Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
AAPS PharmSciTech ; 25(7): 192, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164485

ABSTRACT

Lipid-based formulations (LbFs) have demonstrated success in pharmaceutical applications; however, challenges persist in dissolving entire doses of the drug into defined liquid volumes. In this study, the temperature-induced supersaturation method was employed in LbF to address drug loading and pill burden issues. Supersaturated LbFs (super-LbF) were prepared using the temperature-induced supersaturation method, where the drug load is above its equilibrium solubility. Further, the influence of the drug's physicochemical and thermal characteristics on drug loading and their relevance with an apparent degree of supersaturation (aDS) was studied using two model drugs, ibrutinib and enzalutamide. All the prepared LbFs were evaluated in terms of physical stability, dispersion, and solubilization capacity, as well as pharmacokinetic assessments. Drug re-crystallization was observed in the lipid solution on long-term storage at higher aDS values of 2-2.5. Furthermore, high-throughput lipolysis studies demonstrated a significant decrease in drug concentration across all LbFs (regardless of drug loading) due to a decline in the formulation solvation capacity and subsequent generation of in-situ supersaturation. Further, the in vivo results demonstrated comparable pharmacokinetic parameters between conventional LbF and super-LbF. The short duration of the thermodynamic metastable state limits the potential absorption benefits. However, super-LbFs of Ibr and Enz showed superior profiles, with 1.7-fold and 5.2-fold increased drug exposure compared to their respective crystalline suspensions. In summary, this study emphasizes the potential of temperature-induced supersaturation in LbF for enhancing drug loading and highlights the intricate interplay between drug properties, formulation characteristics, and in vivo performance.


Subject(s)
Adenine , Benzamides , Chemistry, Pharmaceutical , Lipids , Nitriles , Phenylthiohydantoin , Piperidines , Solubility , Temperature , Nitriles/chemistry , Nitriles/administration & dosage , Piperidines/chemistry , Piperidines/administration & dosage , Piperidines/pharmacokinetics , Benzamides/chemistry , Benzamides/pharmacokinetics , Adenine/analogs & derivatives , Adenine/chemistry , Adenine/administration & dosage , Phenylthiohydantoin/pharmacokinetics , Phenylthiohydantoin/administration & dosage , Lipids/chemistry , Animals , Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Male , Pyrimidines/pharmacokinetics , Pyrimidines/chemistry , Pyrimidines/administration & dosage , Drug Stability , Crystallization/methods , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Pyrazoles/administration & dosage , Lipolysis/drug effects , Rats
2.
Acta Crystallogr D Struct Biol ; 80(Pt 8): 620-628, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39052318

ABSTRACT

Advances in structural biology have relied heavily on synchrotron cryo-crystallography and cryogenic electron microscopy to elucidate biological processes and for drug discovery. However, disparities between cryogenic and room-temperature (RT) crystal structures pose challenges. Here, Cryo2RT, a high-throughput RT data-collection method from cryo-cooled crystals that leverages the cryo-crystallography workflow, is introduced. Tested on endothiapepsin crystals with four soaked fragments, thaumatin and SARS-CoV-2 3CLpro, Cryo2RT reveals unique ligand-binding poses, offers a comparable throughput to cryo-crystallography and eases the exploration of structural dynamics at various temperatures.


Subject(s)
Coronavirus 3C Proteases , Crystallography, X-Ray/methods , Coronavirus 3C Proteases/chemistry , SARS-CoV-2/chemistry , Crystallization/methods , Temperature , Models, Molecular , Protein Conformation , Humans , High-Throughput Screening Assays/methods , Plant Proteins
3.
Mol Pharm ; 21(8): 4024-4037, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38958508

ABSTRACT

Crystalline suspensions of monoclonal antibodies (mAbs) have great potential to improve drug substance isolation and purification on a large scale and to be used for drug delivery via high-concentration formulations. Crystalline mAb suspensions are expected to have enhanced chemical and physical properties relative to mAb solutions delivered intravenously, making them attractive candidates for subcutaneous delivery. In contrast to small molecules, the development of protein crystalline suspensions is not a widely used approach in the pharmaceutical industry. This is mainly due to the challenges in finding crystalline hits and the suboptimal physical properties of the resulting crystallites when hits are found. Modern advances in instrumentation and increased knowledge of mAb crystallization have, however, resulted in higher probabilities of discovering crystal forms and improving their particle properties and characterization. In this regard, physical, analytical characterization plays a central role in the initial steps of understanding and later optimizing the crystallization of mAbs and requires careful selection of the appropriate tools. This contribution describes a novel crystal structure of the antibody pembrolizumab and demonstrates the usefulness of small-angle X-ray scattering (SAXS) for characterizing its crystalline suspensions. It illustrates the advantages of SAXS when used to (i) confirm crystallinity and crystal phase of crystallites produced in batch mode; (ii) confirm crystallinity under various conditions and detect variations in crystal phases, enabling fine-tuning of the crystallizations for phase control across multiple batches; (iii) monitor the physical response and stability of the crystallites in suspension with regard to filtration and washing; and (iv) monitor the physical stability of the crystallites upon drying. Overall, this work highlights how SAXS is an essential tool for mAb crystallization characterization.


Subject(s)
Antibodies, Monoclonal , Crystallization , Scattering, Small Angle , X-Ray Diffraction , Crystallization/methods , Antibodies, Monoclonal/chemistry , X-Ray Diffraction/methods
4.
Methods Enzymol ; 699: 25-57, 2024.
Article in English | MEDLINE | ID: mdl-38942506

ABSTRACT

Magnesium ions (Mg2+) are crucial in class II terpene cyclases that utilize substrates with diphosphate groups. Interestingly, these enzymes catalyze reactions without cleaving the diphosphate group, instead initiating the reaction through protonation. In our recent research, we discovered a novel class II sesquiterpene cyclase in Streptomyces showdoensis. Notably, we determined its crystal structure and identified Mg2+ within its active site. This finding has shed light on the previously elusive question of Mg2+ binding in class II terpene cyclases. In this chapter, we outline our methods for discovering this novel enzyme, including steps for its purification, crystallization, and kinetic analysis.


Subject(s)
Magnesium , Sesquiterpenes , Streptomyces , Magnesium/metabolism , Magnesium/chemistry , Sesquiterpenes/metabolism , Sesquiterpenes/chemistry , Streptomyces/enzymology , Binding Sites , Kinetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Catalytic Domain , Crystallography, X-Ray/methods , Structure-Activity Relationship , Crystallization/methods , Carbon-Carbon Lyases
5.
AAPS PharmSciTech ; 25(5): 127, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844724

ABSTRACT

The success of obtaining solid dispersions for solubility improvement invariably depends on the miscibility of the drug and polymeric carriers. This study aimed to categorize and select polymeric carriers via the classical group contribution method using the multivariate analysis of the calculated solubility parameter of RX-HCl. The total, partial, and derivate parameters for RX-HCl were calculated. The data were compared with the results of excipients (N = 36), and a hierarchical clustering analysis was further performed. Solid dispersions of selected polymers in different drug loads were produced using solvent casting and characterized via X-ray diffraction, infrared spectroscopy and scanning electron microscopy. RX-HCl presented a Hansen solubility parameter (HSP) of 23.52 MPa1/2. The exploratory analysis of HSP and relative energy difference (RED) elicited a classification for miscible (n = 11), partially miscible (n = 15), and immiscible (n = 10) combinations. The experimental validation followed by a principal component regression exhibited a significant correlation between the crystallinity reduction and calculated parameters, whereas the spectroscopic evaluation highlighted the hydrogen-bonding contribution towards amorphization. The systematic approach presented a high discrimination ability, contributing to optimal excipient selection for the obtention of solid solutions of RX-HCl.


Subject(s)
Chemistry, Pharmaceutical , Excipients , Polymers , Raloxifene Hydrochloride , Solubility , X-Ray Diffraction , Polymers/chemistry , Excipients/chemistry , Raloxifene Hydrochloride/chemistry , Multivariate Analysis , X-Ray Diffraction/methods , Chemistry, Pharmaceutical/methods , Drug Carriers/chemistry , Drug Compounding/methods , Microscopy, Electron, Scanning/methods , Hydrogen Bonding , Crystallization/methods
6.
AAPS PharmSciTech ; 25(5): 133, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862767

ABSTRACT

Nifedipine (NIF) is a dihydropyridine calcium channel blocker primarily used to treat conditions such as hypertension and angina. However, its low solubility and low bioavailability limit its effectiveness in clinical practice. Here, we developed a cocrystal prediction model based on Graph Neural Networks (CocrystalGNN) for the screening of cocrystals with NIF. And scoring 50 coformers using CocrystalGNN. To validate the reliability of the model, we used another prediction method, Molecular Electrostatic Potential Surface (MEPS), to verify the prediction results. Subsequently, we performed a second validation using experiments. The results indicate that our model achieved high performance. Ultimately, cocrystals of NIF were successfully obtained and all cocrystals exhibited better solubility and dissolution characteristics compared to the parent drug. This study lays a solid foundation for combining virtual prediction with experimental screening to discover novel water-insoluble drug cocrystals.


Subject(s)
Calcium Channel Blockers , Crystallization , Neural Networks, Computer , Nifedipine , Solubility , Static Electricity , Nifedipine/chemistry , Crystallization/methods , Calcium Channel Blockers/chemistry
7.
J Vis Exp ; (207)2024 May 17.
Article in English | MEDLINE | ID: mdl-38829127

ABSTRACT

In recent years, solution processes have gained considerable traction as a cost-effective and scalable method to produce high-performance thermoelectric materials. The process entails a series of critical steps: synthesis, purification, thermal treatments, and consolidation, each playing a pivotal role in determining performance, stability, and reproducibility. We have noticed a need for more comprehensive details for each of the described steps in most published works. Recognizing the significance of detailed synthetic protocols, we describe here the approach used to synthesize and characterize one of the highest-performing polycrystalline p-type SnSe. In particular, we report the synthesis of SnSe particles in water and the subsequent surface treatment with CdSe molecular complexes that yields CdSe-SnSe nanocomposites upon consolidation. Moreover, the surface treatment inhibits grain growth through Zenner pinning of secondary phase CdSe nanoparticles and enhances defect formation at different length scales. The enhanced complexity in the CdSe-SnSe nanocomposite microstructure with respect to SnSe promotes phonon scattering and thereby significantly reduces the thermal conductivity. Such surface engineering provides opportunities in solution processing for introducing and controlling defects, making it possible to optimize the transport properties and attain a high thermoelectric figure of merit.


Subject(s)
Cadmium Compounds , Selenium Compounds , Thermal Conductivity , Selenium Compounds/chemistry , Cadmium Compounds/chemistry , Tin/chemistry , Solutions/chemistry , Surface Properties , Crystallization/methods
8.
Mol Pharm ; 21(7): 3375-3382, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38885189

ABSTRACT

Recent work has shown that an amorphous drug-polymer salt can be highly stable against crystallization under hot and humid storage conditions (e.g., 40 °C/75% RH) and provide fast release and that these advantages depend on the degree of salt formation. Here, we investigate the salt formation between the basic drug lumefantrine (LMF) and several acidic polymers: poly(acrylic acid) (PAA), hypromellose phthalate (HPMCP), hypromellose acetate succinate (HPMCAS), cellulose acetate phthalate (CAP), Eudragit L100, and Eudragit L100-55. Salt formation was performed by "slurry synthesis" where dry components were mixed at room temperature in the presence of a small quantity of an organic solvent, which was subsequently removed. This method achieved more complete salt formation than the conventional methods of hot-melt extrusion and rotary evaporation. The acidic group density of a polymer was determined by nonaqueous titration in the same solvent used for slurry synthesis; the degree of LMF protonation was determined by X-ray photoelectron spectroscopy. The polymers studied show very different abilities to protonate LMF when compared at a common drug loading, following the order PAA > (HPMCP ∼ CAP ∼ L100 ∼ L100-55) > HPMCAS, but the difference largely disappears when the degree of protonation is plotted against the concentration of the available acidic groups for reaction. This indicates that the extent of salt formation is mainly controlled by the acidic group density and is less sensitive to the polymer architecture. Our results are relevant for selecting the optimal polymer to control the degree of ionization in amorphous solid dispersions.


Subject(s)
Polymers , Polymers/chemistry , Methylcellulose/chemistry , Methylcellulose/analogs & derivatives , Crystallization/methods , Cellulose/chemistry , Cellulose/analogs & derivatives , Acrylic Resins/chemistry , Salts/chemistry , Hypromellose Derivatives/chemistry , Solubility
9.
AAPS PharmSciTech ; 25(5): 114, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750299

ABSTRACT

There is a growing focus on solid-state degradation, especially for its relevance in understanding interactions with excipients. Performing a solid-state degradation of Venetoclax (VEN), we delve into VEN's stability in different solid-state oxidative stress conditions, utilizing Peroxydone™ complex and urea peroxide (UHP). The investigation extends beyond traditional forced degradation scenarios, providing insights into VEN's behavior over 32 h, considering temperature and crystallinity conditions. Distinct behaviors emerge in the cases of Peroxydone™ complex and UHP. The partially crystalline (PC-VEN) form proves more stable with Peroxydone™, while the amorphous form (A-VEN) shows enhanced stability with UHP. N-oxide VEN, a significant degradation product, varies between these cases, reflecting the impact of different oxidative stress conditions. Peroxydone™ complex demonstrates higher reproducibility and stability, making it a promising option for screening impurities in solid-state oxidative stress scenarios. This research not only contributes to the understanding of VEN's stability in solid-state but also aids formulators in anticipating excipient incompatibilities owing to presence of reactive impurities (peroxides) and oxidation in the final dosage form.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Crystallization , Drug Stability , Excipients , Oxidation-Reduction , Sulfonamides , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Crystallization/methods , Sulfonamides/chemistry , Excipients/chemistry , Oxidative Stress , Chemistry, Pharmaceutical/methods , Temperature
10.
Mol Pharm ; 21(7): 3233-3239, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38804156

ABSTRACT

Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopic imaging is a powerful tool to visualize the distribution of components, and it has been used to analyze drug release from tablets. In this work, ATR-FTIR spectroscopic imaging was applied for observing the dissolution of molecular crystals from tablet compacts. The IR spectra provided chemically specific information about the transformation of crystal structures during the dissolution experiments. Theophylline (TPL) anhydrate and its cocrystals were used as model systems of molecular crystals. The IR spectra during the dissolution of TPL revealed information about the crystal structure of TPL, which transformed from anhydrate to monohydrate in water. During a dissolution test of a model cocrystal system, it was suggested that an active pharmaceutical ingredient (API) and a coformer were dissolved in water simultaneously. The IR spectra that were acquired during the dissolution of a cocrystal tablet showed new spectral bands attributed to the API after 5 min. This suggested that the precipitation of API was observed during the dissolution experiment. Measurements from ATR-FTIR spectroscopic imaging can visualize the drug release from the tablet and determine the transformation of molecular crystals during their dissolution. These results will have an impact on clarifying the dissolution mechanism of molecular crystals.


Subject(s)
Crystallization , Solubility , Tablets , Theophylline , Theophylline/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Tablets/chemistry , Crystallization/methods , Drug Liberation , Chemistry, Pharmaceutical/methods
11.
AAPS PharmSciTech ; 25(5): 103, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714634

ABSTRACT

Crystallization of amorphous pharmaceutical solids are widely reported to be affected by the addition of polymer, while the underlying mechanism require deep study. Herein, crystal growth behaviors of glassy griseofulvin (GSF) doped with various 1% w/w polymer were systematically studied. From the molecular structure, GSF cannot form the hydrogen bonding interactions with the selected polymer poly(vinyl acetate), polyvinyl pyrrolidone (PVP), 60:40 vinyl pyrrolidone-vinyl acetate copolymer (PVP/VA 64), and poly(ethylene oxide) (PEO). 1% w/w polymer exhibited weak or no detectable effects on the glass transition temperature (Tg) of GSF. However, crystal growth rates of GSF was altered from 4.27-fold increase to 2.57-fold decrease at 8 ℃ below Tg of GSF. Interestingly, the ability to accelerate and inhibit the growth rates of GSF crystals correlated well with Tg of polymer, indicating the controlling role of segmental mobility of polymer. Moreover, ring-banded growth of GSF was observed in the polymer-doped systems. Normal compact bulk and ring-banded crystals of GSF were both characterized as the thermodynamically stable form I. More importantly, formation of ring-banded crystals of GSF can significantly weaken the inhibitory effects of polymer on the crystallization of glassy GSF.


Subject(s)
Crystallization , Griseofulvin , Polymers , Transition Temperature , Griseofulvin/chemistry , Crystallization/methods , Polymers/chemistry , Drug Stability , Hydrogen Bonding , Polyvinyls/chemistry , Polyethylene Glycols/chemistry , Povidone/chemistry , Glass/chemistry
12.
Mol Pharm ; 21(6): 2908-2921, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38743928

ABSTRACT

The physical stability of amorphous solid dispersions (ASDs) is a major topic in the formulation research of oral dosage forms. To minimize the effort of investigating the long-term stability using cost- and time-consuming experiments, we developed a thermodynamic and kinetic modeling framework to predict and understand the crystallization kinetics of ASDs during long-term storage below the glass transition. Since crystallization of the active phrarmaceutical ingredients (APIs) in ASDs largely depends on the amount of water absorbed by the ASDs, water-sorption kinetics and API-crystallization kinetics were considered simultaneously. The developed modeling approach allows prediction of the time evolution of viscosity, supersaturation, and crystallinity as a function of drug load, relative humidity, and temperature. It was applied and evaluated against two-year-lasting crystallization experiments of ASDs containing nifedipine and copovidone or HPMCAS measured in part I of this work. We could show that the proposed modeling approach is able to describe the interplay between water sorption and API crystallization and to predict long-term stabilities of ASDs just based on short-term measurements. Most importantly, it enables explaining and understanding the reasons for different and sometimes even unexpected crystallization behaviors of ASDs.


Subject(s)
Crystallization , Water , Crystallization/methods , Water/chemistry , Kinetics , Drug Stability , Nifedipine/chemistry , Vinyl Compounds/chemistry , Thermodynamics , Pyrrolidines/chemistry , Viscosity , Chemistry, Pharmaceutical/methods , Humidity , Temperature , Solubility , Methylcellulose/chemistry , Methylcellulose/analogs & derivatives
13.
Methods Mol Biol ; 2787: 333-353, 2024.
Article in English | MEDLINE | ID: mdl-38656501

ABSTRACT

X-ray crystallography is a robust and widely used technique that facilitates the three-dimensional structure determination of proteins at an atomic scale. This methodology entails the growth of protein crystals under controlled conditions followed by their exposure to X-ray beams and the subsequent analysis of the resulting diffraction patterns via computational tools to determine the three-dimensional architecture of the protein. However, achieving high-resolution structures through X-ray crystallography can be quite challenging due to complexities associated with protein purity, crystallization efficiency, and crystal quality.In this chapter, we provide a detailed overview of the gene to structure determination pipeline used in X-ray crystallography, a crucial tool for understanding protein structures. The chapter covers the steps in protein crystallization, along with the processes of data collection, processing, structure determination, and refinement. The most commonly faced challenges throughout this procedure are also addressed. Finally, the importance of standardized protocols for reproducibility and accuracy is emphasized, as they are crucial for advancing the understanding of protein structure and function.


Subject(s)
Crystallization , Protein Conformation , Proteins , Crystallography, X-Ray/methods , Proteins/chemistry , Crystallization/methods , Models, Molecular , Software
14.
Mol Pharm ; 21(6): 2949-2959, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38685852

ABSTRACT

Crystallization is a widely used purification technique in the manufacture of active pharmaceutical ingredients (APIs) and precursor molecules. However, when impurities and desired compounds have similar molecular structures, separation by crystallization may become challenging. In such cases, some impurities may form crystalline solid solutions with the desired product during recrystallization. Understanding the molecular structure of these recrystallized solid solutions is crucial to devise methods for effective purification. Unfortunately, there are limited analytical techniques that provide insights into the molecular structure or spatial distribution of impurities that are incorporated within recrystallized products. In this study, we investigated model solid solutions formed by recrystallizing salicylic acid (SA) in the presence of anthranilic acid (AA). These two molecules are known to form crystalline solid solutions due to their similar molecular structures. To overcome challenges associated with the long 1H longitudinal relaxation times (T1(1H)) of SA and AA, we employed dynamic nuclear polarization (DNP) and 15N isotope enrichment to enable solid-state NMR experiments. Results of solid-state NMR experiments and DFT calculations revealed that SA and AA are homogeneously alloyed as a solid solution. Heteronuclear correlation (HETCOR) experiments and plane-wave DFT structural models provide further evidence of the molecular-level interactions between SA and AA. This research provides valuable insights into the molecular structure of recrystallized solid solutions, contributing to the development of effective purification strategies and an understanding of the physicochemical properties of solid solutions.


Subject(s)
Carbon Isotopes , Crystallization , Magnetic Resonance Spectroscopy , Nitrogen Isotopes , Salicylic Acid , ortho-Aminobenzoates , Magnetic Resonance Spectroscopy/methods , Salicylic Acid/chemistry , Crystallization/methods , Nitrogen Isotopes/chemistry , ortho-Aminobenzoates/chemistry , Carbon Isotopes/chemistry , Solutions/chemistry , Molecular Structure
15.
Mol Pharm ; 21(6): 2894-2907, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38688017

ABSTRACT

The formulation of drug with improved bioavailability is always challenging and indispensable in the field of pharmaceutics. The control of intermolecular interactions via crystal engineering approach and solid-state molecular recognition results in the formation of active drug molecules with modulated pharmacological benefits. Therefore, with the aim to improve the solubility and dissolution rate of the drug chlorpropamide (CPA), the mechanochemical liquid-assisted grinding (LAG) of the drug with several pharmaceutically accepted excipients was performed. This contributed to the discovery of six novel solid phases, namely salts, salt cocrystals and salt cocrystal hydrate─the salt of CPA with 3, 4-diaminopyridine (DAP); salt and salt cocrystal (SC) polymorph (Z″=3) with 1, 4-diazabicyclo [2.2.2] octane (DABCO); a salt, SC polymorph (Z″=9), and a SC hydrate (Z″=9) with piperazine (PIP). The formation of these salts and salt cocrystals are mainly guided by the strong hydrogen bonds with tunable strength having high electrostatic contribution. This attractive interaction brings the donor and the acceptor atoms close to each other for a facile proton transfer. Furthermore, the conformational constraints on the drug molecules, provided by the excipients via strong and directional hydrogen bonds, are quite impressive as this leads to the identification and characterization of "new conformational isomers" for the CPA molecules. The new crystalline phases exhibit enhanced intrinsic dissolution rate in comparison to that of the pure drug, the magnitude being 7, 131, and 120 folds for CPADAP, CPADABCO_II, and CPAPIP_III, respectively. Furthermore, it is interesting to note that the order of solubility is enhanced by 2.7-, 3-, and 7-fold, respectively, for the abovementioned salts. This also mirrors the trends in the magnitude of the binding energy, the higher magnitude being reflected in the lower solubility. Additionally, the in vivo experiments performed in SD rats results in the enhancement of the magnitude of the pharmacokinetic properties, when compared to the pristine drug. The concentration of the drug in CPADABCO_II and CPAPIP_III formulations exhibits 6- and 4-fold increments, respectively. Indeed, these results corroborate to the trends observed in the structural characterization, intermolecular energy calculations, solubility, and in vitro dissolution assessments.


Subject(s)
Chlorpropamide , Crystallization , Hydrogen Bonding , Salts , Solubility , Crystallization/methods , Salts/chemistry , Chlorpropamide/chemistry , Chemistry, Pharmaceutical/methods , Excipients/chemistry , Drug Compounding/methods , Animals , Rats , Biological Availability
16.
Int J Mol Sci ; 25(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38542174

ABSTRACT

The present study was designed to investigate the physical stability of three organic materials with similar chemical structures. The examined compounds revealed completely different crystallization tendencies in their supercooled liquid states and were classified into three distinct classes based on their tendency to crystallize. (S)-4-Benzyl-2-oxazolidinone easily crystallizes during cooling from the melt; (S)-4-Benzylthiazolidine-2-thione does not crystallize during cooling from the melt, but crystallizes easily during subsequent reheating above Tg; and (S)-4-Benzyloxazolidine-2-thione does not crystallize either during cooling from the melt or during reheating. Such different tendencies to crystallize are observed despite the very similar chemical structures of the compounds, which only differ in oxide or sulfur atoms in one of their rings. We also studied the isothermal crystallization kinetics of the materials that were shown to transform into a crystalline state. Molecular dynamics and thermal properties were thoroughly investigated using broadband dielectric spectroscopy, as well as conventional and temperature-modulated differential scanning calorimetry in the wide temperature range. It was found that all three glass formers have the same dynamic fragility (m = 93), calculated directly from dielectric structural relaxation times. This result verifies that dynamic fragility is not related to the tendency to crystallize. In addition, thermodynamic fragility predictions were also made using calorimetric data. It was found that the thermodynamic fragility evaluated based on the width of the glass transition, observed in the temperature dependence of heat capacity, correlates best with the tendency to crystallize.


Subject(s)
Thiones , Crystallization/methods , Phase Transition , Temperature , Thermodynamics , Calorimetry, Differential Scanning
17.
J Vis Exp ; (205)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38526130

ABSTRACT

Protocols for robotic protein crystallization using the Crystallization Facility at Harwell and in situ room temperature data collection from crystallization plates at Diamond Light Source beamline VMXi are described. This approach enables high-quality room-temperature crystal structures to be determined from multiple crystals in a straightforward manner and provides very rapid feedback on the results of crystallization trials as well as enabling serial crystallography. The value of room temperature structures in understanding protein structure, ligand binding, and dynamics is becoming increasingly recognized in the structural biology community. This pipeline is accessible to users from all over the world with several available modes of access. Crystallization experiments that are set up can be imaged and viewed remotely with crystals identified automatically using a machine learning tool. Data are measured in a queue-based system with up to 60° rotation datasets from user-selected crystals in a plate. Data from all the crystals within a particular well or sample group are automatically merged using xia2.multiplex with the outputs straightforwardly accessed via a web browser interface.


Subject(s)
Proteins , Synchrotrons , Crystallization/methods , Crystallography, X-Ray , Temperature , Proteins/chemistry , Data Collection
18.
Acta Crystallogr D Struct Biol ; 80(Pt 4): 279-288, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38488731

ABSTRACT

A considerable bottleneck in serial crystallography at XFEL and synchrotron sources is the efficient production of large quantities of homogenous, well diffracting microcrystals. Efficient high-throughput screening of batch-grown microcrystals and the determination of ground-state structures from different conditions is thus of considerable value in the early stages of a project. Here, a highly sample-efficient methodology to measure serial crystallography data from microcrystals by raster scanning within standard in situ 96-well crystallization plates is described. Structures were determined from very small quantities of microcrystal suspension and the results were compared with those from other sample-delivery methods. The analysis of a two-dimensional batch crystallization screen using this method is also described as a useful guide for further optimization and the selection of appropriate conditions for scaling up microcrystallization.


Subject(s)
Synchrotrons , Crystallography, X-Ray , Crystallization/methods , Data Collection
19.
Mol Pharm ; 21(5): 2555-2564, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38551918

ABSTRACT

Poloxamer 188 (P188) was hypothesized to be a dual functional excipient, (i) a stabilizer in frozen solution to prevent ice-surface-induced protein destabilization and (ii) a bulking agent to provide elegant lyophiles. Based on X-ray diffractometry and differential scanning calorimetry, sucrose, in a concentration-dependent manner, inhibited P188 crystallization during freeze-drying, while trehalose had no such effect. The recovery of lactate dehydrogenase (LDH), the model protein, was evaluated after reconstitution. While low LDH recovery (∼60%) was observed in the lyophiles prepared with P188, the addition of sugar improved the activity recovery to >85%. The secondary structure of LDH in the freeze-dried samples was assessed using infrared spectroscopy, and only moderate structural changes were observed in the lyophiles formulated with P188 and sugar. Thus, P188 can be a promising dual functional excipient in freeze-dried protein formulations. However, P188 alone does not function as a lyoprotectant and needs to be used in combination with a sugar.


Subject(s)
Calorimetry, Differential Scanning , Excipients , Freeze Drying , Poloxamer , Trehalose , Freeze Drying/methods , Poloxamer/chemistry , Excipients/chemistry , Trehalose/chemistry , Calorimetry, Differential Scanning/methods , Sucrose/chemistry , X-Ray Diffraction , L-Lactate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/chemistry , Crystallization/methods , Chemistry, Pharmaceutical/methods , Proteins/chemistry , Drug Compounding/methods , Freezing
20.
J Struct Biol ; 216(2): 108089, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537893

ABSTRACT

Fusion proteins (FPs) are frequently utilized as a biotechnological tool in the determination of macromolecular structures using X-ray methods. Here, we explore the use of different protein tags in various FP, to obtain initial phases by using them in a partial molecular replacement (MR) and constructing the remaining FP structure with ARP/wARP. Usually, the tag is removed prior to crystallization, however leaving the tag on may facilitate crystal formation, and structural determination by expanding phases from known to unknown segments of the complex. In this study, the Protein Data Bank was mined for an up-to-date list of FPs with the most used protein tags, Maltose Binding Protein (MBP), Green Fluorescent Protein (GFP), Thioredoxin (TRX), Glutathione transferase (GST) and the Small Ubiquitin-like Modifier Protein (SUMO). Partial MR using the protein tag, followed by automatic model building, was tested on a subset of 116 FP. The efficiency of this method was analyzed and factors that influence the coordinate construction of a substantial portions of the fused protein were identified. Using MBP, GFP, and SUMO as phase generators it was possible to build at least 75 % of the protein of interest in 36 of the 116 cases tested. Our results reveal that tag selection has a significant impact; tags with greater structural stability, such as GFP, increase the success rate. Further statistical analysis identifies that resolution, Wilson B factor, solvent percentage, completeness, multiplicity, protein tag percentage in the FP (considering amino acids), and the linker length play pivotal roles using our approach. In cases where a structural homologous is absent, this method merits inclusion in the toolkit of protein crystallographers.


Subject(s)
Green Fluorescent Proteins , Maltose-Binding Proteins , Recombinant Fusion Proteins , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/chemistry , Maltose-Binding Proteins/genetics , Maltose-Binding Proteins/chemistry , Maltose-Binding Proteins/metabolism , Crystallography, X-Ray/methods , Glutathione Transferase/genetics , Glutathione Transferase/chemistry , Glutathione Transferase/metabolism , Thioredoxins/chemistry , Thioredoxins/genetics , Thioredoxins/metabolism , Models, Molecular , Databases, Protein , Crystallization/methods , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL