Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.435
Filter
1.
Viruses ; 16(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39066190

ABSTRACT

Negative-strand RNA viruses form cytoplasmic inclusion bodies (IBs) representing virus replication foci through phase separation or biomolecular condensation of viral and cellular proteins, as a hallmark of their infection. Alternatively, mammalian cells form stalled mRNA containing antiviral stress granules (SGs), as a consequence of phosphorylation of eukaryotic initiation factor 2α (eIF2α) through condensation of several RNA-binding proteins including TIA-1. Whether and how Chandipura virus (CHPV), an emerging human pathogen causing influenza-like illness, coma and death, forms IBs and evades antiviral SGs remain unknown. By confocal imaging on CHPV-infected Vero-E6 cells, we found that CHPV infection does not induce formation of distinct canonical SGs. Instead, CHPV proteins condense and co-localize together with SG proteins to form heterogeneous IBs, which ensued independent of the activation of eIF2α and eIF2α kinase, protein kinase R (PKR). Interestingly, siRNA-mediated depletion of PKR or TIA-1 significantly decreased viral transcription and virion production. Moreover, CHPV infection also caused condensation and recruitment of PKR to IBs. Compared to SGs, IBs exhibited significant rapidity in disassembly dynamics. Altogether, our study demonstrating that CHPV replication co-optimizes with SG proteins and revealing an unprecedented proviral role of TIA-1/PKR may have implications in understanding the mechanisms regulating CHPV-IB formation and designing antiviral therapeutics. Importance: CHPV is an emerging tropical pathogen reported to cause acute influenza-like illness and encephalitis in children with a very high mortality rate of ~70%. Lack of vaccines and an effective therapy against CHPV makes it a potent pathogen for causing an epidemic in tropical parts of globe. Given these forewarnings, it is of paramount importance that CHPV biology must be understood comprehensively. Targeting of host factors offers several advantages over targeting the viral components due to the generally higher mutation rate in the viral genome. In this study, we aimed at understanding the role of SGs forming cellular RNA-binding proteins in CHPV replication. Our study helps understand participation of cellular factors in CHPV replication and could help develop effective therapeutics against the virus.


Subject(s)
Inclusion Bodies, Viral , T-Cell Intracellular Antigen-1 , Virus Replication , eIF-2 Kinase , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Animals , T-Cell Intracellular Antigen-1/metabolism , T-Cell Intracellular Antigen-1/genetics , Chlorocebus aethiops , Vero Cells , Inclusion Bodies, Viral/metabolism , Humans , Stress Granules/metabolism , Inclusion Bodies/metabolism , Host-Pathogen Interactions , Cytoplasmic Granules/metabolism , Viral Proteins/metabolism , Viral Proteins/genetics , Phase Separation
2.
J Cell Biol ; 223(10)2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39007803

ABSTRACT

Stress triggers the formation of two distinct cytoplasmic biomolecular condensates: stress granules (SGs) and processing bodies (PBs), both of which may contribute to stress-responsive translation regulation. Though PBs can be present constitutively, stress can increase their number and size and lead to their interaction with stress-induced SGs. The mechanism of such interaction, however, is largely unknown. Formation of canonical SGs requires the RNA binding protein Ubiquitin-Associated Protein 2-Like (UBAP2L), which is a central SG node protein in the RNA-protein interaction network of SGs and PBs. UBAP2L binds to the essential SG and PB proteins G3BP and DDX6, respectively. Research on UBAP2L has mostly focused on its role in SGs, but not its connection to PBs. We find that UBAP2L is not solely an SG protein but also localizes to PBs in certain conditions, contributes to PB biogenesis and SG-PB interactions, and can nucleate hybrid granules containing SG and PB components in cells. These findings inform a new model for SG and PB formation in the context of UBAP2L's role.


Subject(s)
RNA Helicases , RNA Recognition Motif Proteins , Stress Granules , Humans , Stress Granules/metabolism , Stress Granules/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , RNA Recognition Motif Proteins/metabolism , RNA Recognition Motif Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Processing Bodies/metabolism , Processing Bodies/genetics , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Cytoplasmic Granules/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , HeLa Cells , DNA Helicases/metabolism , DNA Helicases/genetics , HEK293 Cells , Protein Binding , Carrier Proteins/metabolism , Carrier Proteins/genetics , Proto-Oncogene Proteins
3.
Development ; 151(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38984542

ABSTRACT

In animals with germ plasm, embryonic germline precursors inherit germ granules, condensates proposed to regulate mRNAs coding for germ cell fate determinants. In Caenorhabditis elegans, mRNAs are recruited to germ granules by MEG-3, a sequence non-specific RNA-binding protein that forms stabilizing interfacial clusters on germ granules. Using fluorescence in situ hybridization, we confirmed that 441 MEG-3-bound transcripts are distributed in a pattern consistent with enrichment in germ granules. Thirteen are related to transcripts reported in germ granules in Drosophila or Nasonia. The majority, however, are low-translation maternal transcripts required for embryogenesis that are not maintained preferentially in the nascent germline. Granule enrichment raises the concentration of certain transcripts in germ plasm but is not essential to regulate mRNA translation or stability. Our findings suggest that only a minority of germ granule-associated transcripts contribute to germ cell fate in C. elegans and that the vast majority function as non-specific scaffolds for MEG-3.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Germ Cells , Protein Biosynthesis , RNA, Messenger , RNA-Binding Proteins , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Germ Cells/metabolism , Germ Cells/cytology , RNA, Messenger/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cytoplasmic Granules/metabolism , Gene Expression Regulation, Developmental , In Situ Hybridization, Fluorescence
4.
Nat Commun ; 15(1): 5799, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987544

ABSTRACT

Germ granules are biomolecular condensates present in most animal germ cells. One function of germ granules is to help maintain germ cell totipotency by organizing mRNA regulatory machinery, including small RNA-based gene regulatory pathways. The C. elegans germ granule is compartmentalized into multiple subcompartments whose biological functions are largely unknown. Here, we identify an uncharted subcompartment of the C. elegans germ granule, which we term the E granule. The E granule is nonrandomly positioned within the germ granule. We identify five proteins that localize to the E granule, including the RNA-dependent RNA polymerase (RdRP) EGO-1, the Dicer-related helicase DRH-3, the Tudor domain-containing protein EKL-1, and two intrinsically disordered proteins, EGC-1 and ELLI-1. Localization of EGO-1 to the E granule enables synthesis of a specialized class of 22G RNAs, which derive exclusively from 5' regions of a subset of germline-expressed mRNAs. Defects in E granule assembly elicit disordered production of endogenous siRNAs, which disturbs fertility and the RNAi response. Our results define a distinct subcompartment of the C. elegans germ granule and suggest that one function of germ granule compartmentalization is to facilitate the localized production of specialized classes of small regulatory RNAs.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cytoplasmic Granules , Germ Cells , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Animals , Germ Cells/metabolism , Cytoplasmic Granules/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/genetics
5.
Cell Rep ; 43(7): 114430, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38963760

ABSTRACT

Cancer cells undergo major epigenetic alterations and transcriptomic changes, including ectopic expression of tissue- and cell-type-specific genes. Here, we show that the germline-specific RNA helicase DDX4 forms germ-granule-like cytoplasmic ribonucleoprotein granules in various human tumors, but not in cultured cancer cells. These cancerous DDX4 complexes contain RNA-binding proteins and splicing regulators, including many known germ granule components. The deletion of DDX4 in cancer cells induces transcriptomic changes and affects the alternative splicing landscape of a number of genes involved in cancer growth and invasiveness, leading to compromised capability of DDX4-null cancer cells to form xenograft tumors in immunocompromised mice. Importantly, the occurrence of DDX4 granules is associated with poor survival in patients with head and neck squamous cell carcinoma and higher histological grade of prostate cancer. Taken together, these results show that the germ-granule-resembling cancerous DDX4 granules control gene expression and promote malignant and invasive properties of cancer cells.


Subject(s)
Cytoplasmic Granules , DEAD-box RNA Helicases , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Humans , Animals , Mice , Cytoplasmic Granules/metabolism , Male , Cell Line, Tumor , Cell Proliferation , Alternative Splicing/genetics , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Germ Cells/metabolism
6.
J Cell Sci ; 137(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38841902

ABSTRACT

The model of RNA stability has undergone a transformative shift with the revelation of a cytoplasmic capping activity that means a subset of transcripts are recapped autonomously of their nuclear counterparts. The present study demonstrates nucleo-cytoplasmic shuttling of the mRNA-capping enzyme (CE, also known as RNA guanylyltransferase and 5'-phosphatase; RNGTT), traditionally acknowledged for its nuclear localization and functions, elucidating its contribution to cytoplasmic capping activities. A unique nuclear export sequence in CE mediates XPO1-dependent nuclear export of CE. Notably, during sodium arsenite-induced oxidative stress, cytoplasmic CE (cCE) congregates within stress granules (SGs). Through an integrated approach involving molecular docking and subsequent co-immunoprecipitation, we identify eIF3b, a constituent of SGs, as an interactive associate of CE, implying that it has a potential role in guiding cCE to SGs. We measured the cap status of specific mRNA transcripts from U2OS cells that were non-stressed, stressed and recovered from stress, which indicated that cCE-target transcripts lost their caps during stress but remarkably regained cap stability during the recovery phase. This comprehensive study thus uncovers a novel facet of cytoplasmic CE, which facilitates cellular recovery from stress by maintaining cap homeostasis of target mRNAs.


Subject(s)
Cytoplasm , Homeostasis , RNA, Messenger , Stress Granules , Humans , RNA, Messenger/metabolism , RNA, Messenger/genetics , Stress Granules/metabolism , Cytoplasm/metabolism , RNA Caps/metabolism , Arsenites/pharmacology , Oxidative Stress , Active Transport, Cell Nucleus , RNA Nucleotidyltransferases/metabolism , RNA Nucleotidyltransferases/genetics , Sodium Compounds/pharmacology , Exportin 1 Protein , Karyopherins/metabolism , Karyopherins/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Cytoplasmic Granules/metabolism , RNA Stability , Cell Nucleus/metabolism , Cell Line, Tumor , Nucleotidyltransferases
7.
Methods Mol Biol ; 2832: 57-66, 2024.
Article in English | MEDLINE | ID: mdl-38869787

ABSTRACT

Stress granules (SGs) are conserved cytoplasmic biomolecular condensates mainly formed by proteins and RNA molecules assembled by liquid-liquid phase separation. Isolation of SGs components has been a major challenge in the field due to the dynamic and transient nature of stress granule shells. Here, we describe the methodology for the isolation and visualization of SGs proteins from Arabidopsis thaliana plants using a scaffold component as the target. The protocol consists of the first immunoprecipitation of GFP-tagged scaffold protein, followed by an on-beads enzymatic digestion and previous mass spectrometry identification. Finally, the localization of selected SGs candidates is visualized in Nicotiana benthamiana mesophyll protoplasts.


Subject(s)
Arabidopsis , Cytoplasmic Granules , Stress, Physiological , Arabidopsis/metabolism , Cytoplasmic Granules/metabolism , Cytoplasmic Granules/chemistry , Arabidopsis Proteins/metabolism , Protoplasts/metabolism , Nicotiana/metabolism , Immunoprecipitation/methods , Mass Spectrometry/methods
8.
Cell Rep ; 43(6): 114360, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38865242

ABSTRACT

Protein kinase A (PKA) is a conserved kinase crucial for fundamental biological processes linked to growth, development, and metabolism. The PKA catalytic subunit is expressed as multiple isoforms in diverse eukaryotes; however, their contribution to ensuring signaling specificity in response to environmental cues remains poorly defined. Catalytic subunit activity is classically moderated via interaction with an inhibitory regulatory subunit. Here, a quantitative mass spectrometry approach is used to examine heat-stress-induced changes in the binding of yeast Tpk1-3 catalytic subunits to the Bcy1 regulatory subunit. We show that Tpk3 is not regulated by Bcy1 binding but, instead, is deactivated upon heat stress via reversible sequestration into cytoplasmic granules. These "Tpk3 granules" are enriched for multiple PKA substrates involved in various metabolic processes, with the Hsp42 sequestrase required for their formation. Hence, regulated sequestration of Tpk3 provides a mechanism to control isoform-specific kinase signaling activity during stress conditions.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , Heat-Shock Response , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Signal Transduction , Cyclic AMP-Dependent Protein Kinases/metabolism , Cytoplasmic Granules/metabolism , Isoenzymes/metabolism , Protein Binding , Protein Isoforms/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics
9.
Nat Commun ; 15(1): 5033, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866783

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease due to gradual motoneurons (MN) degeneration. Among the processes associated to ALS pathogenesis, there is the formation of cytoplasmic inclusions produced by aggregation of mutant proteins, among which the RNA binding protein FUS. Here we show that, in neuronal cells and in iPSC-derived MN expressing mutant FUS, such inclusions are significantly reduced in number and dissolve faster when the RNA m6A content is diminished. Interestingly, stress granules formed in ALS conditions showed a distinctive transcriptome with respect to control cells, which reverted to similar to control after m6A downregulation. Notably, cells expressing mutant FUS were characterized by higher m6A levels suggesting a possible link between m6A homeostasis and pathological aggregates. Finally, we show that FUS inclusions are reduced also in patient-derived fibroblasts treated with STM-2457, an inhibitor of METTL3 activity, paving the way for its possible use for counteracting aggregate formation in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Induced Pluripotent Stem Cells , Motor Neurons , RNA-Binding Protein FUS , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Humans , Motor Neurons/metabolism , Motor Neurons/pathology , Induced Pluripotent Stem Cells/metabolism , Cytoplasmic Granules/metabolism , Fibroblasts/metabolism , Adenosine/metabolism , Adenosine/analogs & derivatives , Methyltransferases/metabolism , Methyltransferases/genetics , Mutation , Inclusion Bodies/metabolism , Stress Granules/metabolism , Transcriptome
10.
Nat Cell Biol ; 26(6): 917-931, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714852

ABSTRACT

Upon endoplasmic reticulum (ER) stress, activation of the ER-resident transmembrane protein kinase/endoribonuclease inositol-requiring enzyme 1 (IRE1) initiates a key branch of the unfolded protein response (UPR) through unconventional splicing generation of the transcription factor X-box-binding protein 1 (XBP1s). Activated IRE1 can form large clusters/foci, whose exact dynamic architectures and functional properties remain largely elusive. Here we report that, in mammalian cells, formation of IRE1α clusters is an ER membrane-bound phase separation event that is coupled to the assembly of stress granules (SGs). In response to different stressors, IRE1α clusters are dynamically tethered to SGs at the ER. The cytosolic linker portion of IRE1α possesses intrinsically disordered regions and is essential for its condensation with SGs. Furthermore, disruption of SG assembly abolishes IRE1α clustering and compromises XBP1 mRNA splicing, and such IRE1α-SG coalescence engenders enrichment of the biochemical components of the pro-survival IRE1α-XBP1 pathway during ER stress. Our findings unravel a phase transition mechanism for the spatiotemporal assembly of IRE1α-SG condensates to establish a more efficient IRE1α machinery, thus enabling higher stress-handling capacity.


Subject(s)
Endoplasmic Reticulum Stress , Endoribonucleases , Protein Serine-Threonine Kinases , X-Box Binding Protein 1 , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Endoribonucleases/metabolism , Endoribonucleases/genetics , Humans , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics , Animals , RNA Splicing , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/genetics , Stress Granules/metabolism , Stress Granules/genetics , Regulatory Factor X Transcription Factors/metabolism , Regulatory Factor X Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Unfolded Protein Response , Mice , HeLa Cells , Cytoplasmic Granules/metabolism , Cytoplasmic Granules/genetics , Signal Transduction
12.
PLoS Genet ; 20(5): e1011251, 2024 May.
Article in English | MEDLINE | ID: mdl-38768217

ABSTRACT

Ataxin-2 (ATXN2) is a gene implicated in spinocerebellar ataxia type II (SCA2), amyotrophic lateral sclerosis (ALS) and Parkinsonism. The encoded protein is a therapeutic target for ALS and related conditions. ATXN2 (or Atx2 in insects) can function in translational activation, translational repression, mRNA stability and in the assembly of mRNP-granules, a process mediated by intrinsically disordered regions (IDRs). Previous work has shown that the LSm (Like-Sm) domain of Atx2, which can help stimulate mRNA translation, antagonizes mRNP-granule assembly. Here we advance these findings through a series of experiments on Drosophila and human Ataxin-2 proteins. Results of Targets of RNA Binding Proteins Identified by Editing (TRIBE), co-localization and immunoprecipitation experiments indicate that a polyA-binding protein (PABP) interacting, PAM2 motif of Ataxin-2 may be a major determinant of the mRNA and protein content of Ataxin-2 mRNP granules. Experiments with transgenic Drosophila indicate that while the Atx2-LSm domain may protect against neurodegeneration, structured PAM2- and unstructured IDR- interactions both support Atx2-induced cytotoxicity. Taken together, the data lead to a proposal for how Ataxin-2 interactions are remodelled during translational control and how structured and non-structured interactions contribute differently to the specificity and efficiency of RNP granule condensation as well as to neurodegeneration.


Subject(s)
Ataxin-2 , Drosophila Proteins , Drosophila melanogaster , RNA, Messenger , Ribonucleoproteins , Ataxin-2/genetics , Ataxin-2/metabolism , Animals , Humans , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Poly(A)-Binding Proteins/metabolism , Poly(A)-Binding Proteins/genetics , Animals, Genetically Modified , Cytoplasmic Granules/metabolism , Cytoplasmic Granules/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Protein Biosynthesis , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , DNA-Binding Proteins
13.
Toxicol Lett ; 397: 48-54, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734221

ABSTRACT

The skin, the organ with the largest surface area in the body, is the most susceptible to chemical exposure from the external environment. In this study, we aimed to establish an in vitro skin toxicity monitoring system that utilizes the mechanism of stress granule (SG) formation induced by various cellular stresses. In HaCaT cells, a keratinocyte cell line that comprises the human skin, a green fluorescent protein (GFP) was knocked in at the C-terminal genomic locus of Ras GTPase-activating protein-binding protein 1 (G3BP1), a representative component of SGs. The G3BP1-GFP knock-in HaCaT cells and wild-type (WT) HaCaT cells formed SGs containing G3BP1-GFP upon exposure to arsenite and household chemicals, such as bisphenol A (BPA) and benzalkonium chloride (BAC), in real-time. In addition, the exposure of G3BP1-GFP knock-in HaCaT cells to BPA and BAC promoted the phosphorylation of eukaryotic initiation factor 2 alpha and protein kinase R-like endoplasmic reticulum kinase, which are cell signaling factors involved in SG formation, similar to WT HaCaT cells. In conclusion, this novel G3BP1-GFP knock-in human skin cell system can monitor SG formation in real-time and be utilized to assess skin toxicity to various substances.


Subject(s)
Cytoplasmic Granules , DNA Helicases , Green Fluorescent Proteins , Keratinocytes , Poly-ADP-Ribose Binding Proteins , RNA Helicases , RNA Recognition Motif Proteins , Humans , RNA Recognition Motif Proteins/genetics , RNA Recognition Motif Proteins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , RNA Helicases/genetics , RNA Helicases/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Cytoplasmic Granules/drug effects , Cytoplasmic Granules/metabolism , Keratinocytes/drug effects , Keratinocytes/metabolism , Arsenites/toxicity , Skin/drug effects , Skin/metabolism , Gene Knock-In Techniques , Genes, Reporter/drug effects , Phenols/toxicity , HaCaT Cells , Phosphorylation , Benzhydryl Compounds/toxicity , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-2/genetics , Toxicity Tests/methods
14.
EMBO J ; 43(13): 2759-2788, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38769438

ABSTRACT

Energy stress, characterized by the reduction of intracellular ATP, has been implicated in various diseases, including cancer. Here, we show that energy stress promotes the formation of P-bodies in a ubiquitin-dependent manner. Upon ATP depletion, the E3 ubiquitin ligase TRIM23 catalyzes lysine-63 (K63)-linked polyubiquitination of HCLS1-associated protein X-1 (HAX1). HAX1 ubiquitination triggers its liquid‒liquid phase separation (LLPS) and contributes to P-bodies assembly induced by energy stress. Ubiquitinated HAX1 also interacts with the essential P-body proteins, DDX6 and LSM14A, promoting their condensation. Moreover, we find that this TRIM23/HAX1 pathway is critical for the inhibition of global protein synthesis under energy stress conditions. Furthermore, high HAX1 ubiquitination, and increased cytoplasmic localization of TRIM23 along with elevated HAX1 levels, promotes colorectal cancer (CRC)-cell proliferation and correlates with poor prognosis in CRC patients. Our data not only elucidate a ubiquitination-dependent LLPS mechanism in RNP granules induced by energy stress but also propose a promising target for CRC therapy.


Subject(s)
Adaptor Proteins, Signal Transducing , Lysine , Ubiquitination , Humans , Lysine/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Stress, Physiological , HEK293 Cells , Cell Proliferation , Adenosine Triphosphate/metabolism , Cell Line, Tumor , Cytoplasmic Granules/metabolism , GTP-Binding Proteins
15.
Blood Adv ; 8(14): 3798-3809, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38805575

ABSTRACT

ABSTRACT: Fibrinolytics delivered into the general circulation lack selectivity for nascent thrombi, reducing efficacy and increasing the risk of bleeding. Urokinase-type plasminogen activator (uPA) transgenically expressed within murine platelets provided targeted thromboprophylaxis without causing bleeding but is not clinically feasible. Recent advances in generating megakaryocytes prompted us to develop a potentially clinically relevant means to produce "antithrombotic" platelets from CD34+ hematopoietic stem cell-derived in vitro-grown megakaryocytes. CD34+ megakaryocytes internalize and store in alpha granules (α-granules) single-chain uPA (scuPA) and a plasmin-resistant thrombin-activatable variant (uPAT). Both uPAs colocalized with internalized factor V (FV), fibrinogen and plasminogen, low-density lipoprotein receptor-related protein 1 (LRP1), and interferon-induced transmembrane protein 3, but not with endogenous von Willebrand factor (VWF). Endocytosis of uPA by CD34+ megakaryocytes was mediated, in part, via LRP1 and αIIbß3. scuPA-containing megakaryocytes degraded endocytosed intragranular FV but not endogenous VWF in the presence of internalized plasminogen, whereas uPAT-megakaryocytes did not significantly degrade either protein. We used a carotid artery injury model in nonobese diabetic-severe combined immunodeficiency IL2rγnull (NSG) mice homozygous for VWFR1326H (a mutation switching binding VWF specificity from mouse to human glycoprotein Ibα) to test whether platelets derived from scuPA- or uPAT-megakaryocytes would prevent thrombus formation. NSG/VWFR1326H mice exhibited a lower thrombotic burden after carotid artery injury compared with NSG mice unless infused with human platelets or megakaryocytes, whereas intravenous injection of uPA-megakaryocytes generated sufficient uPA-containing human platelets to lyse nascent thrombi. These studies describe the use of in vitro-generated megakaryocytes as a potential platform for delivering uPA or other ectopic proteins within platelet α-granules to sites of vascular injury.


Subject(s)
Megakaryocytes , Urokinase-Type Plasminogen Activator , Megakaryocytes/metabolism , Megakaryocytes/cytology , Urokinase-Type Plasminogen Activator/metabolism , Humans , Animals , Mice , Fibrinolysis/drug effects , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Blood Platelets/metabolism , Thrombosis/metabolism , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Cytoplasmic Granules/metabolism , Antigens, CD34/metabolism
16.
J Thromb Haemost ; 22(8): 2294-2305, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38718926

ABSTRACT

BACKGROUND: Platelets coordinate blood coagulation at sites of vascular injury and play fundamental roles in a wide variety of (patho)physiological processes. Key to many platelet functions is the transport and secretion of proteins packaged within α-granules, organelles produced by platelet precursor megakaryocytes. Prominent among α-granule cargo are fibrinogen endocytosed from plasma and endogenously synthesized von Willebrand factor. These and other proteins are known to require acidic pH for stable packaging. Luminal acidity has been confirmed for mature α-granules isolated from platelets, but direct measurement of megakaryocyte granule acidity has not been reported. OBJECTIVES: To determine the luminal pH of α-granules and their precursors in megakaryocytes and assess the requirement of vacuolar-type adenosine triphosphatase (V-ATPase) activity to establish and maintain the luminal acidity and integrity of these organelles. METHODS: Cresyl violet staining was used to detect acidic granules in megakaryocytes. Endocytosis of fibrinogen tagged with the pH-sensitive fluorescent dye fluorescein isothiocyanate was used to load a subset of these organelles. Ratiometric fluorescence analysis was used to determine their luminal pH. RESULTS: We show that most of the acidic granules detected in megakaryocytes appear to be α-granules/precursors, for which we established a median luminal pH of 5.2 (IQR, 5.0-5.5). Inhibition of megakaryocyte V-ATPase activity led to enlargement of cargo-containing compartments detected by fluorescence microscopy and electron microscopy. CONCLUSION: These observations reveal that V-ATPase activity is required to establish and maintain a luminal acidic pH in megakaryocyte α-granules/precursors, confirming its importance for stable packaging of cargo proteins such as von Willebrand factor.


Subject(s)
Cytoplasmic Granules , Megakaryocytes , Vacuolar Proton-Translocating ATPases , Megakaryocytes/metabolism , Megakaryocytes/enzymology , Vacuolar Proton-Translocating ATPases/metabolism , Hydrogen-Ion Concentration , Cytoplasmic Granules/metabolism , Cytoplasmic Granules/enzymology , Cytoplasmic Granules/ultrastructure , Endocytosis , Organelle Biogenesis , Fibrinogen/metabolism , Animals , Humans , von Willebrand Factor/metabolism , Blood Platelets/metabolism , Blood Platelets/enzymology
17.
Int Rev Neurobiol ; 176: 455-479, 2024.
Article in English | MEDLINE | ID: mdl-38802180

ABSTRACT

Amyotrophic lateral sclerosis (ALS) and related neurodegenerative diseases are characterised by dysfunction of a host of RNA-binding proteins (RBPs) and a severely disrupted RNA metabolism. Recently, RBP-harbouring phase-separated complexes, ribonucleoprotein (RNP) granules, have come into the limelight as "crucibles" of neuronal pathology in ALS. RNP granules are indispensable for the multitude of regulatory processes underlying cellular RNA metabolism and serve as critical organisers of cellular biochemistry. Neurons, highly specialised cells, heavily rely on RNP granules for efficient trafficking, signalling and stress responses. Multiple RNP granule components, primarily RBPs such as TDP-43 and FUS, are affected by ALS mutations. However, even in the absence of mutations, RBP proteinopathies represent pathophysiological hallmarks of ALS. Given the high local concentrations of RBPs and RNAs, their weakened or enhanced interactions within RNP granules disrupt their homeostasis. Thus, the physiological process of phase separation and RNP granule formation, vital for maintaining the high-functioning state of neuronal cells, becomes their Achilles heel. Here, we will review the recent literature on the causes and consequences of abnormal RNP granule functioning in ALS and related disorders. In particular, we will summarise the evidence for the network-level dysfunction of RNP granules in these conditions and discuss considerations for therapeutic interventions to target RBPs, RNP granules and their network as a whole.


Subject(s)
Amyotrophic Lateral Sclerosis , Cytoplasmic Granules , Ribonucleoproteins , Humans , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Ribonucleoproteins/metabolism , Animals , Cytoplasmic Granules/metabolism , Neurodegenerative Diseases/metabolism , Organelles/metabolism
18.
Front Immunol ; 15: 1358036, 2024.
Article in English | MEDLINE | ID: mdl-38690262

ABSTRACT

Background: It remains unclear whether BPIV3 infection leads to stress granules formation and whether G3BP1 plays a role in this process and in viral replication. This study aims to clarify the association between BPIV3 and stress granules, explore the effect of G3BP1 on BPIV3 replication, and provide significant insights into the mechanisms by which BPIV3 evades the host's antiviral immunity to support its own survival. Methods: Here, we use Immunofluorescence staining to observe the effect of BPIV3 infection on the assembly of stress granules. Meanwhile, the expression changes of eIF2α and G3BP1 were determined. Overexpression or siRNA silencing of intracellular G3BP1 levels was examined for its regulatory control of BPIV3 replication. Results: We identify that the BPIV3 infection elicited phosphorylation of the eIF2α protein. However, it did not induce the assembly of stress granules; rather, it inhibited the formation of stress granules and downregulated the expression of G3BP1. G3BP1 overexpression facilitated the formation of stress granules within cells and hindered viral replication, while G3BP1 knockdown enhanced BPIV3 expression. Conclusion: This study suggest that G3BP1 plays a crucial role in BPIV3 suppressing stress granule formation and viral replication.


Subject(s)
DNA Helicases , Poly-ADP-Ribose Binding Proteins , RNA Helicases , RNA Recognition Motif Proteins , Stress Granules , Virus Replication , Animals , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , RNA Recognition Motif Proteins/metabolism , DNA Helicases/metabolism , DNA Helicases/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , Stress Granules/metabolism , Cattle , Eukaryotic Initiation Factor-2/metabolism , Respirovirus Infections/immunology , Respirovirus Infections/metabolism , Host-Pathogen Interactions/immunology , Phosphorylation , Cell Line , Cytoplasmic Granules/metabolism
19.
Sci Adv ; 10(18): eadg8771, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38691600

ABSTRACT

To facilitate the interrogation of protein function at scale, we have developed high-throughput insertion of tags across the genome (HITAG). HITAG enables users to rapidly produce libraries of cells, each with a different protein of interest C-terminally tagged. HITAG is based on a modified strategy for performing Cas9-based targeted insertions, coupled with an improved approach for selecting properly tagged lines. Analysis of the resulting clones generated by HITAG reveals high tagging specificity, with most successful tagging events being indel free. Using HITAG, we fuse mCherry to a set of 167 stress granule-associated proteins and elucidate the features that drive a subset of proteins to strongly accumulate within these transient RNA-protein granules.


Subject(s)
Genetic Loci , Humans , CRISPR-Cas Systems , Proteins/genetics , Proteins/metabolism , High-Throughput Screening Assays/methods , Cytoplasmic Granules/metabolism , Cytoplasmic Granules/genetics
20.
Nat Commun ; 15(1): 4127, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750080

ABSTRACT

Stress granules (SGs) are induced by various environmental stressors, resulting in their compositional and functional heterogeneity. SGs play a crucial role in the antiviral process, owing to their potent translational repressive effects and ability to trigger signal transduction; however, it is poorly understood how these antiviral SGs differ from SGs induced by other environmental stressors. Here we identify that TRIM25, a known driver of the ubiquitination-dependent antiviral innate immune response, is a potent and critical marker of the antiviral SGs. TRIM25 undergoes liquid-liquid phase separation (LLPS) and co-condenses with the SG core protein G3BP1 in a dsRNA-dependent manner. The co-condensation of TRIM25 and G3BP1 results in a significant enhancement of TRIM25's ubiquitination activity towards multiple antiviral proteins, which are mainly located in SGs. This co-condensation is critical in activating the RIG-I signaling pathway, thus restraining RNA virus infection. Our studies provide a conceptual framework for better understanding the heterogeneity of stress granule components and their response to distinct environmental stressors.


Subject(s)
DNA Helicases , Poly-ADP-Ribose Binding Proteins , RNA Helicases , RNA Recognition Motif Proteins , Signal Transduction , Stress Granules , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Ubiquitination , Humans , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , RNA Recognition Motif Proteins/metabolism , RNA Recognition Motif Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Stress Granules/metabolism , RNA Helicases/metabolism , DNA Helicases/metabolism , DEAD Box Protein 58/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Immunity, Innate , RNA, Double-Stranded/metabolism , HEK293 Cells , HeLa Cells , Cytoplasmic Granules/metabolism , RNA Virus Infections/virology , RNA Virus Infections/metabolism , RNA Virus Infections/immunology , Receptors, Immunologic/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL