Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27.145
Filter
1.
Theor Appl Genet ; 137(8): 185, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009774

ABSTRACT

KEY MESSAGE: Phenotypical, physiological and genetic characterization was carried out on the hybrid necrosis gene from Haynaldia villosa, and the related gene Ne-V was mapped to chromosome arm 2VL. Introducing genetic variation from wild relatives into common wheat through wide crosses is a vital strategy for enriching genetic diversity and promoting wheat breeding. However, hybrid necrosis, a genetic autoimmunity syndrome, often occurs in the offspring of interspecific or intraspecific crosses, restricting both the selection of hybrid parents and the pyramiding of beneficial genes. To utilize the germplasms of Haynaldia villosa (2n = 2x = 14, VV), we conducted wide hybridization between durum wheat (2n = 4x = 28, AABB) and multiple H. villosa accessions to synthesize the amphiploids (2n = 6x = 42, AABBVV). This study revealed that 61.5% of amphiploids derived from the above crosses exhibited hybrid necrosis, with some amphiploids even dying before reaching maturity. However, the initiation time and severity of necrosis varied dramatically among the progenies, suggesting that there were multiple genetic loci or multiple alleles in the same genetic locus conferring to hybrid necrosis in H. villosa accessions. Genetic analysis was performed on the F2 and derived F2:3 populations, which were constructed between amphiploid STH59-1 with normal leaves and amphiploid STH59-2 with necrotic leaves. A semidominant hybrid necrosis-related gene, Ne-V, was mapped to an 11.8-cM genetic interval on the long arm of chromosome 2V, representing a novel genetic locus identified in Triticum-related species. In addition, the hybrid necrosis was correlated with enhanced H2O2 accumulation and cell death, and it was influenced by the temperature and light. Our findings provide a foundation for cloning the Ne-V gene and exploring its molecular mechanism.


Subject(s)
Chromosome Mapping , Phenotype , Triticum , Triticum/genetics , Triticum/growth & development , Hybridization, Genetic , Poaceae/genetics , Chromosomes, Plant/genetics , Genes, Plant , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology , Crosses, Genetic , Necrosis
2.
Science ; 385(6705): eadl0038, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38991084

ABSTRACT

Direct observation is central to our understanding of adaptation, but evolution is rarely documented in a large, multicellular organism for more than a few generations. In this study, we observed evolution across a century-scale competition experiment, barley composite cross II (CCII). CCII was founded in 1929 in Davis, California, with thousands of genotypes, but we found that natural selection has massively reduced genetic diversity, leading to a single lineage constituting most of the population by generation 50. Selection favored alleles originating from climates similar to that of Davis and targeted loci contributing to reproductive development, including the barley diversification loci Vrs1, HvCEN, Ppd-H1, and Vrn-H2. Our findings point to selection as the predominant force shaping genomic variation in one of the world's oldest biological experiments.


Subject(s)
Alleles , Genetic Variation , Hordeum , Selection, Genetic , Hordeum/genetics , Genotype , Crosses, Genetic , Genome, Plant
3.
Sci Rep ; 14(1): 14988, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951551

ABSTRACT

Breeding high yielding groundnut cultivars with 2-3 weeks of fresh seed dormancy, particularly in Spanish-type cultivars, enhances the sustainability of agriculture in groundnuts. In this context, we conducted a comprehensive phenotypic and genotypic evaluation of advanced breeding lines developed in the genetic background of Spanish types. By employing multi-phenotyping and marker data, we identified PBS 15044, 16004, 16013, 16015, 16016, 16017, 16020, 16021, 16026, 16031, 16035, 16037, 16038, 16039, 16041, and 16042 with 2-3 weeks dormancy (> 90%).The various parametric and non-parametric estimates identified the stable fresh dormant genotypes with one or more superior economic trait. PBS 16021, 15044, 16038, and 16039 identified with high hundred pod weight (HPW) were also reported having high intensity of dormancy (> 90% for up to 3 weeks); PBS 15044, 16016, PBS 16038 and PBS 16039 with high hundred kernel weight (HKW) also reported with up to 3 weeks fresh seed dormancy; and PBS 16013, 16031, and 16038 with up to 3 weeks fresh seed dormancy had high shelling percentage (SP). They can be used to develop lines with the desired level of dormancy, and high yields, by designing appropriate breeding strategies.


Subject(s)
Genotype , Phenotype , Plant Breeding , Plant Dormancy , Seeds , Plant Dormancy/genetics , Plant Breeding/methods , Seeds/genetics , Seeds/growth & development , Spain , Arachis/genetics , Crosses, Genetic
4.
Heredity (Edinb) ; 133(2): 113-125, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38956397

ABSTRACT

In this study, we address the mate selection problem in the hybridization stage of a breeding pipeline, which constitutes the multi-objective breeding goal key to the performance of a variety development program. The solution framework we formulate seeks to ensure that individuals with the most desirable genomic characteristics are selected to cross in order to maximize the likelihood of the inheritance of desirable genetic materials to the progeny. Unlike approaches that use phenotypic values for parental selection and evaluate individuals separately, we use a criterion that relies on the genetic architecture of traits and evaluates combinations of genomic information of the pairs of individuals. We introduce the expected cross value (ECV) criterion that measures the expected number of desirable alleles for gametes produced by pairs of individuals sampled from a population of potential parents. We use the ECV criterion to develop an integer linear programming formulation for the parental selection problem. The formulation is capable of controlling the inbreeding level between selected mates. We evaluate the approach or two applications: (i) improving multiple target traits simultaneously, and (ii) finding a multi-parental solution to design crossing blocks. We evaluate the performance of the ECV criterion using a simulation study. Finally, we discuss how the ECV criterion and the proposed integer linear programming techniques can be applied to improve breeding efficiency while maintaining genetic diversity in a breeding program.


Subject(s)
Crosses, Genetic , Selection, Genetic , Monte Carlo Method , Phenotype , Quantitative Trait Loci , Alleles , Genomics , Computer Simulation , Breeding , Male , Female , Animals
5.
Theor Appl Genet ; 137(8): 194, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080105

ABSTRACT

KEY MESSAGE: Rhizome formation of Oryza longistaminata was dependent on the bud shape. The loci qBS3.1, qBS3.2 and qBS3.3 for controlling rhizome formation were functional redundant under Oryza longistaminata background. The rhizome, a root-like underground stem, is the key organ for grasses to achieve perennial growth. Oryza longistaminata, the only rhizomatous wild Oryza species with the same AA genome as cultivated rice, is an important germplasm for developing perennial rice. Our study found that the rhizome formation of O. longistaminata was dependent on the bud shape: the dome-like axillary bud (dome bud) usually penetrated through the leaf sheaths, developing into rhizome (extravaginal branching), but the flat axillary bud (flat bud) wrapped by the leaf sheaths only developed into tiller (intravaginal branching). The genetic loci (QTL) controlling the bud shape (BS) were mapped by entire population genotyping method (F2 population from crossing O. longistaminata with Balilla (Oryza sativa) and selective genotyping mapping method (BC1F2 population from backcrossing F1 with Balilla). A total of twelve loci were identified, including four major-effect QTL: qBS2, qBS3.1, qBS3.2 and qBS3.3, and the genetic network of these twelve loci was established. The dome bud lost the potential to develop into rhizome with the increase in backcross generations under Balilla background. Considering the rapid loss of rhizome under Balilla background, the near-isogenic lines under O. longistaminata background were used to identify the effect of major-effect loci. According to the BC3F2, BC4F2 and BC5F2 under O. longistaminata background, there was some functional redundancy among qBS3.1, qBS3.2 and qBS3.3. Our results provided a new perspective for analyzing the genetic basis of perenniality and laid the foundation for fine mapping and verification of related genes.


Subject(s)
Chromosome Mapping , Oryza , Phenotype , Quantitative Trait Loci , Rhizome , Oryza/genetics , Oryza/growth & development , Rhizome/genetics , Rhizome/growth & development , Chromosome Mapping/methods , Genotype , Crosses, Genetic
6.
PLoS One ; 19(6): e0301342, 2024.
Article in English | MEDLINE | ID: mdl-38865348

ABSTRACT

BRRI31R is one of the Bangladesh's most promising restorer lines due to its abundant pollen producing capacity, strong restoring ability, good combining ability, high outcrossing rate and genetically diverse from cytoplasmic male sterile (CMS) line. But the drawback of this line is that it is highly susceptible to bacterial blight (BB) disease of rice caused by Xanthomonas oryzae pv. oryzae. The present study highlighted the pyramiding of effective BB resistance genes (xa5, xa13 and Xa21) into the background of BRRI31R, through marker-assisted backcrossing (MABC). Backcross progenies were confirmed and advanced based on the foreground selection of target genes. Pyramided lines were used for pathogenicity test against five Bangladeshi Xanthomonas oryzae (BXo) races (BXo93, BXo220, BXo822, BXo826, BXo887) and confirmed the dominant fertility restore genes, Rf3 and Rf4 and further validated against SNP markers for more confirmation of target resistance genes. All pyramided restorer lines consisted of Xa4 (in built), xa5, xa13, Xa21, and Chalk5 with two fertility restorer genes, Rf3, Rf4. and these restorer lines showed intermediate amylose content (<25%). Restorer lines BRRI31R-MASP3 and BRRI31R-MASP4 showed high levels of resistance against five virulent BXo races and SNP genotyping revealed that these lines also contained a blast resistance gene Pita races. Gene pyramided restorer lines, BRRI31R-MASP3 and BRRI31R-MASP4 can directly be used as a male parent for the development of new BB resistant hybrid rice variety or could be used as a replacement of restorer line of BRRI hybrid dhan5 and 7 to enhance the quality of hybrid seeds as well as rice production in Bangladesh.


Subject(s)
Disease Resistance , Oryza , Plant Breeding , Plant Diseases , Xanthomonas , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Xanthomonas/pathogenicity , Xanthomonas/genetics , Oryza/microbiology , Oryza/genetics , Genes, Plant , Genetic Markers , Crosses, Genetic
7.
Int J Mol Sci ; 25(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891872

ABSTRACT

Species of the genus Drosophila have served as favorite models in speciation studies; however, genetic factors of interspecific reproductive incompatibility are under-investigated. Here, we performed an analysis of hybrid female sterility by crossing Drosophila melanogaster females and Drosophila simulans males. Using transcriptomic data analysis and molecular, cellular, and genetic approaches, we analyzed differential gene expression, transposable element (TE) activity, piRNA biogenesis, and functional defects of oogenesis in hybrids. Premature germline stem cell loss was the most prominent defect of oogenesis in hybrid ovaries. Because of the differential expression of genes encoding piRNA pathway components, rhino and deadlock, the functional RDCmel complex in hybrid ovaries was not assembled. However, the activity of the RDCsim complex was maintained in hybrids independent of the genomic origin of piRNA clusters. Despite the identification of a cohort of overexpressed TEs in hybrid ovaries, we found no evidence that their activity can be considered the main cause of hybrid sterility. We revealed a complicated pattern of Vasa protein expression in the hybrid germline, including partial AT-chX piRNA targeting of the vasasim allele and a significant zygotic delay in vasamel expression. We arrived at the conclusion that the hybrid sterility phenotype was caused by intricate multi-locus differences between the species.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Drosophila simulans , RNA, Small Interfering , Animals , Female , Drosophila melanogaster/genetics , Male , Drosophila simulans/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , RNA, Small Interfering/genetics , DNA Transposable Elements/genetics , Ovary/metabolism , Hybridization, Genetic , Oogenesis/genetics , Infertility/genetics , Crosses, Genetic , DEAD-box RNA Helicases
8.
BMC Genomics ; 25(1): 550, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824516

ABSTRACT

BACKGROUND: Salinity is a significant abiotic stress that affects plants from germination through all growth stages. This study was aimed to determine the morpho-physiological and genetic variations in BC1F2, BC2F1 and F3 generations resulting from the cross combination WH1105 × Kharchia 65. RESULTS: A significant reduction in germination percentage was observed under salt stress in BC1F2 and F3 seeds. Correlation, heritability in the broad sense, phenotypic coefficient of variability (PCV) and genotypic coefficient of variability (GCV) were measured for all traits. The presence of both Nax1 and Nax2 loci was confirmed in twenty-nine plants using the marker-assisted selection technique. Genetic relationships among the populations were assessed using twenty-four polymorphic SSR markers. CONCLUSION: Cluster analysis along with two and three-dimensional PCA scaling (Principal Component Analysis) revealed the distinct nature of WH 1105 and Kharchia 65. Six plants closer to the recurrent parent (WH1105) selected through this study can serve as valuable genetic material for salt-tolerant wheat improvement programs.


Subject(s)
Microsatellite Repeats , Salt Tolerance , Triticum , Triticum/genetics , Triticum/growth & development , Microsatellite Repeats/genetics , Salt Tolerance/genetics , Plant Breeding/methods , Phenotype , Germination/genetics , Genotype , Crosses, Genetic
9.
BMC Genomics ; 25(1): 582, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858624

ABSTRACT

BACKGROUND: Carcass traits are essential economic traits in the commercial pig industry. However, the genetic mechanism of carcass traits is still unclear. In this study, we performed a genome-wide association study (GWAS) based on the specific-locus amplified fragment sequencing (SLAF-seq) to study seven carcass traits on 223 four-way intercross pigs, including dressing percentage (DP), number of ribs (RIB), skin thinkness (ST), carcass straight length (CSL), carcass diagonal length (CDL), loin eye width (LEW), and loin eye thickness (LET). RESULTS: A total of 227,921 high-quality single nucleotide polymorphisms (SNPs) were detected to perform GWAS. A total of 30 SNPs were identified for seven carcass traits using the mixed linear model (MLM) (p < 1.0 × 10- 5), of which 9 SNPs were located in previously reported quantitative trait loci (QTL) regions. The phenotypic variation explained (PVE) by the significant SNPs was from 2.43 to 16.32%. Furthermore, 11 candidate genes (LYPLAL1, EPC1, MATN2, ZFAT, ZBTB10, ZNF704, INHBA, SMYD3, PAK1, SPTBN2, and ACTN3) were found for carcass traits in pigs. CONCLUSIONS: The GWAS results will improve our understanding of the genetic basis of carcass traits. We hypothesized that the candidate genes associated with these discovered SNPs would offer a biological basis for enhancing the carcass quality of pigs in swine breeding.


Subject(s)
Genome-Wide Association Study , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Animals , Swine/genetics , Crosses, Genetic , Meat
10.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 27-32, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814238

ABSTRACT

In this study, BC3F2 convergent population [(K343*3/RML22 × K343*3/DHMAS) × K343] was constructed by marker-assisted backcross breeding using K343 as the recurrent parent. DHMAS and RML22 were used as donor parents for the rice blast resistance genes Pi54 and Pi9, respectively. The population was first characterized using GGT 2.0 software, which showed 96.7% of the recurrent genome recovery covering 13953.6 cM, while DHMAS and RML22 showed 1.6% (235.5 cM) and 1.2% (177.1 cM) introgression respectively. The chromosomal segment substitution lines (CSSLs) were then identified using CSSL Finder software. A total of 36 CSSLs were identified, including 22 for DHMAS/K343 and 14 for RML22/K343. Introgression rates for donor substituted segments in DHMAS/K343 CSSLs ranged from 0.54% to 5.99%, with donor coverage of 44.5%, while in RML22/K343 CSSLs, introgression rates ranged from 0.54% to 4.75%, with donor coverage of 24.5%. The identified CSSLs would be a valuable genetic pool and could be used as genomic resources for the discovery and mapping of important genes and QTLs in rice genetic improvement.


Subject(s)
Chromosomes, Plant , Oryza , Oryza/genetics , Chromosomes, Plant/genetics , Plant Breeding/methods , Genetic Background , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Crosses, Genetic , Genome, Plant/genetics , Quantitative Trait Loci/genetics , Chromosome Mapping/methods , Genes, Plant
11.
J Evol Biol ; 37(7): 839-847, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38712591

ABSTRACT

The contribution of non-additive genetic effects to the genetic architecture of fitness and to the evolutionary potential of populations has been a topic of theoretical and empirical interest for a long time. Yet, the empirical study of these effects in natural populations remains scarce, perhaps because measuring dominance and epistasis relies heavily on experimental line crosses. In this study, we explored the contribution of dominance and epistasis in natural alpine populations of Arabidopsis thaliana for 2 fitness traits, the dry biomass and the estimated number of siliques, measured in a greenhouse. We found that, on average, crosses between inbred lines of A. thaliana led to mid-parent heterosis for dry biomass but outbreeding depression for an estimated number of siliques. While heterosis for dry biomass was due to dominance, we found that outbreeding depression for an estimated number of siliques could be attributed to the breakdown of beneficial epistatic interactions. We simulated and discussed the implication of these results for the adaptive potential of the studied populations, as well as the use of line-cross analyses to detect non-additive genetic effects.


Subject(s)
Arabidopsis , Epistasis, Genetic , Arabidopsis/genetics , Hybrid Vigor , Crosses, Genetic , Biomass , Models, Genetic
12.
Sci Rep ; 14(1): 11010, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38745019

ABSTRACT

The presence of incompatibility alleles in primary amphidiploids constitutes a reproductive barrier in newly synthesized wheat-rye hybrids. To overcome this barrier, the genome stabilization process includes large-scale chromosome rearrangements. In incompatible crosses resulting in fertile amphidiploids, the elimination of one of the incompatible alleles Eml-A1 or Eml-R1b can occur already in the somatic tissue of the wheat × rye hybrid embryo. We observed that the interaction of incompatible loci Eml-A1 of wheat and Eml-R1b of rye after overcoming embryo lethality leads to hybrid sterility in primary triticale. During subsequent seed reproductions (R1, R2 or R3) most of the chromosomes of A, B, D and R subgenomes undergo rearrangement or eliminations to increase the fertility of the amphidiploid by natural selection. Genotyping-by-sequencing (GBS) coverage analysis showed that improved fertility is associated with the elimination of entire and partial chromosomes carrying factors that either cause the disruption of plant development in hybrid plants or lead to the restoration of the euploid number of chromosomes (2n = 56) in the absence of one of the incompatible alleles. Highly fertile offspring obtained in compatible and incompatible crosses can be successfully adapted for the production of triticale pre-breeding stocks.


Subject(s)
Chromosomes, Plant , Crosses, Genetic , Hybridization, Genetic , Secale , Triticum , Triticum/genetics , Secale/genetics , Chromosomes, Plant/genetics , Alleles , Genotyping Techniques
13.
Gene ; 922: 148562, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38754567

ABSTRACT

BACKGROUND: Previously, we discovered a strain of Kunming mice, referred to as the KMush/ush strain, that exhibited notably abnormal electroretinogram (ERG) readings and elevated thresholds for auditory brainstem responses (ABRs), which resembled the characteristics of Usher Syndrome (USH). We successfully identified the pathogenic genes, Pde6b and Adgrv1, after KMush/ush crossbred with CBA/CaJ mice, referred to as CBA-1ush/ush, CBA-2ush/ush or CBA-2ush/ush. In this investigation, we crossbred KMush/ush and CBA/J mice to establish novel recombinant inbred lines and analysed their phenotypic and genotypic characteristics. METHODS: ERG readings, ABR testing, fundus morphology, histological examination of the retina and inner ear, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis, western blotting, DNA sequence analysis and behavioural experiments were performed to assess the phenotypes and genotypes of the progeny lines. RESULTS: No obvious waveforms in the ERG were detected in F1 hybrid mice while normal ABR results were recorded. The F2 hybrids, which were called J1ush/ush or J2ush/ush, exhibited segregated hearing-loss phenotypes. J1ush/ush mice had a retinitis pigmentosa (RP) phenotype with elevated ABR thresholds, whereas J2ush/ush mice exhibited only the RP phenotype. Interestingly, J1ush/ush mice showed significantly higher ABR thresholds than wild-type mice at 28 days post born (P28), and RT-qPCR and DNA-sequencing analysis showed that Adgrv1 gene expression was significantly altered in J1ush/ush mice, but histological analysis showed no significant structural changes in the organ of Corti or spiral ganglia. Further elevation of ABR-related hearing thresholds by P56 manifested only as a reduced density of spiral ganglion cells, which differed significantly from the previous pattern of cochlear alterations in CBA-2ush/ush mice. CONCLUSIONS: We successfully introduced the hearing-loss phenotype of inbred mice with USH into CBA/J mice, which provides a good animal model for future studies on the important physiological roles of the Adgrv1 gene in inner-ear structure and for therapeutic studies targeting Adgrv1-mutated USH.


Subject(s)
Disease Models, Animal , Electroretinography , Evoked Potentials, Auditory, Brain Stem , Mice, Inbred CBA , Usher Syndromes , Animals , Usher Syndromes/genetics , Usher Syndromes/pathology , Mice , Male , Female , Phenotype , Cyclic Nucleotide Phosphodiesterases, Type 6/genetics , Retina/pathology , Retina/metabolism , Crosses, Genetic
14.
Reprod Domest Anim ; 59(5): e14582, 2024 May.
Article in English | MEDLINE | ID: mdl-38715452

ABSTRACT

Crossbred cattle are commonly used for milk production in the tropics, combining the potential benefits of pure breeds with the heterosis effects of the offspring. However, no comprehensive assessment of lifetime productivity for crossbred versus purebred cattle in low-altitude tropical environments has been carried out. The present study compares the lifetime productivity of purebred Holstein (HO, n = 17,269), Gyr (GY4, n = 435), and Brahman (BR4, n = 622) with crossbreds Gyr × Holstein (GY × HO, n = 5521) and Brahman×Holstein (BR × HO, n = 5429) cows from dairy farms located in low and medium altitude tropical regions in Costa Rica. The production traits of interest were age at first calving (AFC), days open (DO), milk production per lactation (TMP), lactation length (LLEN), age at culling (ACUL), and number of lactations (NLAC). Estimates of heterosis were also calculated. The AFC for GY × HO crosses (33-34 months) was not significantly different (p > .05) from HO (33.8 months). For BR × HO crosses, a significant (p < .05) decrease in AFC (BR3HO1 35.6 months, BR2HO2 34.5 months, and BR1H03 33.3 months) was observed as the fraction of HO breed increased. Estimates of heterosis for AFC were favourable for both crosses, of a magnitude close to 3%. The DO for F1 crosses (GY2HO2 94 days; BR2HO2 96 days) was significantly (p < .05) lower than HO (123 days). Estimates of heterosis for DO were also favourable and above 15% for both crosses. The TMP and LLEN were higher for HO (TMP = 5003 kg; LLEN = 324 days) compared with GY × HO (TMP = 4428 to 4773 kg; LLEN = 298 to 312 days) and BR × HO (TMP = 3950 to 4761 kg; LLEN = 273 to 313 days) crosses. Heterosis for TMP was favourable but low for both crosses, with a magnitude below 3.0%. The NLAC for HO (4.6 lactations) was significantly (p < .05) lower than F1 (GY2HO2, 5.8 lactations; BR2HO2, 5.4 lactations). Heterosis for NLAC was above 6.0% for both crosses. Overall, estimates of lifetime income over feed costs per cow on average were USD 2637 (30.3%) and USD 734 (8.4%) higher in F1 GY × HO and BR × HO, respectively, compared to HO. In conclusion, crossbred animals, specifically those with Gyr and Brahman genetics, extend the productive lifespan, increasing economic returns.


Subject(s)
Hybrid Vigor , Lactation , Milk , Tropical Climate , Animals , Cattle/genetics , Cattle/physiology , Lactation/genetics , Lactation/physiology , Female , Costa Rica , Breeding , Hybridization, Genetic , Altitude , Crosses, Genetic
15.
Plant J ; 119(1): 595-603, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38576107

ABSTRACT

Wild species are an invaluable source of new traits for crop improvement. Over the years, the tomato community bred cultivated lines that carry introgressions from different species of the tomato tribe to facilitate trait discovery and mapping. The next phase in such projects is to find the genes that drive the identified phenotypes. This can be achieved by genotyping a few thousand individuals resulting in fine mapping that can potentially identify the causative gene. To couple trait discovery and fine mapping, we are presenting large, recombination-rich, Backcross Inbred Line (BIL) populations involving an unexplored accession of the wild, green-fruited species Solanum pennellii (LA5240; the 'Lost' Accession) with two modern tomato inbreds: LEA, determinate, and TOP, indeterminate. The LEA and TOP BILs are in BC2F6-8 generation and include 1400 and 500 lines, respectively. The BILs were genotyped with 5000 SPET markers, showing that in the euchromatic regions there was one recombinant every 17-18 Kb while in the heterochromatin a recombinant every 600-700 Kb (TOP and LEA respectively). To gain perspective on the topography of recombination we compared five independent members of the Self-pruning gene family with their respective neighboring genes; based on PCR markers, in all cases we found recombinants. Further mapping analysis of two known morphological mutations that segregated in the BILs (self-pruning and hairless) showed that the maximal delimited intervals were 73 Kb and 210 Kb, respectively, and included the known causative genes. The 'Lost'_BILs provide a solid framework to study traits derived from a drought-tolerant wild tomato.


Subject(s)
Chromosome Mapping , Solanum lycopersicum , Solanum , Solanum/genetics , Solanum lycopersicum/genetics , Phenotype , Quantitative Trait Loci/genetics , Genotype , Crosses, Genetic , Chromosomes, Plant/genetics , Inbreeding
16.
Sci Rep ; 14(1): 7723, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565894

ABSTRACT

Between 2016 and 2018, the Agriculture Research Center's Sakha Agriculture Research Station conducted two rounds of pedigree selection on a segregating population of cotton (Gossypium barbadense L.) using the F2, F3, and F4 generations resulting from crossing Giza 94 and Suvin. In 2016, the top 5% of plants from the F2 population were selected based on specific criteria. The superior families from the F3 generation were then selected to produce the F4 families in 2017, which were grown in the 2018 summer season in single plant progeny rows and bulk experiments with a randomized complete block design of three replications. Over time, most traits showed increased mean values in the population, with the F2 generation having higher Genotypic Coefficient of Variance (GCV) and Phenotypic Coefficient of Variance (PCV) values compared to the succeeding generations for the studied traits. The magnitude of GCV and PCV in the F3 and F4 generations was similar, indicating that genotype had played a greater role than the environment. Moreover, the mean values of heritability in the broad sense increased from generation to generation. Selection criteria I2, I4, and I5 were effective in improving most of the yield and its component traits, while selection criterion I1 was efficient in improving earliness traits. Most of the yield and its component traits showed a positive and significant correlation with each other, highlighting their importance in cotton yield. This suggests that selecting to improveone or more of these traits would improve the others. Families number 9, 13, 19, 20, and 21 were the best genotypes for relevant yield characters, surpassing the better parent, check variety, and giving the best values for most characters. Therefore, the breeder could continue to use these families in further generations as breeding genotypes to develop varieties with high yields and its components.


Subject(s)
Cotton Fiber , Gossypium , Plant Breeding , Crosses, Genetic , Egypt , Gossypium/genetics , Phenotype , Quantitative Trait Loci
17.
PLoS One ; 19(4): e0297945, 2024.
Article in English | MEDLINE | ID: mdl-38625904

ABSTRACT

The Brown planthopper (Nilaparvata lugens Stål; BPH) is known to cause significant damage to rice crops in Asia, and the use of host-resistant varieties is an effective and environmentally friendly approach for controlling BPH. However, genes limited resistance genes that are used in insect-resistant rice breeding programs, and landrace rice varieties are materials resources that carry rich and versatile genes for BPH resistance. Two landrace indica rice accessions, CL45 and CL48, are highly resistant to BPH and show obvious antibiosis against BPH. A novel resistance locus linked to markers 12M16.983 and 12M19.042 was identified, mapped to chromosome 12 in CL45, and designated Bph46. It was finely mapped to an interval of 480 kb and Gene 3 may be the resistance gene. Another resistance locus linked to markers RM26567 and 11MA104 was identified and mapped to chromosome 11 in CL48 and designated qBph11.3 according to the nominating rule. It was finely mapped to an interval of 145 kb, and LOC_Os11g29090 and LOC_Os11g29110 may be the resistance genes. Moreover, two markers, 12M16.983 and 11MA104, were developed for CL45 and CL48, respectively, using marker-assisted selection (MAS) and were confirmed by backcrossing individuals and phenotypic detection. Interestingly, we found that the black glume color is closely linked to the BPH resistance gene in CL48 and can effectively assist in the identification of positive individuals for breeding. Finally, several near-isogenic lines with a 9311 or KW genetic background, as well as pyramid lines with two resistance parents, were developed using MAS and exhibited significantly high resistance against BPHs.


Subject(s)
Hemiptera , Oryza , Humans , Animals , Chromosome Mapping , Quantitative Trait Loci , Oryza/genetics , Genes, Plant , Plant Diseases/genetics , Crosses, Genetic , Plant Breeding , Hemiptera/genetics
18.
Sci Rep ; 14(1): 9151, 2024 04 21.
Article in English | MEDLINE | ID: mdl-38644368

ABSTRACT

Limited commercial quality protein maize (QPM) varieties with low grain yield potential are currently grown in Eastern and Southern Africa (ESA). This study was conducted to (i) assess the performance of single-cross QPM hybrids that were developed from elite inbred lines using line-by-tester mating design and (ii) estimate the general (GCA) and specific (SCA) combining ability of the QPM inbred lines for grain yield, agronomic and protein quality traits. One hundred and six testcrosses and four checks were evaluated across six environments in ESA during 2015 and 2016. Significant variations (P ≤ 0.01) were observed among environments, genotypes and genotype by environment interaction (GEI) for most traits evaluated. Hybrids H80 and H104 were the highest-yielding, most desirable, and stable QPM hybrids. Combining ability analysis showed both additive and non-additive gene effects to be important in the inheritance of grain yield. Additive effects were more important for agronomic and protein quality traits. Inbred lines L19 and L20 depicted desirable GCA effects for grain yield. Various other inbred lines with favorable GCA effects for agronomic traits, endosperm modification, and protein quality traits were identified. These inbred lines could be utilized for breeding desirable QPM cultivars. The QPM hybrids identified in this study could be commercialized after on-farm verification to replace the low-yielding QPM hybrids grown in ESA.


Subject(s)
Plant Breeding , Zea mays , Zea mays/genetics , Zea mays/metabolism , Zea mays/growth & development , Plant Breeding/methods , Africa, Southern , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism , Africa, Eastern , Genotype , Crosses, Genetic , Inbreeding , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism
19.
Methods Mol Biol ; 2787: 153-168, 2024.
Article in English | MEDLINE | ID: mdl-38656488

ABSTRACT

Genetic mapping is the determination of the position and relative genetic distance between genes or molecular markers in the chromosomes of a particular species. The construction of genetic maps uses data from the genotyping of the mapping population. Among the different mapping populations used, two are relatively common: the F2 and recombinant inbred lines (RILs) obtained as a result of the controlled crossing of genetically diverse parental forms (e.g., inbred lines). Also, the dihaploid (DH) population is often used in plants, but obtaining DHs in different crops, including rye, is very difficult or even impossible. Any molecular marker system can be used for genotyping. Polymorphic markers are used for linkage analysis, differentiating parental forms with segregation in the mapping population, consistent with the appropriate single-gene model. A genetic map is a great source of information on a species and can be an exquisite tool for analyzing important quantitative traits (QT).This chapter presents the procedure of genetic map construction with two different algorithms using the JoinMap5.0 program. First, the Materials section briefly informs about the mapping program, showing how to obtain a mapping population and prepare data for mapping. Finally, the Methods section describes the protocol for the mapping procedure itself.


Subject(s)
Chromosome Mapping , Genetic Linkage , Quantitative Trait Loci , Chromosome Mapping/methods , Algorithms , Crosses, Genetic , Genotype , Genetic Markers , Software , Chromosomes, Plant/genetics
20.
Nature ; 628(8006): 122-129, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38448590

ABSTRACT

Genomic imprinting-the non-equivalence of maternal and paternal genomes-is a critical process that has evolved independently in many plant and mammalian species1,2. According to kinship theory, imprinting is the inevitable consequence of conflictive selective forces acting on differentially expressed parental alleles3,4. Yet, how these epigenetic differences evolve in the first place is poorly understood3,5,6. Here we report the identification and molecular dissection of a parent-of-origin effect on gene expression that might help to clarify this fundamental question. Toxin-antidote elements (TAs) are selfish elements that spread in populations by poisoning non-carrier individuals7-9. In reciprocal crosses between two Caenorhabditis tropicalis wild isolates, we found that the slow-1/grow-1 TA is specifically inactive when paternally inherited. This parent-of-origin effect stems from transcriptional repression of the slow-1 toxin by the PIWI-interacting RNA (piRNA) host defence pathway. The repression requires PIWI Argonaute and SET-32 histone methyltransferase activities and is transgenerationally inherited via small RNAs. Remarkably, when slow-1/grow-1 is maternally inherited, slow-1 repression is halted by a translation-independent role of its maternal mRNA. That is, slow-1 transcripts loaded into eggs-but not SLOW-1 protein-are necessary and sufficient to counteract piRNA-mediated repression. Our findings show that parent-of-origin effects can evolve by co-option of the piRNA pathway and hinder the spread of selfish genes that require sex for their propagation.


Subject(s)
Caenorhabditis , Genomic Imprinting , Piwi-Interacting RNA , Repetitive Sequences, Nucleic Acid , Animals , Female , Male , Alleles , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Caenorhabditis/genetics , Caenorhabditis/metabolism , Crosses, Genetic , Fathers , Genome/genetics , Genomic Imprinting/genetics , Hermaphroditic Organisms/genetics , Histone Methyltransferases/genetics , Histone Methyltransferases/metabolism , Mothers , Oocytes/metabolism , Piwi-Interacting RNA/genetics , Protein Biosynthesis , Repetitive Sequences, Nucleic Acid/genetics , RNA, Messenger/genetics , Toxins, Biological/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL