations that exist at the rhizospheric region of plants. The engineered consortium with multifunctional attributes can be effectively employed to improve crop growth efficacy. A number of approaches have been employed to identify the efficient consortia for plant growth and enhanced crop productivity. Various plant growth-promoting (PGP) microbes with host growth-supporting characteristics were investigated to see if they might work cohesively and provide a cumulative effect for improved growth and crop yield. The effective microbial consortia should be assessed using compatibility tests, pot experimentation techniques, generation time, a novel and quick plant bioassay, and sensitivity to external stimuli (temperature, pH). The mixture of two or more microbial strains found in the root microbiome stimulates plant growth and development. The present review deals with mechanism, formulation, inoculation process, commercialization, and applications of microbial consortia as plant bioinoculants for agricultural sustainability.


Subject(s)
Agriculture , Crops, Agricultural , Microbial Consortia , Plant Development , Agriculture/methods , Crops, Agricultural/microbiology , Soil Microbiology , Plant Roots/microbiology , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Rhizosphere , Plants/microbiology , Microbiota
6.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891917

ABSTRACT

The European "Green Deal" policies are shifting toward more sustainable and environmentally conscious agricultural practices, reducing the use of chemical fertilizer and pesticides. This implies exploring alternative strategies. One promising alternative to improve plant nutrition and reinforce plant defenses is the use of beneficial microorganisms in the rhizosphere, such as "Plant-growth-promoting rhizobacteria and fungi". Despite the great abundance of iron (Fe) in the Earth's crust, its poor solubility in calcareous soil makes Fe deficiency a major agricultural issue worldwide. Among plant promoting microorganisms, the yeast Debaryomyces hansenii has been very recently incorporated, for its ability to induce morphological and physiological key responses to Fe deficiency in plants, under hydroponic culture conditions. The present work takes it a step further and explores the potential of D. hansenii to improve plant nutrition and stimulate growth in cucumber plants grown in calcareous soil, where ferric chlorosis is common. Additionally, the study examines D. hansenii's ability to induce systemic resistance (ISR) through a comparative relative expression study by qRT-PCR of ethylene (ET) biosynthesis (ACO1), or ET signaling (EIN2 and EIN3), and salicylic acid (SA) biosynthesis (PAL)-related genes. The results mark a significant milestone since D. hansenii not only enhances nutrient uptake and stimulates plant growth and flower development but could also amplify induced systemic resistance (ISR). Although there is still much work ahead, these findings make D. hansenii a promising candidate to be used for sustainable and environmentally friendly integrated crop management.


Subject(s)
Crop Production , Fertilizers , Crop Production/methods , Iron/metabolism , Cucumis sativus/microbiology , Cucumis sativus/growth & development , Cucumis sativus/metabolism , Crops, Agricultural/microbiology , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Iron Deficiencies , Gene Expression Regulation, Plant , Debaryomyces/metabolism , Rhizosphere , Ethylenes/metabolism , Soil Microbiology , Salicylic Acid/metabolism
7.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892244

ABSTRACT

Endophytic fungi are present in every plant, and crops are no exception. There are more than 50,000 edible plant species on the planet, but only 15 crops provide 90 percent of the global energy intake, and "the big four"-wheat, rice, maize and potato-are staples for about 5 billion people. Not only do the four staple crops contribute to global food security, but the endophytic fungi within their plant tissues are complex ecosystems that have been under scrutiny. This review presents an outline of the endophytic fungi and their secondary metabolites in four staple crops: wheat, rice, maize and potato. A total of 292 endophytic fungi were identified from the four major crops, with wheat having the highest number of 157 endophytic fungi. Potato endophytic fungi had the highest number of secondary metabolites, totaling 204 compounds, compared with only 23 secondary metabolites from the other three crops containing endophytic fungi. Some of the compounds are those with specific structural and pharmacological activities, which may be beneficial to agrochemistry and medicinal chemistry.


Subject(s)
Crops, Agricultural , Endophytes , Fungi , Secondary Metabolism , Endophytes/metabolism , Crops, Agricultural/microbiology , Fungi/metabolism , Triticum/microbiology , Zea mays/microbiology , Oryza/microbiology , Solanum tuberosum/microbiology
8.
Food Microbiol ; 122: 104564, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839226

ABSTRACT

Botrytis cinerea is a destructive necrotrophic phytopathogen causing overwhelming diseases in more than 1400 plant species, especially fruit crops, resulting in significant economic losses worldwide. The pathogen causes rotting of fruits at both pre-harvest and postharvest stages. Aside from causing gray mold of the mature fruits, the fungus infects leaves, flowers, and seeds, which makes it a notorious phytopathogen. Worldwide, in the majority of fruit crops, B. cinerea causes gray mold. In order to effectively control this pathogen, extensive research has been conducted due to its wide host range and the huge economic losses it causes. It is advantageous to explore detection and diagnosis techniques of B. cinerea to provide the fundamental basis for mitigation strategies. Botrytis cinerea has been identified and quantified in fruit/plant samples at pre- and post-infection levels using various detection techniques including DNA markers, volatile organic compounds, qPCR, chip-digital PCR, and PCR-based nucleic acid sensors. In addition, cultural, physical, chemical, biological, and botanical methods have all been used to combat Botrytis fruit rot. This review discusses research progress made on estimating economic losses, detection and diagnosis, as well as management strategies, including cultural, physical, chemical, and biological studies on B. cinerea along with knowledge gaps and potential areas for future research.


Subject(s)
Botrytis , Fruit , Plant Diseases , Botrytis/genetics , Plant Diseases/microbiology , Fruit/microbiology , Crops, Agricultural/microbiology
9.
Environ Monit Assess ; 196(7): 610, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862723

ABSTRACT

Crop diseases pose significant threats to agriculture, impacting crop production. Biotic factors contribute to various diseases, including fungal, bacterial, and viral infections. Recent advancements in deep learning present a novel approach to the detection and recognition of these crop diseases. While considerable research has focused on identifying and recognizing crop diseases, fungal disease-affected crops have received relatively less attention and also detecting disease on different region datasets. This paper is about spotting fungal diseases in crops across different regions with diverse climates. It emphasizes the need for tailored detection methods, addressing the risk of mycotoxin production by fungi, which can harm both humans and animals. Detecting fungal diseases in apple, guava, and custard apple crops such as spot, scab, rust, rot, leaf spot, and insect ate. In the proposed work, the modified ResNeXt variant of the convolution neural network (CNN) technique was employed to predict 3 major crop classes of fungal disease. Initially, using Inception-v7 and ResNet for fungal disease in crops did not yield satisfactory results. A modified ResNeXt CNN model was proposed, showing improved fungal disease prediction. The novel model underwent a comparison with established methodologies. The suggested model draws upon a benchmark dataset consisting of 14,408 images capturing fungal diseases, categorized into three distinct classes: apple, custard apple, and guava. Experimental outcomes show that the proposed mutated ResNeXt model outperformed the state-of-the-art approaches. The model achieved 98.92% accuracy and high performance across recall, precision, and F1-score (above 99%) for the benchmark dataset, which gained encouragement and was comparable with the state-of-the-art approach.


Subject(s)
Crops, Agricultural , Fungi , Plant Diseases , Plant Diseases/microbiology , Crops, Agricultural/microbiology , Neural Networks, Computer , Malus/microbiology , Psidium , Agriculture/methods
10.
PLoS One ; 19(6): e0304663, 2024.
Article in English | MEDLINE | ID: mdl-38843239

ABSTRACT

The productivity of agricultural ecosystems is heavily influenced by soil-dwelling organisms. To optimize agricultural practices and management, it is critical to know the composition, abundance, and interactions of soil microorganisms. Our study focused on Acrobeles complexus nematodes collected from tomato fields in South Africa and analyzed their associated bacterial communities utilizing metabarcoding analysis. Our findings revealed that A. complexus forms associations with a wide range of bacterial species. Among the most abundant species identified, we found Dechloromonas sp., a bacterial species commonly found in aquatic sediments, Acidovorax temperans, a bacterial species commonly found in activated sludge, and Lactobacillus ruminis, a commensal motile lactic acid bacterium that inhabits the intestinal tracts of humans and animals. Through principal component analysis (PCA), we found that the abundance of A. complexus in the soil is negatively correlated with clay content (r = -0.990) and soil phosphate levels (r = -0.969) and positively correlated with soil sand content (r = 0.763). This study sheds light on the bacterial species associated to free-living nematodes in tomato crops in South Africa and highlights the occurrence of various potentially damaging and beneficial nematode-associated bacteria, which can in turn, impact soil health and tomato production.


Subject(s)
Crops, Agricultural , Nematoda , Soil Microbiology , Solanum lycopersicum , Animals , Solanum lycopersicum/microbiology , Solanum lycopersicum/parasitology , South Africa , Crops, Agricultural/parasitology , Crops, Agricultural/microbiology , Nematoda/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Soil/parasitology , RNA, Ribosomal, 16S/genetics , Principal Component Analysis
11.
Sci Rep ; 14(1): 14160, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38898096

ABSTRACT

Continuous cultivation of tobacco could cause serious soil health problems, which could cause bacterial soil to change to fungal soil. In order to study the diversity and richness of fungal community in tobacco-growing soil under different crop rotation, three treatments were set up in this study: CK (tobacco continuous cropping); B (barley-tobacco rotation cropping) and R (oilseed rape-tobacco rotation cropping). The results of this study showed that rotation with other crops significantly decreased the soil fungal OTUs, and also decreased the community richness, evenness, diversity and coverage of fungal communities. Among them, B decreased the most. In the analysis of the composition and structure of the fungal community, it was found that the proportion of plant pathogens Nectriaceae decreased from 19.67% in CK to 5.63% in B, which greatly reduced the possibility of soil-borne diseases. In the analysis of the correlation between soil environmental factors and fungal communities, it was found that Filobasidiaceae had a strong correlation with TP and AP, and Erysiphaceae had a strong correlation with TK and AK. NO3--N and NH4+-N were the two environmental factors with the strongest correlation with fungal communities. The results of this study showed that rotation with other crops slowed down the process of soil fungi in tobacco-growing soil and changed the dominant species of soil fungi community. At the same time, crop rotation changed the diversity and richness of soil fungal community by changing the physical and chemical properties of soil.


Subject(s)
Crops, Agricultural , Fungi , Nicotiana , Soil Microbiology , Soil , Nicotiana/microbiology , Nicotiana/growth & development , Fungi/growth & development , Crops, Agricultural/growth & development , Crops, Agricultural/microbiology , Soil/chemistry , Agriculture/methods , Biodiversity
12.
J Hazard Mater ; 474: 134802, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38838525

ABSTRACT

Organic fertilization is a major driver potentiating soil antibiotic resistance in farmland. However, it remains unclear how bacterial antibiotic resistance evolves in fertilized soils and even spreads to crops. Compared with no fertilizer and commercial fertilizer treatments, organic fertilizers markedly increased the abundance of soil antibiotic resistance genes (ARGs) but the relatively weaker transfer of resistance genes from soil to crops. The introduction of organic fertilizers enriches the soil with nutrients, driving indigenous microorganisms towards a K-strategy. The pH, EC, and nutrients as key drivers influenced the ARGs abundance. The neutral (pH 7.2), low salt (TDS 1.4 %) and mesotrophic (carbon content 3.54 g/L) habitats similar to the soil environment conditioned by organic fertilizers. These environmental conditions clearly prolonged the persistence of resistant plasmids, and facilitated their dissemination to massive conjugators soil microbiome but not to plant endophytes. This suggested that organic fertilizers inhibited the spread of ARGs to crops. Moreover, the composition of conjugators showed differential selection of resistant plasmids by endophytes under these conditions. This study sheds light on the evolution and dissemination of antibiotic resistance in farmlands and can aid in the development of antimicrobial resistance control strategies in agriculture.


Subject(s)
Crops, Agricultural , Fertilizers , Plasmids , Soil Microbiology , Plasmids/genetics , Crops, Agricultural/microbiology , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Crops, Agricultural/drug effects , Soil/chemistry , Agriculture , Drug Resistance, Microbial/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Bacteria/drug effects , Bacteria/genetics , Microbiota/drug effects , Farms , Genes, Bacterial
13.
Nat Commun ; 15(1): 5224, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890293

ABSTRACT

Continued climate change impose multiple stressors on crops, including pathogens, salt, and drought, severely impacting agricultural productivity. Innovative solutions are necessary to develop resilient crops. Here, using quantitative potato proteomics, we identify Parakletos, a thylakoid protein that contributes to disease susceptibility. We show that knockout or silencing of Parakletos enhances resistance to oomycete, fungi, bacteria, salt, and drought, whereas its overexpression reduces resistance. In response to biotic stimuli, Parakletos-overexpressing plants exhibit reduced amplitude of reactive oxygen species and Ca2+ signalling, and silencing Parakletos does the opposite. Parakletos homologues have been identified in all major crops. Consecutive years of field trials demonstrate that Parakletos deletion enhances resistance to Phytophthora infestans and increases yield. These findings demark a susceptibility gene, which can be exploited to enhance crop resilience towards abiotic and biotic stresses in a low-input agriculture.


Subject(s)
Plant Diseases , Plant Proteins , Solanum tuberosum , Stress, Physiological , Solanum tuberosum/genetics , Solanum tuberosum/microbiology , Solanum tuberosum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Reactive Oxygen Species/metabolism , Disease Resistance/genetics , Gene Expression Regulation, Plant , Droughts , Phytophthora infestans , Plants, Genetically Modified , Crops, Agricultural/genetics , Crops, Agricultural/microbiology , Gene Deletion , Proteomics
14.
Sci Rep ; 14(1): 14355, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38906908

ABSTRACT

Intensification of staple crops through conventional agricultural practices with chemical synthetic inputs has yielded positive outcomes in food security but with negative environmental impacts. Ecological intensification using cropping systems such as maize edible-legume intercropping (MLI) systems has the potential to enhance soil health, agrobiodiversity and significantly influence crop productivity. However, mechanisms underlying enhancement of biological soil health have not been well studied. This study investigated the shifts in rhizospheric soil and maize-root microbiomes and associated soil physico-chemical parameters in MLI systems of smallholder farms in comparison to maize-monoculture cropping systems (MMC). Maize-root and rhizospheric soil samples were collected from twenty-five farms each conditioned by MLI and MMC systems in eastern Kenya. Soil characteristics were assessed using Black oxidation and Walkley methods. High-throughput amplicon sequencing was employed to analyze fungal and bacterial communities, predicting their functional roles and diversity. The different MLI systems significantly impacted soil and maize-root microbial communities, resulting in distinct microbe sets. Specific fungal and bacterial genera and species were mainly influenced and enriched in the MLI systems (e.g., Bionectria solani, Sarocladium zeae, Fusarium algeriense, and Acremonium persicinum for fungi, and Bradyrhizobium elkanii, Enterobacter roggenkampii, Pantoea dispersa and Mitsuaria chitosanitabida for bacteria), which contribute to nutrient solubilization, decomposition, carbon utilization, plant protection, bio-insecticides/fertilizer production, and nitrogen fixation. Conversely, the MMC systems enriched phytopathogenic microbial species like Sphingomonas leidyi and Alternaria argroxiphii. Each MLI system exhibited a unique composition of fungal and bacterial communities that shape belowground biodiversity, notably affecting soil attributes, plant well-being, disease control, and agroecological services. Indeed, soil physico-chemical properties, including pH, nitrogen, organic carbon, phosphorus, and potassium were enriched in MLI compared to MMC cropping systems. Thus, diversification of agroecosystems with MLI systems enhances soil properties and shifts rhizosphere and maize-root microbiome in favor of ecologically important microbial communities.


Subject(s)
Soil Microbiology , Soil , Zea mays , Zea mays/growth & development , Zea mays/microbiology , Soil/chemistry , Agriculture/methods , Rhizosphere , Microbiota , Crops, Agricultural/growth & development , Crops, Agricultural/microbiology , Ecosystem , Plant Roots/microbiology , Plant Roots/growth & development , Biodiversity , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , Fungi/genetics , Fungi/classification , Kenya , Crop Production/methods
15.
Microb Biotechnol ; 17(6): e14504, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38850271

ABSTRACT

This article emphasizes the significant role of environmental factors in shaping the plant microbiome, highlighting how bacterial and fungal communities influence plant responses to water stress, and how environmental factors shape fungal communities in crops. Furthermore, recent studies describe how different genotypes and levels of water stress affect the composition of bacterial communities associated with quinoa plants, as well as the relationship between environmental factors and the structure of fungal communities in apple fruit. These findings underscore the importance of understanding plant microbiome dynamics in developing effective crop protection strategies and improving agricultural sustainability with the objective of advance towards a microbiome-based strategy which allows us to improve crop tolerance to abiotic stresses.


Subject(s)
Bacteria , Fungi , Microbiota , Fungi/genetics , Fungi/physiology , Fungi/classification , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Chenopodium quinoa/microbiology , Malus/microbiology , Plants/microbiology , Stress, Physiological , Environment , Crops, Agricultural/microbiology
16.
J Appl Microbiol ; 135(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38877666

ABSTRACT

AIMS: Study of rhizospheric microbiome-mediated plant growth promotional attributes currently highlighted as a key tool for the development of suitable bio-inoculants for sustainable agriculture purposes. In this context, we have conducted a detailed study regarding the characterization of phosphate solubilizing potential by plant growth-promoting bacteria that have been isolated from the rhizosphere of a pteridophyte Dicranopteris sp., growing on the lateritic belt of West Bengal. METHODS AND RESULTS: We have isolated three potent bacterial strains, namely DRP1, DRP2, and DRP3 from the rhizoids-region of Dicranopteris sp. Among the isolated strains, DRP3 is found to have the highest phosphate solubilizing potentiality and is able to produce 655.89 and 627.58 µg ml-1 soluble phosphate by solubilizing tricalcium phosphate (TCP) and Jordan rock phosphate, respectively. This strain is also able to solubilize Purulia rock phosphate moderately (133.51 µg ml-1). Whole-genome sequencing and further analysis of the studied strain revealed the presence of pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase gdh gene along with several others that were well known for their role in phosphate solubilization. Further downstream, quantitative reverse transcriptase PCR-based expression study revealed 1.59-fold upregulation of PQQ-dependent gdh gene during the solubilization of TCP. Root colonization potential of the studied strain on two taxonomically distinct winter crops viz. Cicer arietinum and Triticum aestivum has been checked by using scanning electron microscopy. Other biochemical analyses for plant growth promotion traits including indole acetic acid production (132.02 µg ml-1), potassium solubilization (3 mg l-1), biofilm formation, and exopolymeric substances productions (1.88-2.03 µg ml-1) also has been performed. CONCLUSION: This study highlighted the active involvement of PQQ-dependent gdh gene during phosphate solubilization from any Enterobacter group. Moreover, our study explored different roadmaps for sustainable farming methods and the preservation of food security without endangering soil health in the future.


Subject(s)
Crops, Agricultural , Enterobacter , Phosphates , Rhizosphere , Soil Microbiology , Phosphates/metabolism , Enterobacter/genetics , Enterobacter/metabolism , Crops, Agricultural/microbiology , Crops, Agricultural/growth & development , Solubility , Plant Development , Plant Roots/microbiology , Phylogeny , Calcium Phosphates/metabolism , Indoleacetic Acids/metabolism
17.
Curr Microbiol ; 81(7): 190, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795143

ABSTRACT

Yerba mate (Ilex paraguariensis St. Hil.), with its health benefits and socioeconomic significance, plays a crucial role in Argentina and other South American countries like Brazil and Paraguay. Its cultivation in the Province of Misiones (Argentina) supports various sectors, contributes to regional development, and provides employment opportunities. However, the transition from extractive practices to monoculture, accompanied with increased demand, has led to phytosanitary challenges. Imbalanced native microbiota, disease development, and pathogen dispersion have become prevalent issues. Understanding the known pathogens associated with yerba mate plants is crucial for developing effective agricultural strategies. The primary objective of this study is to synthesise current knowledge on prevalent fungal diseases in yerba mate cultivation, as well as to provide agricultural management recommendations for effective disease control. Fungal diseases can cause significant damage to different parts of the plant, resulting in economic losses. The proximity of neighbouring plantations to yerba mate crops may contribute to the cross-contamination of pathogens, emphasizing the need for comprehensive epidemiology and accurate diagnosis. Multiple fungal genera have been reported to cause pathologies in yerba mate. Among the fungi causing foliar diseases are Ceratobasidium niltonsouzanum, Cylindrocladium spathulatum, Pseudocercospora mate, Asterina sphaerelloides, Colletotrichum gloeosporioides aff var. yerbae, and Phyllosticta sp. Caulinary diseases are caused by Alternaria sp., Phoma sp., Colletotrichum sp., and Ceratocystis fimbriata. Regarding root rot, the genera Rhizoctonia sp., Pythium sp., Fusarium sp., and Rosellinia sp. have been reported. Proper crop management practices and monitoring are essential for effective disease control. To reduce reliance on chemical compounds, the use of biocontrol agents like Trichoderma sp. has shown promise in regulating phytopathogenic fungi populations. Continued research is vital to preserve the yerba mate industry and ensure its long-term viability while minimizing environmental impact.


Subject(s)
Ilex paraguariensis , Plant Diseases , Plant Diseases/microbiology , Plant Diseases/prevention & control , Ilex paraguariensis/microbiology , Fungi/classification , Fungi/isolation & purification , Fungi/physiology , Fungi/genetics , Argentina , Brazil , Crops, Agricultural/microbiology
18.
Phytopathology ; 114(5): 837-842, 2024 May.
Article in English | MEDLINE | ID: mdl-38815216

ABSTRACT

Plant diseases significantly impact food security and food safety. It was estimated that food production needs to increase by 50% to feed the projected 9.3 billion people by 2050. Yet, plant pathogens and pests are documented to cause up to 40% yield losses in major crops, including maize, rice, and wheat, resulting in annual worldwide economic losses of approximately US$220 billion. Yield losses due to plant diseases and pests are estimated to be 21.5% (10.1 to 28.1%) in wheat, 30.3% (24.6 to 40.9%) in rice, and 22.6% (19.5 to 41.4%) in maize. In March 2023, The American Phytopathological Society (APS) conducted a survey to identify and rank key challenges in plant pathology in the next decade. Phytopathology subsequently invited papers that address those key challenges in plant pathology, and these were published as a special issue. The key challenges identified include climate change effect on the disease triangle and outbreaks, plant disease resistance mechanisms and its applications, and specific diseases including those caused by Candidatus Liberibacter spp. and Xylella fastidiosa. Additionally, disease detection, natural and man-made disasters, and plant disease control strategies were explored in issue articles. Finally, aspects of open access and how to publish articles to maximize the Findability, Accessibility, Interoperability, and Reuse of digital assets in plant pathology were described. Only by identifying the challenges and tracking progress in developing solutions for them will we be able to resolve the issues in plant pathology and ultimately ensure plant health, food security, and food safety.


Subject(s)
Crops, Agricultural , Plant Diseases , Plant Pathology , Plant Diseases/microbiology , Crops, Agricultural/microbiology , Disease Resistance , Climate Change , Xylella
19.
Molecules ; 29(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38792074

ABSTRACT

The research on new compounds against plant pathogens is still socially and economically important. It results from the increasing resistance of pests to plant protection products and the need to maintain high yields of crops, particularly oilseed crops used to manufacture edible and industrial oils and biofuels. We tested thirty-five semi-synthetic hydrazide-hydrazones with aromatic fragments of natural origin against phytopathogenic laccase-producing fungi such as Botrytis cinerea, Sclerotinia sclerotiorum, and Cerrena unicolor. Among the investigated molecules previously identified as potent laccase inhibitors were also strong antifungal agents against the fungal species tested. The highest antifungal activity showed derivatives of 4-hydroxybenzoic acid and salicylic aldehydes with 3-tert-butyl, phenyl, or isopropyl substituents. S. sclerotiorum appeared to be the most susceptible to the tested compounds, with the lowest IC50 values between 0.5 and 1.8 µg/mL. We applied two variants of phytotoxicity tests for representative crop seeds and selected hydrazide-hydrazones. Most tested molecules show no or low phytotoxic effect for flax and sunflower seeds. Moreover, a positive impact on seed germination infected with fungi was observed. With the potential for application, the cytotoxicity of the hydrazide-hydrazones of choice toward MCF-10A and BALB/3T3 cell lines was lower than that of the azoxystrobin fungicide tested.


Subject(s)
Hydrazones , Laccase , Hydrazones/pharmacology , Hydrazones/chemistry , Laccase/metabolism , Crops, Agricultural/microbiology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Ascomycota/drug effects , Animals , Plant Diseases/microbiology , Plant Diseases/prevention & control , Hydroxybenzoates/pharmacology , Hydroxybenzoates/chemistry , Botrytis/drug effects , Humans , Mice , Parabens
20.
Microbiol Res ; 285: 127776, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38820701

ABSTRACT

Applying beneficial microorganisms (BM) as bioinoculants presents a promising soil-amendment strategy while impacting the native microbiome, which jointly alters soil-plant performance. Leveraging the untapped potential of native microbiomes alongside bioinoculants may enable farmers to sustainably regulate soil-plant systems via natural bioresources. This review synthesizes literature on native microbiome responses to BMs and their interactive effects on soil and plant performance. We highlight that native microbiomes harbor both microbial "helpers" that can improve soil fertility and plant productivity, as well as "inhibitors" that hinder these benefits. To harness the full potential of resident microbiome, it is crucial to elucidate their intricate synergistic and antagonistic interplays with introduced BMs and clarify the conditions that facilitate durable BM-microbiome synergies. Hence, we indicate current challenges in predicting these complex microbial interactions and propose corresponding strategies for microbiome breeding via BM bioinoculant. Overall, fully realizing the potential of BMs requires clarifying their interactions with native soil microbiomes and judiciously engineering microbiome to harness helpful microbes already present within agroecosystems.


Subject(s)
Agriculture , Microbiota , Soil Microbiology , Soil , Microbiota/physiology , Soil/chemistry , Agriculture/methods , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Bacteria/genetics , Crops, Agricultural/microbiology , Plants/microbiology , Microbial Interactions
SELECTION OF CITATIONS
SEARCH DETAIL
...