Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24.687
1.
Int J Rheum Dis ; 27(6): e15214, 2024 Jun.
Article En | MEDLINE | ID: mdl-38831532

OBJECTIVE: Previous studies have partly discussed the roles of inflammatory cytokines in obesity and systemic lupus erythematosus (SLE), but the causal relationship among inflammatory cytokines, obesity, and SLE is unclear. It is challenging to comprehensively evaluate the causal relationship between these variables. This study aimed to investigate the role of cytokines as intermediates between obesity and SLE. METHODS: The inverse-variance weighted method (IVW) of mendelian randomization (MR) is mainly used to explore the causal relationship between exposure and outcome by using the genetic variation of the open large genome-wide association studies (GWAS), namely single-nucleotide polymorphisms (SNPs) related to obesity (more than 600 000 participants), inflammatory cytokines (8293 healthy participants) and SLE (7219 cases). Methods such as weighted median, MR-Egger are used to evaluate the reliability of causality. Reverse analysis is performed for each MR analysis to avoid reverse causality. Cochran's Q statistic and funnel chart are used to detect heterogeneity, MR-Egger intercept test and leave-one-out sensitivity analyses evaluated pleiotropy. RESULTS: Obesity was associated with 25 cytokines, and 3 cytokines were associated with SLE, including CTACK (OR = 1.19, 95% CI: 1.06, 1.33, p = .002), IL-18 (OR = 1.13, 95% CI: 1.01, 1.26, p = .027), SCGFb (OR = 0.89, 95% CI: 0.79, 0.99, p = .044). In the opposite direction, SLE was associated with 18 cytokines, and 2 cytokines were associated with obesity, including IP-10 (ßIVW = -.03, 95% CI: -0.05, -0.01, p = .002), MIP-1B (ßIVW = -.03, 95% CI: -0.05, -0.01, p = .004). CONCLUSION: Our MR study suggested that CTACK, IL-18 and SCGFb may play an intermediary role in obesity to SLE, while IP-10 and MIP-1B may play an intermediary role in SLE to obesity.


Cytokines , Genome-Wide Association Study , Lupus Erythematosus, Systemic , Mendelian Randomization Analysis , Obesity , Polymorphism, Single Nucleotide , Humans , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/epidemiology , Obesity/genetics , Obesity/diagnosis , Obesity/epidemiology , Cytokines/genetics , Cytokines/blood , Genetic Predisposition to Disease , Risk Factors , Inflammation Mediators/blood , Interleukin-18/genetics , Phenotype
2.
Arch Virol ; 169(7): 135, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38839691

Monocytes are the primary targets of Zika virus (ZIKV) and are associated with ZIKV pathogenesis. Currently, there is no effective treatment for ZIKV infection. It is known that 1,25-dihydroxy vitamin D3 (VitD3) has strong antiviral activity in dengue virus-infected macrophages, but it is unknown whether VitD3 inhibits ZIKV infection in monocytes. We investigated the relationship between ZIKV infection and the expression of genes of the VitD3 pathway, as well as the inflammatory response of infected monocytes in vitro. ZIKV replication was evaluated using a plaque assay, and VitD3 pathway gene expression was analyzed by RT-qPCR. Pro-inflammatory cytokines/chemokines were quantified using ELISA. We found that VitD3 did not suppress ZIKV replication. The results showed a significant decrease in the expression of vitamin D3 receptor (VDR), cytochrome P450 family 24 subfamily A member 1 (CYP24A1), and cathelicidin antimicrobial peptide (CAMP) genes upon ZIKV infection. Treatment with VitD3 was unable to down-modulate production of pro-inflammatory cytokines, except TNF-α, and chemokines. This suggests that ZIKV infection inhibits the expression of VitD3 pathway genes, thereby preventing VitD3-dependent inhibition of viral replication and the inflammatory response. This is the first study to examine the effects of VitD3 in the context of ZIKV infection, and it has important implications for the role of VitD3 in the control of viral replication and inflammatory responses during monocyte infection.


Cathelicidins , Monocytes , Virus Replication , Vitamin D3 24-Hydroxylase , Zika Virus Infection , Zika Virus , Humans , Monocytes/virology , Monocytes/metabolism , Monocytes/immunology , Zika Virus/physiology , Virus Replication/drug effects , Vitamin D3 24-Hydroxylase/genetics , Vitamin D3 24-Hydroxylase/metabolism , Zika Virus Infection/virology , Zika Virus Infection/metabolism , Cytokines/metabolism , Cytokines/genetics , Antimicrobial Cationic Peptides/metabolism , Antimicrobial Cationic Peptides/pharmacology , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/genetics
3.
Commun Biol ; 7(1): 691, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38839869

Cellular senescence is a stress-induced, permanent cell cycle arrest involved in tumor suppression and aging. Senescent cells secrete bioactive molecules such as pro-inflammatory cytokines and chemokines. This senescence-associated secretory phenotype (SASP) has been implicated in immune-mediated elimination of senescent cells and age-associated chronic inflammation. However, the mechanisms regulating the SASP are incompletely understood. Here, we show that the stress-responsive kinase apoptosis signal-regulating kinase 1 (ASK1) promotes inflammation in senescence and aging. ASK1 is activated during senescence and increases the expression of pro-inflammatory cytokines and chemokines by activating p38, a kinase critical for the SASP. ASK1-deficient mice show impaired elimination of oncogene-induced senescent cells and an increased rate of tumorigenesis. Furthermore, ASK1 deficiency prevents age-associated p38 activation and inflammation and attenuates glomerulosclerosis. Our results suggest that ASK1 is a driver of the SASP and age-associated chronic inflammation and represents a potential therapeutic target for age-related diseases.


Aging , Cellular Senescence , Inflammation , MAP Kinase Kinase Kinase 5 , MAP Kinase Kinase Kinase 5/metabolism , MAP Kinase Kinase Kinase 5/genetics , Animals , Inflammation/metabolism , Mice , Humans , Mice, Knockout , Mice, Inbred C57BL , Senescence-Associated Secretory Phenotype/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , Cytokines/metabolism , Cytokines/genetics
4.
Front Endocrinol (Lausanne) ; 15: 1390140, 2024.
Article En | MEDLINE | ID: mdl-38828408

Objective: The aim of this study was to identify potential causal cytokines in thymic malignancies and benign tumors from the FinnGen database using Mendelian randomization (MR). Methods: In this study, data from genome-wide association studies (GWAS) of 91 cytokines were used as exposure factors, and those of thymic malignant tumors and thymic benign tumors were the outcome variables. Two methods were used to determine the causal relationship between exposure factors and outcome variables: inverse variance weighting (IVW) and MR-Egger regression. Sensitivity analysis was performed using three methods, namely, the heterogeneity test, the pleiotropy test, and the leave-one-out test. Results: There was a causal relationship between the expression of fibroblast growth factor 5, which is a risk factor for thymic malignant tumors, and thymic malignant tumors. C-C motif chemokine 19 expression, T-cell surface glycoprotein CD5 levels, and interleukin-12 subunit beta levels were causally related to thymic malignant tumors and were protective. Adenosine deaminase levels, interleukin-10 receptor subunit beta expression, tumor necrosis factor (TNF)-related apoptosis-inducing ligand levels, and TNF-related activation-induced cytokine levels showed a causal relationship with thymic benign tumors, which are its risk factors. Caspase 8 levels, C-C motif chemokine 28 levels, interleukin-12 subunit beta levels, latency-associated peptide transforming growth factor beta 1 levels, and programmed cell death 1 ligand 1 expression showed a causal relationship with thymic benign tumors, which are protective factors. Sensitivity analysis showed no heterogeneity. Conclusion: Cytokines showed a causal relationship with benign and malignant thymic tumors. Interleukin-12 subunit beta is a common cytokine that affects malignant and benign thymic tumors.


Cytokines , Genome-Wide Association Study , Mendelian Randomization Analysis , Proteomics , Thymus Neoplasms , Humans , Cytokines/metabolism , Cytokines/genetics , Thymus Neoplasms/genetics , Proteomics/methods , Biomarkers, Tumor/genetics , Risk Factors
5.
J Neuroinflammation ; 21(1): 118, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715090

Maternal inflammation during gestation is associated with a later diagnosis of neurodevelopmental disorders including autism spectrum disorder (ASD). However, the specific impact of maternal immune activation (MIA) on placental and fetal brain development remains insufficiently understood. This study aimed to investigate the effects of MIA by analyzing placental and brain tissues obtained from the offspring of pregnant C57BL/6 dams exposed to polyinosinic: polycytidylic acid (poly I: C) on embryonic day 12.5. Cytokine and mRNA content in the placenta and brain tissues were assessed using multiplex cytokine assays and bulk-RNA sequencing on embryonic day 17.5. In the placenta, male MIA offspring exhibited higher levels of GM-CSF, IL-6, TNFα, and LT-α, but there were no differences in female MIA offspring. Furthermore, differentially expressed genes (DEG) in the placental tissues of MIA offspring were found to be enriched in processes related to synaptic vesicles and neuronal development. Placental mRNA from male and female MIA offspring were both enriched in synaptic and neuronal development terms, whereas females were also enriched for terms related to excitatory and inhibitory signaling. In the fetal brain of MIA offspring, increased levels of IL-28B and IL-25 were observed with male MIA offspring and increased levels of LT-α were observed in the female offspring. Notably, we identified few stable MIA fetal brain DEG, with no male specific difference whereas females had DEG related to immune cytokine signaling. Overall, these findings support the hypothesis that MIA contributes to the sex- specific abnormalities observed in ASD, possibly through altered neuron developed from exposure to inflammatory cytokines. Future research should aim to investigate how interactions between the placenta and fetal brain contribute to altered neuronal development in the context of MIA.


Brain , Cytokines , Mice, Inbred C57BL , Neurodevelopmental Disorders , Placenta , Prenatal Exposure Delayed Effects , Sex Characteristics , Female , Animals , Pregnancy , Male , Cytokines/metabolism , Cytokines/genetics , Mice , Brain/metabolism , Brain/immunology , Brain/embryology , Placenta/metabolism , Placenta/immunology , Prenatal Exposure Delayed Effects/immunology , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/chemically induced , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/immunology , Neurodevelopmental Disorders/metabolism , Poly I-C/toxicity , Transcriptome , Disease Models, Animal , Fetus/metabolism
6.
Front Cell Infect Microbiol ; 14: 1346821, 2024.
Article En | MEDLINE | ID: mdl-38694515

Background: Microbial keratitis is one of the leading causes of blindness globally. An overactive immune response during an infection can exacerbate damage, causing corneal opacities and vision loss. This study aimed to identify the differentially expressed genes between corneal infection patients and healthy volunteers within the cornea and conjunctiva and elucidate the contributing pathways to these conditions' pathogenesis. Moreover, it compared the corneal and conjunctival transcriptomes in corneal-infected patients to cytokine levels in tears. Methods: Corneal and conjunctival swabs were collected from seven corneal infection patients and three healthy controls under topical anesthesia. RNA from seven corneal infection patients and three healthy volunteers were analyzed by RNA sequencing (RNA-Seq). Tear proteins were extracted from Schirmer strips via acetone precipitation from 38 cases of corneal infection and 14 healthy controls. The cytokines and chemokines IL-1ß, IL-6, CXCL8 (IL-8), CX3CL1, IL-10, IL-12 (p70), IL-17A, and IL-23 were measured using an antibody bead assay. Results: A total of 512 genes were found to be differentially expressed in infected corneas compared to healthy corneas, with 508 being upregulated and four downregulated (fold-change (FC) <-2 or > 2 and adjusted p <0.01). For the conjunctiva, 477 were upregulated, and 3 were downregulated (FC <-3 or ≥ 3 and adjusted p <0.01). There was a significant overlap in cornea and conjunctiva gene expression in patients with corneal infections. The genes were predominantly associated with immune response, regulation of angiogenesis, and apoptotic signaling pathways. The most highly upregulated gene was CXCL8 (which codes for IL-8 protein). In patients with corneal infections, the concentration of IL-8 protein in tears was relatively higher in patients compared to healthy controls but did not show statistical significance. Conclusions: During corneal infection, many genes were upregulated, with most of them being associated with immune response, regulation of angiogenesis, and apoptotic signaling. The findings may facilitate the development of treatments for corneal infections that can dampen specific aspects of the immune response to reduce scarring and preserve sight.


Conjunctiva , Cornea , Cytokines , Keratitis , Tears , Transcriptome , Humans , Tears/metabolism , Cytokines/metabolism , Cytokines/genetics , Cornea/metabolism , Cornea/immunology , Female , Male , Middle Aged , Adult , Conjunctiva/metabolism , Conjunctiva/immunology , Keratitis/genetics , Keratitis/immunology , Keratitis/metabolism , Aged , Gene Expression Profiling
7.
Front Immunol ; 15: 1362012, 2024.
Article En | MEDLINE | ID: mdl-38698846

Objectives: Knee osteoarthritis (KOA) and certain inflammatory cytokines (such as interleukin 1 [IL-1] and tumor necrosis factor alpha [TNF-a]) are related; however, the causal relationship remains unclear. Here, we aimed to assess the causal relationship between 41 inflammatory cytokines and KOA using Mendelian randomization (MR). Methods: Two-sample bidirectional MR was performed using genetic variation data for 41 inflammatory cytokines that were obtained from European Genome-Wide Association Study (GWAS) data (n=8293). KOA-related genetic association data were also obtained from European GWAS data (n=40,3124). Inverse variance weighting (IVW), MR, heterogeneity, sensitivity, and multiple validation analyses were performed. Results: Granulocyte colony-stimulating factor (G-CSF) or colony-stimulating factor 3 (CSF-3) levels were negatively associated with the risk of developing KOA (OR: 0.93, 95%CI:0.89-0.99, P=0.015). Additionally, macrophage inflammatory protein-1 alpha (MIP-1A/CCL3) was a consequence of KOA (OR: 0.72, 95%CI:0.54-0.97, P=0.032). No causal relationship was evident between other inflammatory cytokines and KOA development. Conclusion: This study suggests that certain inflammatory cytokines may be associated with KOA etiology. G-CSF exerts an upstream influence on KOA development, whereas MIP-1A (CCL-3) acts as a downstream factor.


Cytokines , Genome-Wide Association Study , Mendelian Randomization Analysis , Osteoarthritis, Knee , Polymorphism, Single Nucleotide , Humans , Chemokine CCL3/genetics , Chemokine CCL3/blood , Cytokines/genetics , Cytokines/blood , Genetic Predisposition to Disease , Inflammation Mediators/metabolism , Osteoarthritis, Knee/genetics
8.
J Gen Virol ; 105(5)2024 May.
Article En | MEDLINE | ID: mdl-38814698

Transmissible gastroenteritis virus (TGEV), an enteropathogenic coronavirus, has caused huge economic losses to the pig industry, with 100% mortality in piglets aged 2 weeks and intestinal injury in pigs of other ages. However, there is still a shortage of safe and effective anti-TGEV drugs in clinics. In this study, phloretin, a naturally occurring dihydrochalcone glycoside, was identified as a potent antagonist of TGEV. Specifically, we found phloretin effectively inhibited TGEV proliferation in PK-15 cells, dose-dependently reducing the expression of TGEV N protein, mRNA, and virus titer. The anti-TGEV activity of phloretin was furthermore refined to target the internalization and replication stages. Moreover, we also found that phloretin could decrease the expression levels of proinflammatory cytokines induced by TGEV infection. In addition, we expanded the potential key targets associated with the anti-TGEV effect of phloretin to AR, CDK2, INS, ESR1, ESR2, EGFR, PGR, PPARG, PRKACA, and MAPK14 with the help of network pharmacology and molecular docking techniques. Furthermore, resistant viruses have been selected by culturing TGEV with increasing concentrations of phloretin. Resistance mutations were reproducibly mapped to the residue (S242) of main protease (Mpro). Molecular docking analysis showed that the mutation (S242F) significantly disrupted phloretin binding to Mpro, suggesting Mpro might be a potent target of phloretin. In summary, our findings indicate that phloretin is a promising drug candidate for combating TGEV, which may be helpful for developing pharmacotherapies for TGEV and other coronavirus infections.


Antiviral Agents , Molecular Docking Simulation , Phloretin , Transmissible gastroenteritis virus , Virus Replication , Transmissible gastroenteritis virus/drug effects , Animals , Swine , Phloretin/pharmacology , Virus Replication/drug effects , Cell Line , Antiviral Agents/pharmacology , Gastroenteritis, Transmissible, of Swine/drug therapy , Gastroenteritis, Transmissible, of Swine/virology , Cytokines/metabolism , Cytokines/genetics , Virus Internalization/drug effects
9.
Cell Mol Biol Lett ; 29(1): 83, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822277

BACKGROUND: Senecavirus A (SVA) caused porcine idiopathic vesicular disease (PIVD) showing worldwide spread with economic losses in swine industry. Although some progress has been made on host factors regulating the replication of SVA, the role of Z-DNA binding protein 1 (ZBP1) remains unclear. METHODS: The expression of ZBP1 in SVA-infected 3D/421 cells was analyzed by quantitative real-time PCR (qRT-PCR) and western blot. Western blot and qRT-PCR were used to detect the effects of over and interference expression of ZBP1 on SVA VP2 gene and protein. Viral growth curves were prepared to measure the viral proliferation. The effect on type I interferons (IFNs), interferon-stimulated genes (ISGs), and pro-inflammatory cytokines in SVA infection was analyzed by qRT-PCR. Western blot was used to analysis the effect of ZBP1 on NF-κB signaling pathway and inhibitor are used to confirm. RESULTS: ZBP1 is shown to inhibit the replication of SVA by enhancing NF-κB signaling pathway mediated antiviral response. SVA infection significantly up-regulated the expression of ZBP1 in 3D4/21 cells. Infection of cells with overexpression of ZBP1 showed that the replication of SVA was inhibited with the enhanced expression of IFNs (IFN-α, IFN-ß), ISGs (ISG15, PKR, and IFIT1) and pro-inflammatory cytokines (IL-6, IL-8, and TNF-α), while, infected-cells with interference expression of ZBP1 showed opposite effects. Further results showed that antiviral effect of ZBP1 is achieved by activation the NF-κB signaling pathway and specific inhibitor of NF-κB also confirmed this. CONCLUSIONS: ZBP1 is an important host antiviral factor in SVA infection and indicates that ZBP1 may be a novel target against SVA.


Macrophages, Alveolar , NF-kappa B , Picornaviridae , Signal Transduction , Virus Replication , Animals , Swine , NF-kappa B/metabolism , Macrophages, Alveolar/virology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/immunology , Picornaviridae/physiology , Cell Line , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cytokines/metabolism , Cytokines/genetics
10.
Front Immunol ; 15: 1370276, 2024.
Article En | MEDLINE | ID: mdl-38742104

Background: Extensive observational studies have reported an association between inflammatory factors and autism spectrum disorder (ASD), but their causal relationships remain unclear. This study aims to offer deeper insight into causal relationships between circulating inflammatory factors and ASD. Methods: Two-sample bidirectional Mendelian randomization (MR) analysis method was used in this study. The genetic variation of 91 circulating inflammatory factors was obtained from the genome-wide association study (GWAS) database of European ancestry. The germline GWAS summary data for ASD were also obtained (18,381 ASD cases and 27,969 controls). Single nucleotide polymorphisms robustly associated with the 91 inflammatory factors were used as instrumental variables. The random-effects inverse-variance weighted method was used as the primary analysis, and the Bonferroni correction for multiple comparisons was applied. Sensitivity tests were carried out to assess the validity of the causal relationship. Results: The forward MR analysis results suggest that levels of sulfotransferase 1A1, natural killer cell receptor 2B4, T-cell surface glycoprotein CD5, Fms-related tyrosine kinase 3 ligand, and tumor necrosis factor-related apoptosis-inducing ligand are positively associated with the occurrence of ASD, while levels of interleukin-7, interleukin-2 receptor subunit beta, and interleukin-2 are inversely associated with the occurrence of ASD. In addition, matrix metalloproteinase-10, caspase 8, tumor necrosis factor-related activation-induced cytokine, and C-C motif chemokine 19 were considered downstream consequences of ASD. Conclusion: This MR study identified additional inflammatory factors in patients with ASD relative to previous studies, and raised a possibility of ASD-caused immune abnormalities. These identified inflammatory factors may be potential biomarkers of immunologic dysfunction in ASD.


Autism Spectrum Disorder , Genome-Wide Association Study , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Humans , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/blood , Autism Spectrum Disorder/immunology , Genetic Predisposition to Disease , White People/genetics , Biomarkers/blood , Inflammation/genetics , Inflammation/blood , Inflammation Mediators/blood , Inflammation Mediators/metabolism , Male , Female , Cytokines/blood , Cytokines/genetics , Europe
11.
J Med Microbiol ; 73(5)2024 May.
Article En | MEDLINE | ID: mdl-38743043

Introduction. Staphylococcus epidermidis biofilms are one of the major causes of bloodstream infections related to the use of medical devices. The diagnosis of these infections is challenging, delaying their treatment and resulting in increased morbidity and mortality rates. As such, it is urgent to characterize the mechanisms employed by this bacterium to endure antibiotic treatments and the response of the host immune system, to develop more effective therapeutic strategies. In several bacterial species, the gene codY was shown to encode a protein that regulates the expression of genes involved in biofilm formation and immune evasion. Additionally, in a previous study, our group generated evidence indicating that codY is involved in the emergence of viable but non-culturable (VBNC) cells in S. epidermidis.Gap statement/Hypothesis. As such, we hypothesized that the gene codY has have an important role in this bacterium virulence.Aim. This study aimed to assess, for the first time, the impact of the deletion of the gene codY in S. epidermidis virulence, namely, in antibiotic susceptibility, biofilm formation, VBNC state emergence and in vitro host immune system response.Methodology. Using an allelic replacement strategy, we constructed and then characterized an S. epidermidis strain lacking codY, in regards to biofilm and VBNC cell formation, susceptibility to antibiotics as well as their role in the interaction with human blood and plasma. Additionally, we investigate whether the codY gene can impact the activation of innate immune cells by evaluating the production of both pro- and anti-inflammatory cytokines by THP-1 macrophages.Results. We demonstrated that the deletion of the gene codY resulted in biofilms with less c.f.u. counts and fewer VBNC cells. Furthermore, we show that although WT and mutant cells were similarly internalized in vitro by human macrophages, a stronger cytokine response was elicited by the mutant in a toll-like receptor 4-dependent manner.Conclusion. Our results indicate that codY contributes to S. epidermidis virulence, which in turn may have an impact on our ability to manage the biofilm-associated infections caused by this bacterium.


Bacterial Proteins , Biofilms , Cytokines , Macrophages , Staphylococcus epidermidis , Staphylococcus epidermidis/genetics , Staphylococcus epidermidis/physiology , Biofilms/growth & development , Humans , Macrophages/microbiology , Macrophages/immunology , Cytokines/metabolism , Cytokines/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/microbiology , Gene Deletion , Virulence , Microbial Viability
12.
Part Fibre Toxicol ; 21(1): 23, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734694

BACKGROUND: Inhalation of biopersistent fibers like asbestos can cause strong chronic inflammatory effects, often resulting in fibrosis or even cancer. The interplay between fiber shape, fiber size and the resulting biological effects is still poorly understood due to the lack of reference materials. RESULTS: We investigated how length, diameter, aspect ratio, and shape of synthetic silica fibers influence inflammatory effects at doses up to 250 µg cm-2. Silica nanofibers were prepared with different diameter and shape. Straight (length ca. 6 to 8 µm, thickness ca. 0.25 to 0.35 µm, aspect ratio ca. 17:1 to 32:1) and curly fibers (length ca. 9 µm, thickness ca. 0.13 µm, radius of curvature ca. 0.5 µm, aspect ratio ca. 70:1) were dispersed in water with no apparent change in the fiber shape during up to 28 days. Upon immersion in aqueous saline (DPBS), the fibers released about 5 wt% silica after 7 days irrespectively of their shape. The uptake of the fibers by macrophages (human THP-1 and rat NR8383) was studied by scanning electron microscopy and confocal laser scanning microscopy. Some fibers were completely taken up whereas others were only partially internalized, leading to visual damage of the cell wall. The biological effects were assessed by determining cell toxicity, particle-induced chemotaxis, and the induction of gene expression of inflammatory mediators. CONCLUSIONS: Straight fibers were only slightly cytotoxic and caused weak cell migration, regardless of their thickness, while the curly fibers were more toxic and caused significantly stronger chemotaxis. Curly fibers also had the strongest effect on the expression of cytokines and chemokines. This may be due to the different aspect ratio or its twisted shape.


Chemotaxis , Macrophages , Particle Size , Silicon Dioxide , Silicon Dioxide/toxicity , Silicon Dioxide/chemistry , Animals , Humans , Rats , Macrophages/drug effects , Macrophages/metabolism , Chemotaxis/drug effects , Nanofibers/toxicity , Nanofibers/chemistry , THP-1 Cells , Transcriptome/drug effects , Mineral Fibers/toxicity , Cytokines/metabolism , Cytokines/genetics , Cell Line
13.
Parasit Vectors ; 17(1): 203, 2024 May 07.
Article En | MEDLINE | ID: mdl-38711063

BACKGROUND: The role of pathogen genotype in determining disease severity and immunopathology has been studied intensively in microbial pathogens including bacteria, fungi, protozoa and viruses but is poorly understood in parasitic helminths. The medically important blood fluke Schistosoma mansoni is an excellent model system to study the impact of helminth genetic variation on immunopathology. Our laboratory has demonstrated that laboratory schistosome populations differ in sporocyst growth and cercarial production in the intermediate snail host and worm establishment and fecundity in the vertebrate host. Here, we (i) investigate the hypothesis that schistosome genotype plays a significant role in immunopathology and related parasite life history traits in the vertebrate mouse host and (ii) quantify the relative impact of parasite and host genetics on infection outcomes. METHODS: We infected BALB/c and C57BL/6 mice with four different laboratory schistosome populations from Africa and the Americas. We quantified disease progression in the vertebrate host by measuring body weight and complete blood count (CBC) with differential over a 12-week infection period. On sacrifice, we assessed parasitological (egg and worm counts, fecundity), immunopathological (organ measurements and histopathology) and immunological (CBC with differential and cytokine profiles) characteristics to determine the impact of parasite and host genetics. RESULTS: We found significant variation between parasite populations in worm numbers, fecundity, liver and intestine egg counts, liver and spleen weight, and fibrotic area but not in granuloma size. Variation in organ weight was explained by egg burden and intrinsic parasite factors independent of egg burden. We found significant variation between infected mouse lines in cytokine levels (IFN-γ, TNF-α), eosinophils, lymphocytes and monocyte counts. CONCLUSIONS: This study showed that both parasite and host genotype impact the outcome of infection. While host genotype explains most of the variation in immunological traits, parasite genotype explains most of the variation in parasitological traits, and both host and parasite genotypes impact immunopathology outcomes.


Genotype , Mice, Inbred BALB C , Mice, Inbred C57BL , Schistosoma mansoni , Schistosomiasis mansoni , Animals , Schistosoma mansoni/immunology , Schistosoma mansoni/genetics , Mice , Schistosomiasis mansoni/immunology , Schistosomiasis mansoni/parasitology , Schistosomiasis mansoni/pathology , Female , Host-Parasite Interactions/immunology , Host-Parasite Interactions/genetics , Cytokines/genetics , Cytokines/blood , Cytokines/immunology
14.
PLoS Negl Trop Dis ; 18(5): e0012126, 2024 May.
Article En | MEDLINE | ID: mdl-38743668

The parasite Leishmania (Viannia) braziliensis is widely distributed in Brazil and is one of the main species associated with human cases of different forms of tegumentary leishmaniasis (TL) such as cutaneous leishmaniasis (CL) and mucosal leishmaniasis (ML). The mechanisms underlying the pathogenesis of TL are still not fully understood, but it is known that factors related to the host and the parasite act in a synergistic and relevant way to direct the response to the infection. In the host, macrophages have a central connection with the parasite and play a fundamental role in the defense of the organism due to their ability to destroy intracellular parasites and present antigens. In the parasite, some intrinsic factors related to the species or even the strain analyzed are fundamental for the outcome of the disease. One of them is the presence of Leishmania RNA Virus 1 (LRV1), an endosymbiont virus that parasitizes some species of Leishmania that triggers a cascade of signals leading to a more severe TL phenotype, such as ML. One of the strategies for understanding factors associated with the immune response generated after Leishmania/host interaction is through the analysis of molecular patterns after infection. Thus, the gene expression profile in human monocyte-derived macrophages obtained from healthy donors infected in vitro with L. braziliensis positive (LbLRV1+) and negative (LbLRV1-) for LRV1 was evaluated. For this, the microarray assay was used and 162 differentially expressed genes were identified in the comparison LbLRV1+ vs. LbLRV1-, 126 upregulated genes for the type I and II interferons (IFN) signaling pathway, oligoadenylate synthase OAS/RNAse L, non-genomic actions of vitamin D3 and RIG-I type receptors, and 36 down-regulated. The top 10 downregulated genes along with the top 10 upregulated genes were considered for analysis. Type I interferon (IFNI)- and OAS-related pathways results were validated by RT-qPCR and Th1/Th2/Th17 cytokines were analyzed by Cytometric Bead Array (CBA) and enzyme-linked immunosorbent assay (ELISA). The microarray results validated by RT-qPCR showed differential expression of genes related to IFNI-mediated pathways with overexpression of different genes in cells infected with LbLRV1+ compared to LbLRV1- and to the control. No significant differences were found in cytokine levels between LbLRV1+ vs. LbLRV1- and control. The data suggest the activation of gene signaling pathways associated with the presence of LRV1 has not yet been reported so far. This study demonstrates, for the first time, the activation of the OAS/RNase L signaling pathway and the non-genomic actions of vitamin D3 when comparing infections with LbLRV1+ versus LbLRV1- and the control. This finding emphasizes the role of LRV1 in directing the host's immune response after infection, underlining the importance of identifying LRV1 in patients with TL to assess disease progression.


Leishmania braziliensis , Leishmaniavirus , Macrophages , Humans , Leishmania braziliensis/genetics , Leishmania braziliensis/immunology , Macrophages/immunology , Macrophages/virology , Leishmaniavirus/genetics , Gene Expression Profiling , Leishmaniasis, Cutaneous/immunology , Brazil , Symbiosis , Cytokines/metabolism , Cytokines/genetics , Transcriptome , Leishmaniasis, Mucocutaneous/immunology , Leishmaniasis, Mucocutaneous/parasitology
15.
Mol Biol Rep ; 51(1): 667, 2024 May 23.
Article En | MEDLINE | ID: mdl-38780696

BACKGROUND: The extracellular matrix (ECM) of skeletal muscle plays a pivotal role in tissue repair and growth, and its remodeling tightly regulated by matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), and inflammatory cytokines. This study aimed to investigate changes in the mRNA expression of MMPs (Mmp-2 and Mmp-14), TIMPs (Timp-1 and Timp-2), and inflammatory cytokines (Il-1ß, Tnf-α, and Tgfß1) in the soleus (SOL) and extensor digitorum longus (EDL) muscles of rats following acute treadmill exercise. Additionally, muscle morphology was examined using hematoxylin and eosin (H&E) staining. METHODS AND RESULTS: Male rats were subjected to acute treadmill exercise at 25 m/min for 60 min with a %0 slope. The mRNA expression of ECM components and muscle morphology in the SOL and EDL were assessed in both sedentary and exercise groups at various time points (immediately (0) and 1, 3, 6, 12, and 24 h post-exercise). Our results revealed a muscle-specific response, with early upregulation of the mRNA expression of Mmp-2, Mmp-14, Timp-1, Timp-2, Il-1ß, and Tnf-α observed in the SOL compared to the EDL. A decrease in Tgfß1 mRNA expression was evident in the SOL at all post-exercise time points. Conversely, Tgfß1 mRNA expression increased at 0 and 3 h post-exercise in the EDL. Histological analysis also revealed earlier cell infiltration in the SOL than in the EDL following acute exercise. CONCLUSIONS: Our results highlight how acute exercise modulates ECM components and muscle structure differently in the SOL and EDL muscles, leading to distinct muscle-specific responses.


Cytokines , Matrix Metalloproteinases , Muscle, Skeletal , Physical Conditioning, Animal , Animals , Physical Conditioning, Animal/physiology , Male , Rats , Muscle, Skeletal/metabolism , Cytokines/metabolism , Cytokines/genetics , Matrix Metalloproteinases/genetics , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Extracellular Matrix/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Tissue Inhibitor of Metalloproteinase-2/genetics , Tissue Inhibitor of Metalloproteinase-2/metabolism , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 14/genetics , Gene Expression Regulation
16.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(5): 404-410, 2024 May.
Article Zh | MEDLINE | ID: mdl-38790096

Objective To explore the regulatory role of dual-specificity phosphatase 5 (DUSP5) in BCG-mediated inflammatory response in mouse RAW264.7 macrophages. Methods Western blot analysis was employed to detect the expression changes of DUSP5 in BCG-infected RAW264.7 macrophages at the period of 0.5, 1, 2, 4, 6, 8, 12 and 24 hours. Intracellular DUSP5 was reduced by small interfering RNA (siRNA) and transfected RAW264.7 macrophages were divided into siRNA-negative control (si-NC) group, DUSP5 knockdown (si-DUSP5) group, si-NC combined BCG infection group, and si-DUSP5 combined BCG infection group. Real-time quantitative PCR was conducted to measure the mRNA expression of interleukin 1ß (IL-1ß), IL-6, tumor necrosis factor α (TNF-α), and IL-10 in cells. ELISA was performed to measure the concentration of the cytokines in cell culture medium. Western blot analysis was performed to detect the expression changes of cellular nuclear factor κB (NF-κB) and phosphorylated NF-κB (p-NF-κB). Results BCG infection upregulated DUSP5 protein expression in RAW264.7 macrophages with the expression of DUSP5 reaching the peak after 4 hours' BCG stimulation. Comparing with si-NC combined BCG infection group, DUSP5 knockdown inhibited the expression and secretion of pro-inflammatory factors IL-1ß, IL-6, and TNF-α, while the expression of the anti-inflammatory factor IL-10 was not affected by DUSP5. Moreover, knockdown of DUSP5 inhibited the phosphorylation of NF-κB in cells. Conclusion DUSP5 knockdown inhibites BCG-mediated macrophage inflammatory response via blocking NF-κB signaling activation.


Dual-Specificity Phosphatases , Macrophages , NF-kappa B , Signal Transduction , Animals , Mice , RAW 264.7 Cells , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , NF-kappa B/metabolism , Macrophages/metabolism , Macrophages/immunology , Inflammation/genetics , Inflammation/metabolism , Gene Knockdown Techniques , Mycobacterium bovis/immunology , Cytokines/metabolism , Cytokines/genetics
17.
Biomolecules ; 14(5)2024 May 08.
Article En | MEDLINE | ID: mdl-38785970

Inflammageing is a condition of perpetual low-grade inflammation induced by ageing. Inflammageing may be predicted by the C-reactive protein (CRP) or by a recently described biomarker which measures N-glycosylated side chains of the carbohydrate component of several acute-phase proteins known as GlycA. The objective of this study was to examine in depth the genetic relationships between CRP and GlycA as well as between each of them and other selected cytokines, which may shed light on the mechanisms of inflammageing. Using the Olink 96 Inflammation panel, data on inflammatory mediators for 1518 twins from the TwinsUK dataset were acquired. Summary statistics for genome-wide association studies for several cytokines as well as CRP and GlycA were collected from public sources. Extensive genetic correlation analyses, colocalization and genetic enrichment analyses were carried out to detect the shared genetic architecture between GlycA and CRP. Mendelian randomization was carried out to assess potential causal relationships. GlycA predicted examined cytokines with a magnitude twice as great as that of CRP. GlycA and CRP were significantly genetically correlated (Rg = 0.4397 ± 0.0854, p-value = 2.60 × 10-7). No evidence of a causal relationship between GlycA and CRP, or between these two biomarkers and the cytokines assessed was obtained. However, the aforementioned relationships were explained well by horizontal pleiotropy. Five exonic genetic variants annotated to five genes explain the shared genetic architecture observed between GlycA and CRP: IL6R, GCKR, MLXIPL, SERPINA1, and MAP1A. GlycA and CRP possess a shared genetic architecture, but the relationship between them appears to be modest, which may imply the promotion of differing inflammatory pathways. GlycA appears to be a more robust predictor of cytokines compared to CRP.


C-Reactive Protein , Genome-Wide Association Study , Inflammation , Humans , C-Reactive Protein/genetics , C-Reactive Protein/metabolism , Inflammation/genetics , Biomarkers , Male , Cytokines/genetics , Cytokines/metabolism , Female , Mendelian Randomization Analysis , Aged , Aging/genetics , Glycoproteins/genetics , Polymorphism, Single Nucleotide , Receptors, Immunologic
18.
Int J Mol Sci ; 25(10)2024 May 17.
Article En | MEDLINE | ID: mdl-38791534

C-type lectins play a crucial role as pathogen-recognition receptors for the dengue virus, which is responsible for causing both dengue fever (DF) and dengue hemorrhagic fever (DHF). DHF is a serious illness caused by the dengue virus, which exists in four different serotypes: DEN-1, DEN-2, DEN-3, and DEN-4. We conducted a genetic association study, during a significant DEN-2 outbreak in southern Taiwan, to explore how variations in the neck-region length of L-SIGN (also known as CD209L, CD299, or CLEC4M) impact the severity of dengue infection. PCR genotyping was utilized to identify polymorphisms in variable-number tandem repeats. We constructed L-SIGN variants containing either 7- or 9-tandem repeats and transfected these constructs into K562 and U937 cells, and cytokine and chemokine levels were evaluated using enzyme-linked immunosorbent assays (ELISAs) following DEN-2 virus infection. The L-SIGN allele 9 was observed to correlate with a heightened risk of developing DHF. Subsequent results revealed that the 9-tandem repeat was linked to elevated viral load alongside predominant T-helper 2 (Th2) cell responses (IL-4 and IL-10) in K562 and U937 cells. Transfecting K562 cells in vitro with L-SIGN variants containing 7- and 9-tandem repeats confirmed that the 9-tandem repeat transfectants facilitated a higher dengue viral load accompanied by increased cytokine production (MCP-1, IL-6, and IL-8). Considering the higher prevalence of DHF and an increased frequency of the L-SIGN neck's 9-tandem repeat in the Taiwanese population, individuals with the 9-tandem repeat may necessitate more stringent protection against mosquito bites during dengue outbreaks in Taiwan.


Dengue Virus , Lectins, C-Type , Receptors, Cell Surface , Severe Dengue , Virus Replication , Humans , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Severe Dengue/immunology , Severe Dengue/virology , Severe Dengue/genetics , Dengue Virus/genetics , Dengue Virus/immunology , Virus Replication/genetics , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Male , K562 Cells , Female , U937 Cells , Taiwan/epidemiology , Minisatellite Repeats/genetics , Adult , Cytokines/metabolism , Cytokines/genetics , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Middle Aged , Viral Load
19.
Front Endocrinol (Lausanne) ; 15: 1344917, 2024.
Article En | MEDLINE | ID: mdl-38745949

Background: Previous studies have reported that the occurrence and development of osteonecrosis is closely associated with immune-inflammatory responses. Mendelian randomization was performed to further assess the causal correlation between 41 inflammatory cytokines and osteonecrosis. Methods: Two-sample Mendelian randomization utilized genetic variants for osteonecrosis from a large genome-wide association study (GWAS) with 606 cases and 209,575 controls of European ancestry. Another analysis included drug-induced osteonecrosis with 101 cases and 218,691 controls of European ancestry. Inflammatory cytokines were sourced from a GWAS abstract involving 8,293 healthy participants. The causal relationship between exposure and outcome was primarily explored using an inverse variance weighting approach. Multiple sensitivity analyses, including MR-Egger, weighted median, simple model, weighted model, and MR-PRESSO, were concurrently applied to bolster the final results. Results: The results showed that bFGF, IL-2 and IL2-RA were clinically causally associated with the risk of osteonecrosis (OR=1.942, 95% CI=1.13-3.35, p=0.017; OR=0.688, 95% CI=0.50-0.94, p=0.021; OR=1.386, 95% CI=1.04-1.85, p = 0.026). there was a causal relationship between SCF and drug-related osteonecrosis (OR=3.356, 95% CI=1.09-10.30, p=0.034). Conclusion: This pioneering Mendelian randomization study is the first to explore the causal link between osteonecrosis and 41 inflammatory cytokines. It conclusively establishes a causal association between osteonecrosis and bFGF, IL-2, and IL-2RA. These findings offer valuable insights into osteonecrosis pathogenesis, paving the way for effective clinical management. The study suggests bFGF, IL-2, and IL-2RA as potential therapeutic targets for osteonecrosis treatment.


Cytokines , Genetic Predisposition to Disease , Genome-Wide Association Study , Mendelian Randomization Analysis , Osteonecrosis , Humans , Osteonecrosis/genetics , Cytokines/genetics , Polymorphism, Single Nucleotide , Interleukin-2/genetics , Fibroblast Growth Factor 2/genetics , Inflammation/genetics
20.
Commun Biol ; 7(1): 630, 2024 May 24.
Article En | MEDLINE | ID: mdl-38789577

Therapeutic agents targeting cytokine-cytokine receptor (CK-CKR) interactions lead to the disruption in cellular signaling and are effective in treating many diseases including tumors. However, a lack of universal and quick access to annotated structural surface regions on CK/CKR has limited the progress of a structure-driven approach in developing targeted macromolecular drugs and precision medicine therapeutics. Herein we develop CytoSIP (Single nucleotide polymorphisms (SNPs), Interface, and Phenotype), a rich internet application based on a database of atomic interactions around hotspots in experimentally determined CK/CKR structural complexes. CytoSIP contains: (1) SNPs on CK/CKR; (2) interactions involving CK/CKR domains, including CK/CKR interfaces, oligomeric interfaces, epitopes, or other drug targeting surfaces; and (3) diseases and phenotypes associated with CK/CKR or SNPs. The database framework introduces a unique tri-level SIP data model to bridge genetic variants (atomic level) to disease phenotypes (organism level) using protein structure (complexes) as an underlying framework (molecule level). Customized screening tools are implemented to retrieve relevant CK/CKR subset, which reduces the time and resources needed to interrogate large datasets involving CK/CKR surface hotspots and associated pathologies. CytoSIP portal is publicly accessible at https://CytoSIP.biocloud.top , facilitating the panoramic investigation of the context-dependent crosstalk between CK/CKR and the development of targeted therapeutic agents.


Cytokines , Polymorphism, Single Nucleotide , Receptors, Cytokine , Humans , Receptors, Cytokine/metabolism , Receptors, Cytokine/chemistry , Receptors, Cytokine/genetics , Cytokines/metabolism , Cytokines/genetics , Cytokines/chemistry , Databases, Protein , Phenotype
...