Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.912
Filter
1.
Biomolecules ; 14(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38927013

ABSTRACT

Ovarian cancer (OC) is one of the most lethal gynecologic cancers that is typically diagnosed at the very late stage of disease progression. Thus, there is an unmet need to develop diagnostic probes for early detection of OC. One approach may rely on RNA as a molecular biomarker. In this regard, FLJ22447 lncRNA is an RNA biomarker that is over-expressed in ovarian cancer (OC) and in cancer-associated fibroblasts (CAFs). CAFs appear early on in OC as they provide a metastatic niche for OC progression. FIT-PNAs (forced intercalation-peptide nucleic acids) are DNA analogs that are designed to fluoresce upon hybridization to their complementary RNA target sequence. In recent studies, we have shown that the introduction of cyclopentane PNAs into FIT-PNAs (cpFIT-PNA) results in superior RNA sensors. Herein, we report the design and synthesis of cpFIT-PNAs for the detection of this RNA biomarker in living OC cells (OVCAR8) and in CAFs. cpFIT-PNA was compared to FIT-PNA and the cell-penetrating peptide (CPP) of choice was either a simple one (four L-lysines) or a CPP with enhanced cellular uptake (CLIP6). The combination of CLIP6 with cpFIT-PNA resulted in a superior sensing of FLJ22447 lncRNA in OVCAR8 cells as well as in CAFs. Moreover, incubation of CLIP6-cpFIT-PNA in OVCAR8 cells leads to a significant decrease (ca. 60%) in FLJ22447 lncRNA levels and in cell viability, highlighting the potential theranostic use of such molecules.


Subject(s)
Cyclopentanes , Ovarian Neoplasms , Peptide Nucleic Acids , RNA, Long Noncoding , Humans , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Female , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Peptide Nucleic Acids/chemistry , Cyclopentanes/chemistry , Cyclopentanes/pharmacology , Cell Line, Tumor , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
2.
Sci Rep ; 14(1): 14253, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902339

ABSTRACT

The antibiotic fusidic acid (FA) is used to treat Staphylococcus aureus infections. It inhibits protein synthesis by binding to elongation factor G (EF-G) and preventing its release from the ribosome after translocation. While FA, due to permeability issues, is only effective against gram-positive bacteria, the available structures of FA-inhibited complexes are from gram-negative model organisms. To fill this knowledge gap, we solved cryo-EM structures of the S. aureus ribosome in complex with mRNA, tRNA, EF-G and FA to 2.5 Å resolution and the corresponding complex structures with the recently developed FA derivative FA-cyclopentane (FA-CP) to 2.0 Å resolution. With both FA variants, the majority of the ribosomal particles are observed in chimeric state and only a minor population in post-translocational state. As expected, FA binds in a pocket between domains I, II and III of EF-G and the sarcin-ricin loop of 23S rRNA. FA-CP binds in an identical position, but its cyclopentane moiety provides additional contacts to EF-G and 23S rRNA, suggesting that its improved resistance profile towards mutations in EF-G is due to higher-affinity binding. These high-resolution structures reveal new details about the S. aureus ribosome, including confirmation of many rRNA modifications, and provide an optimal starting point for future structure-based drug discovery on an important clinical drug target.


Subject(s)
Cryoelectron Microscopy , Cyclopentanes , Fusidic Acid , Peptide Elongation Factor G , Ribosomes , Staphylococcus aureus , Fusidic Acid/pharmacology , Fusidic Acid/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/metabolism , Ribosomes/metabolism , Ribosomes/drug effects , Cyclopentanes/pharmacology , Cyclopentanes/chemistry , Peptide Elongation Factor G/metabolism , Peptide Elongation Factor G/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Models, Molecular , RNA, Transfer/metabolism , RNA, Transfer/chemistry
4.
Nanoscale ; 16(22): 10675-10681, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38768320

ABSTRACT

The incorporation of artificial intelligence into agriculture presents challenges, particularly due to hardware limitations, especially in sensors. Currently, pest detection relies heavily on manual scouting by humans. Therefore, the objective of this study is to create a chemoresistive sensor that enables early identification of the characteristic volatile compound, viz., methyl jasmonate, released during pest infestations. Given the lower reactivity of esters, we have fine-tuned a composite consisting of SnO2 nanoparticles and 2D-MXene sheets to enhance adsorption and selective oxidation, resulting in heightened sensitivity. The optimized composite demonstrated a notable response even at concentrations as low as 120 ppb, successfully confirming pest infestations in tomato crops.


Subject(s)
Acetates , Cyclopentanes , Oxylipins , Tin Compounds , Cyclopentanes/chemistry , Oxylipins/metabolism , Oxylipins/chemistry , Tin Compounds/chemistry , Acetates/chemistry , Animals , Solanum lycopersicum/chemistry , Solanum lycopersicum/metabolism , Insecta , Stress, Physiological/drug effects
5.
Bioorg Chem ; 148: 107452, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763001

ABSTRACT

A new class of compounds, namely highly substituted diaminocyclopentane-l-lysine adducts, have been discovered as potent inhibitors of O-GlcNAcase, an enzyme crucial for protein de-O-glycosylation. These inhibitors exhibit exceptional selectivity and reversibility and are the first example of human O-GlcNAcase inhibitors that are structurally related to the transition state of the rate-limiting step with the "aglycon" still in bond-length proximity. The ease of their preparation, remarkable biological activities, stability, and non-toxicity make them promising candidates for the development of anti-tau-phosphorylation agents holding significant potential for the treatment of Alzheimer's disease.


Subject(s)
Enzyme Inhibitors , Lysine , Humans , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Structure-Activity Relationship , Lysine/chemistry , Lysine/pharmacology , beta-N-Acetylhexosaminidases/antagonists & inhibitors , beta-N-Acetylhexosaminidases/metabolism , Cyclopentanes/chemistry , Cyclopentanes/pharmacology , Cyclopentanes/chemical synthesis , Molecular Structure , Dose-Response Relationship, Drug
6.
Org Lett ; 26(22): 4818-4823, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38809781

ABSTRACT

We have successfully accomplished a catalytic asymmetric total synthesis of entecavir, a first-line antihepatitis B virus medication. The pivotal aspect of our strategy lies in the utilization of a Pd-catalyzed enyne borylative cyclization reaction, enabling the construction of a highly substituted cyclopentene scaffold with exceptional stereoselectivity. Additionally, we efficiently accessed the crucial 1,3-diol enyne system early in our synthetic route through a diarylprolinol organocatalyzed enantioselective cross-aldol reaction and Re-catalyzed allylic alcohol relocation. By strategically integrating these three catalytic protocols, we established a practical pathway for acquiring valuable densely heteroatom-substituted cyclopentene cores.


Subject(s)
Antiviral Agents , Cyclopentanes , Guanine , Hepatitis B virus , Cyclopentanes/chemistry , Cyclopentanes/chemical synthesis , Catalysis , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Stereoisomerism , Molecular Structure , Guanine/chemistry , Guanine/analogs & derivatives , Hepatitis B virus/drug effects , Cyclization , Palladium/chemistry
7.
J Am Chem Soc ; 146(21): 14672-14684, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38743881

ABSTRACT

Pyridoxal 5'-phosphate (PLP)-dependent enzymes are the most versatile biocatalysts for synthesizing nonproteinogenic amino acids. α,α-Disubstituted quaternary amino acids, such as 1-aminocyclopentane-1-carboxylic acid (cycloleucine), are useful building blocks for pharmaceuticals. In this study, starting with the biosynthesis of fusarilin A, we discovered a family of PLP-dependent enzymes that can facilitate tandem carbon-carbon forming steps to catalyze an overall [3 + 2]-annulation. In the first step, the cycloleucine synthases use SAM as the latent electrophile and an in situ-generated enamine as the nucleophile for γ-substitution. Whereas previously characterized γ-replacement enzymes protonate the resulting α-carbon and release the acyclic amino acid, cycloleucine synthases can catalyze an additional, intramolecular aldol or Mannich reaction with the nucleophilic α-carbon to form the substituted cyclopentane. Overall, the net [3 + 2]-annulation reaction can lead to 2-hydroxy or 2-aminocycloleucine products. These studies further expand the biocatalytic scope of PLP-dependent enzymes.


Subject(s)
Pyridoxal Phosphate , Pyridoxal Phosphate/metabolism , Pyridoxal Phosphate/chemistry , Biocatalysis , Molecular Structure , Cyclopentanes/chemistry , Cyclopentanes/metabolism
8.
Phytochemistry ; 223: 114120, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705265

ABSTRACT

Eleven previously undescribed sesquiterpenoids (8-18), one undescribed jasmonic acid derivative (35) and 28 known compounds were isolated from the leaves of Artemisia stolonifera. Undescribed compounds with their absolute configurations were determined by extensive spectroscopic analysis, single-crystal X-ray diffraction and ECD calculation. Compound 8 was identified as a rare sesquiterpenoid featuring a rearranged 5/8 bicyclic ring system, whereas compound 17 was found to be an unprecedented monocyclic sesquiterpenoid with methyl rearrangement. Evaluation of biological activity showed that compounds 1-5 and 7 displayed cytotoxicity against six tumor cells. In the meantime, compounds 11, 12, 18 and 35 exhibited inhibitory effects against LPS-stimulated NO production in RAW 264.7 macrophage cells and reduced the transcription of IL-6 and IL-1ß in a dose-dependent manner at 25, 50 and 100 µM. Moreover, the anti-inflammatory-based network pharmacology and molecular docking analyses revealed potential target proteins of 11, 12, 18 and 35.


Subject(s)
Anti-Inflammatory Agents , Artemisia , Cyclopentanes , Nitric Oxide , Oxylipins , Sesquiterpenes , Artemisia/chemistry , Mice , Oxylipins/pharmacology , Oxylipins/chemistry , Oxylipins/isolation & purification , Animals , RAW 264.7 Cells , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Cyclopentanes/chemistry , Cyclopentanes/pharmacology , Cyclopentanes/isolation & purification , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Molecular Structure , Structure-Activity Relationship , Molecular Docking Simulation , Humans , Dose-Response Relationship, Drug , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Plant Leaves/chemistry , Drug Screening Assays, Antitumor
9.
J Nat Prod ; 87(5): 1358-1367, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38656153

ABSTRACT

cis-12-oxo-Phytodieneoic acid-α-monoglyceride (1) was isolated from Arabidopsis thaliana. The chemical structure of 1 was elucidated based on exhaustive 1D and 2D NMR spectroscopic measurements and supported by FDMS and HRFDMS data. The absolute configuration of the cis-OPDA moiety in 1 was determined by comparison of 1H NMR spectra and ECD measurements. With respect to the absolute configuration of the ß-position of the glycerol backbone, the 2:3 ratio of (S) to (R) was determined by making ester-bonded derivatives with (R)-(+)-α-methoxy-α-trifluoromethylphenylacetyl chloride and comparing 1H NMR spectra. Wounding stress did not increase endogenous levels of 1, and it was revealed 1 had an inhibitory effect of A. thaliana post germination growth. Notably, the endogenous amount of 1 was higher than the amounts of (+)-7-iso-jasmonic acid and (+)-cis-OPDA in intact plants. 1 also showed antimicrobial activity against Gram-positive bacteria, but jasmonic acid did not. It was also found that α-linolenic acid-α-monoglyceride was converted into 1 in the A. thaliana plant, which implied α-linolenic acid-α-monoglyceride was a biosynthetic intermediate of 1.


Subject(s)
Arabidopsis , Molecular Structure , Monoglycerides/pharmacology , Monoglycerides/chemistry , Cyclopentanes/pharmacology , Cyclopentanes/chemistry , Oxylipins/chemistry , Oxylipins/pharmacology , Fatty Acids, Unsaturated/chemistry , Fatty Acids, Unsaturated/pharmacology , Fatty Acids, Unsaturated/isolation & purification , Germination/drug effects
10.
Biopolymers ; 115(3): e23575, 2024 May.
Article in English | MEDLINE | ID: mdl-38465777

ABSTRACT

Conformational search and density functional theory calculations were performed to explore the preferences of helical structures for chiro-specific oligo-γ-peptides of 2-(aminomethyl)cyclopentanecarboxylic acid (γAmc5) with a cyclopentyl constraint on the Cα-Cß bond in solution. The dimer and tetramer of γAmc5 (1) with homochiral (1S, 2S) configurations exhibited a strong preference for the 9-membered helix foldamer in solution, except for the tetramer in water. However, the oligomers of γAmc5 (1) longer than tetramer preferentially adopted a right-handed (P)-2.614-helix (H1-14) as the peptide sequence becomes longer and as solvent polarity increases. The high stabilities for H1-14 foldamers of γAmc5 (1) in solution were ascribed to the favored solvation free energies. The calculated mean backbone torsion angles for H1-14 helix foldamers of γAmc5 (1) were similar to those calculated for oligomers of other γ-residues with cyclopentane or cyclohexane rings. However, the substitution of cyclopentane constraints on the Cα-Cß bond of the γAmc5 (1) residue resulted in different conformational preferences and/or handedness of helix foldamers. In particular, the pyrrolidine-substituted analogs of the H1-14 foldamers of γAmc5 (1) with adjacent amine diads substituted at a proximal distance are expected to be potential catalysts for the crossed aldol condensation in nonpolar and polar solvents.


Subject(s)
Cyclopentanes , Peptides , Cyclopentanes/chemistry , Peptides/chemistry , Protein Structure, Secondary , Carboxylic Acids/chemistry , Thermodynamics , Models, Molecular
11.
Chembiochem ; 25(1): e202300593, 2024 01 02.
Article in English | MEDLINE | ID: mdl-37934005

ABSTRACT

Researchers have established that (+)-7-iso-jasmonic acid ((+)-7-iso-JA) is an intermediate in the production of cis-jasmone (CJ); however, the biosynthetic pathway of CJ has not been fully described. Previous reports stated that CJ, a substructure of pyrethrin II produced by pyrethrum (Tanacetum cinerariifolium), is not biosynthesized through this biosynthetic pathway. To clarify the ambiguity, stable isotope-labelled jasmonates were synthesized, and compounds were applied to apple mint (Mentha suaveolens) via air propagation. The results showed that cis-jasmone is not generated from intermediate (+)-7-iso-JA, and (+)-7-iso-JA is not produced from 3,7-dideydro-JA (3,7-ddh-JA); however, 3,7-didehydro-JA and 4,5-didehydro-7-iso-JA were converted into CJ and JA, respectively.


Subject(s)
Biosynthetic Pathways , Chrysanthemum cinerariifolium , Oxylipins/chemistry , Chrysanthemum cinerariifolium/metabolism , Cyclopentanes/chemistry
12.
Org Lett ; 25(18): 3276-3280, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37102994

ABSTRACT

Polyquinane sesquiterpenoids (PQSTs) are complex compounds with two or three fused cabocyclopentane ring systems, and the biocatalysts for direct C-H bond oxidation on these scaffolds have rarely been discovered. In this study, we discovered two versatile fungal CYP450s capable of performing diverse oxidations on seven PQST scaffolds, resulting in the generation of 20 unique products. Our findings significantly expand the diversity of oxidized PQST scaffolds and provide important biocatalysts for the selective oxidation of inert carbons of terpenoids in future research.


Subject(s)
Cytochrome P-450 Enzyme System , Sesquiterpenes , Sesquiterpenes/chemistry , Oxidation-Reduction , Cytochrome P-450 Enzyme System/metabolism , Cyclopentanes/chemistry
13.
J Org Chem ; 88(12): 7724-7735, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-36705518

ABSTRACT

The present study reports an asymmetric organocascade reaction of oxindole-derived alkenes with 3-bromo-1-nitropropane efficiently catalyzed by the bifunctional catalyst. Spirooxindole-fused cyclopentanes were produced in moderate-to-good isolated yields (15-69%) with excellent stereochemical outcomes. The synthetic utility of the protocol was exemplified on a set of additional transformations of the corresponding spirooxindole compounds.


Subject(s)
Alkenes , Cyclopentanes , Cyclopentanes/chemistry , Catalysis , Alkenes/chemistry , Stereoisomerism
14.
Nat Prod Res ; 37(7): 1205-1211, 2023 Apr.
Article in English | MEDLINE | ID: mdl-34585648

ABSTRACT

A new cyclopentenone derivative, atrovinol (1), together with ten known compounds (2-11) were isolated from Trichoderma atroviride HH-01, an endophytic fungus from Illigera rhodantha (Hernandiaceae). Their structures were identified by HRESIMS, 1 D/2D NMR, and electronic circular dichroism (ECD) spectra. Compound 1 exhibited moderate inhibitory activity against Staphylococcus aureus and Bacillus subtilis with MIC values of 8.0 µg/mL and 16.0 µg/mL, respectively.


Subject(s)
Hypocreales , Trichoderma , Molecular Structure , Cyclopentanes/pharmacology , Cyclopentanes/chemistry , Trichoderma/chemistry , Anti-Bacterial Agents/chemistry
15.
J Mol Graph Model ; 118: 108326, 2023 01.
Article in English | MEDLINE | ID: mdl-36166996

ABSTRACT

The mechanism of Diels-Alder reactions between cyclopentadiene and several cyanoethylenes was studied by means of Density Functional Theory calculations using QTAIM and IQA (Interacting Quantum Atoms) analyses along complete IRC paths. Each geometry from the IRC had its wavefunction computed and the topology of the electronic density for it was then evaluated. By means of IQA, the global energetic profile was partitioned among the various atoms in the molecule, providing insight into what atoms are the main ones responsible for the magnitude of the energy barriers. The (a)synchronicity of the reaction mechanisms featuring non-symmetrically substituted dienophiles was characterized, from QTAIM, by the electron densities and Laplacians over the LCP's as well as by the different atomic energy barriers obtained from IQA. The magnitude of the atomic barrier nicely explains the (a)synchronicity of the reaction mechanisms, and the degree of (a)synchronicity is nicely revealed by the difference between the earlier and later bond breaking and bond formations. The main conclusion is that important energetic and electronic changes are occurring before and after the position of the transition state structure, mainly for those asynchronous mechanisms, and although these provide essential insight into the reaction mechanism, most studies cannot assess this kind of information because they are focusing solely on reactants, transition states, and products. We advocate that the additional computational effort required for such analyses is more than compensated by the great amount of useful information it provides.


Subject(s)
Cyclopentanes , Quantum Theory , Models, Molecular , Cycloaddition Reaction , Cyclopentanes/chemistry , Electronics
16.
J Nat Prod ; 85(11): 2541-2546, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36367222

ABSTRACT

Cladoxanthones A (1) and B (2), two xanthone-derived metabolites featuring a new spiro[cyclopentane-1,2'-[3,9a]ethanoxanthene]-2,4',9',11'(4a'H)-tetraone skeleton, were isolated from cultures of the ascomycete fungus Cladosporium sp., together with the known mangrovamide J (3). Their structures were elucidated primarily by NMR experiments. The absolute configurations of 1 and 2 were assigned by X-ray crystallography using Cu Kα radiation. Compound 1 could be generated from the hypothetical precursors related to α-methylene ketone and dihydro-xanthone via a Diels-Alder reaction, while 2 could be an oxidative coupling product resulting from 1 and 3. Compounds 1 and 2 showed weakly cytotoxic effects.


Subject(s)
Antineoplastic Agents , Cladosporium , Cyclopentanes , Xanthones , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cladosporium/chemistry , Crystallography, X-Ray , Cyclopentanes/chemistry , Cyclopentanes/isolation & purification , Cyclopentanes/pharmacology , Molecular Structure , Xanthones/chemistry , Xanthones/isolation & purification , Xanthones/pharmacology
17.
J Nat Prod ; 85(11): 2592-2602, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36288556

ABSTRACT

In this work, four new cyclodepsipeptides, fusarihexins C-E (1-3) and enniatin Q (4), four new cyclopentane derivatives, fusarilins A-D (5-8), together with eight known compounds (9-16), were isolated from cultures of the endophytic fungus Fusarium sp. The structures of the isolated compounds were elucidated by analysis of HRMS and NMR spectroscopic data. The absolute configurations were determined using Marfey's method, a modified Mosher's method, single-crystal X-ray diffraction analysis, and ECD analysis. The antitumor activities of the isolated compounds in vitro were evaluated. Cyclodepsipeptides displayed cytotoxicities against the Huh-7, MRMT-1, and HepG-2 cell lines. Compounds 4, 9, 10, and 12 with IC50 values of 1.0-9.1 µM exhibited the most potent cytotoxicities against the three cell lines as compared to the positive control-5-fluorouracil. Compounds 1-3 and 11 exhibited moderate cytotoxic activities (IC50 values of 10.7-20.1 µM).


Subject(s)
Antineoplastic Agents , Cyclopentanes , Depsipeptides , Fusarium , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Crystallography, X-Ray , Cyclopentanes/chemistry , Cyclopentanes/isolation & purification , Cyclopentanes/pharmacology , Depsipeptides/chemistry , Fusarium/chemistry , Molecular Structure , Hep G2 Cells , Humans
18.
Chem Soc Rev ; 51(20): 8652-8675, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36172989

ABSTRACT

Carbocycles are a key and widely present structural motif in organic compounds. The construction of structurally intriguing carbocycles, such as highly-strained fused rings, spirocycles or highly-functionalized carbocycles with congested stereocenters, remains challenging in organic chemistry. Cyclopropanes, cyclobutanes and cyclopentanes within such carbocycles can be synthesized through ring contraction. These ring contractions involve re-arrangement of and/or small molecule extrusion from a parental ring, which is either a carbocycle or a heterocycle of larger size. This review provides an overview of synthetic methods for ring contractions to form cyclopropanes, cyclobutanes and cyclopentanes en route to structurally intriguing carbocycles.


Subject(s)
Cyclobutanes , Cyclization , Cyclobutanes/chemistry , Cyclopentanes/chemistry , Cyclopropanes/chemistry , Stereoisomerism
19.
J Mol Model ; 28(9): 283, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36044079

ABSTRACT

The application of antineoplastic chemotherapeutic agents causes a common side effect known as chemotherapy-induced peripheral neuropathy (CIPN) that leads to reducing the quality of patient's life. This research involves the performance of molecular docking and molecular dynamic (MD) simulation studies to explore the impact of terpenoids of Ginkgo biloba on the targets (CB-1, TLR4, FAAH-1, COX-1, COX-2) that can significantly affect the controlling of CIPN's symptoms. According to the in-vitro and in-vivo investigations, terpenoids, particularly ginkgolides B, A, and bilobalide, can cause significant effects on neuropathic pain. The molecular docking results disclosed the tendency of our ligands to interact with mainly CB1 and FAAH-1, as well as partly with TLR4, throughout their interactions with targets. Terpene trilactone can exhibit a lower rate of binding energy than CB1's inhibitor (7dy), while being precisely located in the CB1's active site and capable of inducing stable interactions by forming hydrogen bonds. The analyses of MD simulation proved that ginkgolide B was a more suitable activator and inhibitor for CB1 and TLR4, respectively, when compared to bilobalide and ginkgolide A. Moreover, bilobalide is capable of inhibiting FAAH-1 more effectively than the two other ligands. According to the analyses of ADME, every three ligands followed the Lipinski's rule of five. Considering these facts, the exertion of three ligands is recommended for their anti-inflammatory, neuroprotective, and anti-nociception influences caused by primarily activating CB1 and inhibiting FAAH-1 and TLR4; in this regard, these compounds can stand as potential candidates for the control and treatment of CIPN's symptoms.


Subject(s)
Bilobalides , Peripheral Nervous System Diseases , Cyclopentanes/chemistry , Cyclopentanes/pharmacology , Furans/pharmacology , Ginkgo biloba/chemistry , Humans , Lactones/chemistry , Molecular Docking Simulation , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/prevention & control , Plant Extracts , Terpenes/pharmacology , Toll-Like Receptor 4
20.
Angew Chem Int Ed Engl ; 61(35): e202207059, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35815335

ABSTRACT

Cyclopentenes are common cores in many natural products, and in bioactive and functional molecules. However, their synthesis remains challenging in terms of harsh conditions, poor selectivity, prefunctionalization of the substrates, over-reliance on volatile activating reagents and the use of noble metals. Herein, we develop an electrochemical mediator-induced intermolecular selective (3+2) annulation of readily available alkenes and alkynes/alkenes, which provides a simple and efficient method for the synthesis of a library of decorated cyclopentenes and cyclopentanes. This protocol features high efficiency, mild reaction conditions, broad substrate scope, good functional group tolerance, and high regioselectivity. Potential applications are demonstrated by gram-scale synthesis as well as the construction of structural diversity and complexity. A preliminary mechanistic investigation was performed, which indicated that an iodine radical and carbon radicals are involved in this transformation.


Subject(s)
Alkynes , Cyclopentanes , Alkenes/chemistry , Alkynes/chemistry , Carbon/chemistry , Cyclopentanes/chemistry , Indicators and Reagents
SELECTION OF CITATIONS
SEARCH DETAIL
...