Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.779
Filter
1.
Nat Commun ; 15(1): 5799, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987544

ABSTRACT

Germ granules are biomolecular condensates present in most animal germ cells. One function of germ granules is to help maintain germ cell totipotency by organizing mRNA regulatory machinery, including small RNA-based gene regulatory pathways. The C. elegans germ granule is compartmentalized into multiple subcompartments whose biological functions are largely unknown. Here, we identify an uncharted subcompartment of the C. elegans germ granule, which we term the E granule. The E granule is nonrandomly positioned within the germ granule. We identify five proteins that localize to the E granule, including the RNA-dependent RNA polymerase (RdRP) EGO-1, the Dicer-related helicase DRH-3, the Tudor domain-containing protein EKL-1, and two intrinsically disordered proteins, EGC-1 and ELLI-1. Localization of EGO-1 to the E granule enables synthesis of a specialized class of 22G RNAs, which derive exclusively from 5' regions of a subset of germline-expressed mRNAs. Defects in E granule assembly elicit disordered production of endogenous siRNAs, which disturbs fertility and the RNAi response. Our results define a distinct subcompartment of the C. elegans germ granule and suggest that one function of germ granule compartmentalization is to facilitate the localized production of specialized classes of small regulatory RNAs.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cytoplasmic Granules , Germ Cells , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Animals , Germ Cells/metabolism , Cytoplasmic Granules/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/genetics
3.
PLoS Pathog ; 20(7): e1012379, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39037956

ABSTRACT

RNA helicases are involved in the innate immune response against pathogens, including bacteria and viruses; however, their mechanism in the human airway epithelial cells is still not fully understood. Here, we demonstrated that DEAH (Asp-Glu-Ala-His) box polypeptide 35 (DHX35), a member of the DExD/H (Asp-Glu-x-Asp/His)-box helicase family, boosts antiviral innate immunity in human airway epithelial cells. DHX35 knockdown attenuated the production of interferon-ß (IFN-ß), IL6, and CXCL10, whereas DHX35 overexpression increased their production. Upon stimulation, DHX35 was constitutively expressed, but it translocated from the nucleus into the cytosol, where it recognized cytosolic poly(I:C) and poly(dA:dT) via its HELICc domain. Mitochondrial antiviral signaling protein (MAVS) acted as an adaptor for DHX35 and interacted with the HELICc domain of DHX35 using amino acids 360-510. Interestingly, DHX35 interacted with retinoic acid-inducible gene 1 (RIG-I), enhanced the binding affinity of RIG-I with poly(I:C) and poly(dA:dT), and formed a signalsome with MAVS to activate interferon regulatory factor 3 (IRF3), NF-κB-p65, and MAPK signaling pathways. These results indicate that DHX35 not only acted as a cytosolic nucleic acid sensor but also synergized with RIG-I to enhance antiviral immunity in human airway epithelial cells. Our results demonstrate a novel molecular mechanism for DHX35 in RIG-I-mediated innate immunity and provide a novel candidate for drug and vaccine design to control viral infections in the human airway.


Subject(s)
DEAD Box Protein 58 , DEAD-box RNA Helicases , Immunity, Innate , Receptors, Immunologic , Humans , DEAD Box Protein 58/metabolism , DEAD Box Protein 58/immunology , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/immunology , Receptors, Immunologic/metabolism , Poly I-C/immunology , Poly I-C/pharmacology , RNA Helicases/metabolism , RNA Helicases/immunology , Signal Transduction/immunology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/immunology , Epithelial Cells/immunology , Epithelial Cells/metabolism , Epithelial Cells/virology , HEK293 Cells
4.
J Exp Clin Cancer Res ; 43(1): 200, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030638

ABSTRACT

BACKGROUND: The progression of non-small cell lung cancer (NSCLC) is significantly influenced by circular RNAs (circRNAs), especially in tumor hypoxia microenvironment. However, the precise functions and underlying mechanisms of dysregulated circRNAs in NSCLC remain largely unexplored. METHODS: Differentially expressed circRNAs in NSCLC tissues were identified through high-throughput RNA sequencing. The characteristics of circ_0007386 were rigorously confirmed via Sanger sequencing, RNase R treatment and actinomycin D treatment. The effects of circ_0007386 on proliferation and apoptosis were investigated using CCK8, cloning formation assays, TUNEL staining, and flow cytometry assays in vitro. In vivo, xenograft tumor models were used to evaluate its impact on proliferation. Mechanistically, the regulatory relationships of circ_0007386, miR-383-5p and CIRBP were examined through dual luciferase reporter assays and rescue experiments. Additionally, we detected the binding of EIF4A3 to CRIM1 pre-mRNA by RNA immunoprecipitation and the interaction between YAP1 and EIF4A3 under hypoxic conditions by co-immunoprecipitation. RESULTS: Our investigation revealed a novel circRNA, designated as circ_0007386, that was upregulated in NSCLC tissues and cell lines. Circ_0007386 modulated proliferation and apoptosis in NSCLC both in vitro and in vivo. Functionally, circ_0007386 acted as a sponge for miR-383-5p, targeting CIRBP, which influenced NSCLC cell proliferation and apoptosis via the PI3K/AKT signaling pathway. Furthermore, under hypoxic conditions, the interaction between YAP1 and EIF4A3 was enhanced, leading to the displacement of EIF4A4 from binding to CRIM1 pre-mRNA. This facilitated the back-splicing of CRIM1 pre-mRNA, increasing the formation of circ_0007386. The circ_0007386/miR-383-5p/CIRBP axis was significantly associated with the clinical features and prognosis of NSCLC patients. CONCLUSIONS: Circ_0007386, regulated by YAP1-EIF4A3 interaction under hypoxia conditions, plays an oncogenic role in NSCLC progression via the miR-383-5p/CIRBP axis.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Disease Progression , Eukaryotic Initiation Factor-4A , Lung Neoplasms , RNA, Circular , YAP-Signaling Proteins , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , RNA, Circular/genetics , RNA, Circular/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Animals , YAP-Signaling Proteins/metabolism , Mice , Eukaryotic Initiation Factor-4A/metabolism , Eukaryotic Initiation Factor-4A/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Female , Cell Line, Tumor , Cell Proliferation , RNA Precursors/metabolism , RNA Precursors/genetics , Male , RNA Splicing , Apoptosis , MicroRNAs/genetics , MicroRNAs/metabolism , Mice, Nude , Gene Expression Regulation, Neoplastic , DEAD-box RNA Helicases
5.
Biomolecules ; 14(7)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39062517

ABSTRACT

Medulloblastoma is the most common pediatric brain cancer, with about five cases per million in the pediatric population. Current treatment strategies have a 5-year survival rate of 70% or more but frequently lead to long-term neurocognitive defects, and recurrence is relatively high. Genomic sequencing of medulloblastoma patients has shown that DDX3X, which encodes an RNA helicase involved in the process of translation initiation, is among the most commonly mutated genes in medulloblastoma. The identified mutations are 42 single-point amino acid substitutions and are mostly not complete loss-of-function mutations. The pathological mechanism of DDX3X mutations in the causation of medulloblastoma is poorly understood, but several studies have examined their role in promoting cancer progression. This review first discusses the known roles of DDX3X and its yeast ortholog Ded1 in translation initiation, cellular stress responses, viral replication, innate immunity, inflammatory programmed cell death, Wnt signaling, and brain development. It then examines our current understanding of the oncogenic mechanism of the DDX3X mutations in medulloblastoma, including the effect of these DDX3X mutations on growth, biochemical functions, translation, and stress responses. Further research on DDX3X's mechanism and targets is required to therapeutically target DDX3X and/or its downstream effects in medulloblastoma progression.


Subject(s)
DEAD-box RNA Helicases , Disease Progression , Medulloblastoma , Mutation , Humans , Medulloblastoma/genetics , Medulloblastoma/pathology , Medulloblastoma/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Cerebellar Neoplasms/metabolism , Animals , Saccharomyces cerevisiae Proteins
6.
Genes (Basel) ; 15(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39062620

ABSTRACT

As an RNA binding protein (RBP), DDX5 is widely involved in the regulation of various biological activities. While recent studies have confirmed that DDX5 can act as a transcriptional cofactor that is involved in the formation of gametes, few studies have investigated whether DDX5 can be used as a transcription factor to regulate the formation of primordial germ cells (PGCs). In this study, we found that DDX5 was significantly up-regulated during chicken PGC formation. Under different PGC induction models, the overexpression of DDX5 not only up-regulates PGC markers but also significantly improves the formation efficiency of primordial germ cell-like cells (PGCLC). Conversely, the inhibition of DDX5 expression can significantly inhibit both the expression of PGC markers and PGCLC formation efficiency. The effect of DDX5 on PGC formation in vivo was consistent with that seen in vitro. Interestingly, DDX5 not only participates in the formation of PGCs but also positively regulates their migration and proliferation. In the process of studying the mechanism by which DDX5 regulates PGC formation, we found that DDX5 acts as a transcription factor to bind to the promoter region of BMP4-a key gene for PGC formation-and activates the expression of BMP4. In summary, we confirm that DDX5 can act as a positive transcription factor to regulate the formation of PGCs in chickens. The obtained results not only enhance our understanding of the way in which DDX5 regulates the development of germ cells but also provide a new target for systematically optimizing the culture and induction system of PGCs in chickens in vitro.


Subject(s)
Bone Morphogenetic Protein 4 , Chickens , DEAD-box RNA Helicases , Germ Cells , Animals , Bone Morphogenetic Protein 4/metabolism , Bone Morphogenetic Protein 4/genetics , Germ Cells/metabolism , Chickens/genetics , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Chick Embryo , Gene Expression Regulation, Developmental , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Proliferation , Cell Movement/genetics , Promoter Regions, Genetic
7.
Cell Rep ; 43(7): 114485, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38996066

ABSTRACT

How CRISPR-Cas systems defend bacteria and archaea against invading genetic elements is well understood, but less is known about their regulation. In the cyanobacterium Synechocystis sp. PCC 6803, the expression of one of the three different CRISPR-Cas systems responds to changes in environmental conditions. The cas operon promoter of this system is controlled by the light- and redox-responsive transcription factor RpaB binding to an HLR1 motif, resulting in transcriptional activation at low light intensities. However, the strong promoter that drives transcription of the cognate repeat-spacer array is not controlled by RpaB. Instead, the leader transcript is bound by the redox-sensitive RNA helicase CrhR. Crosslinking coupled with mass spectrometry analysis and site-directed mutagenesis revealed six residues involved in the CrhR-RNA interaction, with C371 being critically important. Thus, the expression of a type III-Dv CRISPR-Cas system is linked to the redox status of the photosynthetic cell at the transcriptional and post-transcriptional levels.


Subject(s)
Bacterial Proteins , CRISPR-Cas Systems , DEAD-box RNA Helicases , Synechocystis , CRISPR-Cas Systems/genetics , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Synechocystis/metabolism , Synechocystis/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Promoter Regions, Genetic/genetics , Protein Binding
8.
Cell Rep ; 43(7): 114430, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38963760

ABSTRACT

Cancer cells undergo major epigenetic alterations and transcriptomic changes, including ectopic expression of tissue- and cell-type-specific genes. Here, we show that the germline-specific RNA helicase DDX4 forms germ-granule-like cytoplasmic ribonucleoprotein granules in various human tumors, but not in cultured cancer cells. These cancerous DDX4 complexes contain RNA-binding proteins and splicing regulators, including many known germ granule components. The deletion of DDX4 in cancer cells induces transcriptomic changes and affects the alternative splicing landscape of a number of genes involved in cancer growth and invasiveness, leading to compromised capability of DDX4-null cancer cells to form xenograft tumors in immunocompromised mice. Importantly, the occurrence of DDX4 granules is associated with poor survival in patients with head and neck squamous cell carcinoma and higher histological grade of prostate cancer. Taken together, these results show that the germ-granule-resembling cancerous DDX4 granules control gene expression and promote malignant and invasive properties of cancer cells.


Subject(s)
Cytoplasmic Granules , DEAD-box RNA Helicases , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Humans , Animals , Mice , Cytoplasmic Granules/metabolism , Male , Cell Line, Tumor , Cell Proliferation , Alternative Splicing/genetics , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Germ Cells/metabolism
9.
Mol Cell ; 84(14): 2765-2784.e16, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38964322

ABSTRACT

Dissecting the regulatory mechanisms controlling mammalian transcripts from production to degradation requires quantitative measurements of mRNA flow across the cell. We developed subcellular TimeLapse-seq to measure the rates at which RNAs are released from chromatin, exported from the nucleus, loaded onto polysomes, and degraded within the nucleus and cytoplasm in human and mouse cells. These rates varied substantially, yet transcripts from genes with related functions or targeted by the same transcription factors and RNA-binding proteins flowed across subcellular compartments with similar kinetics. Verifying these associations uncovered a link between DDX3X and nuclear export. For hundreds of RNA metabolism genes, most transcripts with retained introns were degraded by the nuclear exosome, while the remaining molecules were exported with stable cytoplasmic lifespans. Transcripts residing on chromatin for longer had extended poly(A) tails, whereas the reverse was observed for cytoplasmic mRNAs. Finally, machine learning identified molecular features that predicted the diverse life cycles of mRNAs.


Subject(s)
Cell Nucleus , Chromatin , DEAD-box RNA Helicases , RNA, Messenger , Animals , Humans , Mice , RNA, Messenger/metabolism , RNA, Messenger/genetics , Cell Nucleus/metabolism , Cell Nucleus/genetics , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Chromatin/metabolism , Chromatin/genetics , Cytoplasm/metabolism , Cytoplasm/genetics , RNA Stability , Active Transport, Cell Nucleus , Polyribosomes/metabolism , Polyribosomes/genetics , Machine Learning , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Exosomes/metabolism , Exosomes/genetics
10.
Nat Commun ; 15(1): 6080, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030239

ABSTRACT

Dengue fever represents a significant medical and socio-economic burden in (sub)tropical regions, yet antivirals for treatment or prophylaxis are lacking. JNJ-A07 was described as highly active against the different genotypes within each serotype of the disease-causing dengue virus (DENV). Based on clustering of resistance mutations it has been assumed to target DENV non-structural protein 4B (NS4B). Using a photoaffinity labeling compound with high structural similarity to JNJ-A07, here we demonstrate binding to NS4B and its precursor NS4A-2K-NS4B. Consistently, we report recruitment of the compound to intracellular sites enriched for these proteins. We further specify the mechanism-of-action of JNJ-A07, which has virtually no effect on viral polyprotein cleavage, but targets the interaction between the NS2B/NS3 protease/helicase complex and the NS4A-2K-NS4B cleavage intermediate. This interaction is functionally linked to de novo formation of vesicle packets (VPs), the sites of DENV RNA replication. JNJ-A07 blocks VPs biogenesis with little effect on established ones. A similar mechanism-of-action was found for another NS4B inhibitor, NITD-688. In summary, we unravel the antiviral mechanism of these NS4B-targeting molecules and show how DENV employs a short-lived cleavage intermediate to carry out an early step of the viral life cycle.


Subject(s)
Antiviral Agents , Dengue Virus , Dengue , Viral Nonstructural Proteins , Virus Replication , Dengue Virus/drug effects , Dengue Virus/genetics , Dengue Virus/physiology , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/antagonists & inhibitors , Virus Replication/drug effects , Antiviral Agents/pharmacology , Humans , Dengue/virology , Dengue/drug therapy , Serogroup , RNA Helicases/metabolism , RNA Helicases/antagonists & inhibitors , RNA Helicases/genetics , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Protein Binding , Animals , Organelles/metabolism , Organelles/drug effects , Viral Proteases , Aminophenols , Membrane Proteins , Indoles , DEAD-box RNA Helicases , Nucleoside-Triphosphatase , Butyrates
11.
Proc Natl Acad Sci U S A ; 121(29): e2402126121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38980902

ABSTRACT

Upon sensing viral RNA, mammalian RIG-I-like receptors (RLRs) activate downstream signals using caspase activation and recruitment domains (CARDs), which ultimately promote transcriptional immune responses that have been well studied. In contrast, the downstream signaling mechanisms for invertebrate RLRs are much less clear. For example, the Caenorhabditis elegans RLR DRH-1 lacks annotated CARDs and up-regulates the distinct output of RNA interference. Here, we found that similar to mammal RLRs, DRH-1 signals through two tandem CARDs (2CARD) to induce a transcriptional immune response. Expression of DRH-1(2CARD) alone in the intestine was sufficient to induce immune gene expression, increase viral resistance, and promote thermotolerance, a phenotype previously associated with immune activation in C. elegans. We also found that DRH-1 is required in the intestine to induce immune gene expression, and we demonstrate subcellular colocalization of DRH-1 puncta with double-stranded RNA inside the cytoplasm of intestinal cells upon viral infection. Altogether, our results reveal mechanistic and spatial insights into antiviral signaling in C. elegans, highlighting unexpected parallels in RLR signaling between C. elegans and mammals.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Signal Transduction , Animals , Caenorhabditis elegans/immunology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/immunology , Signal Transduction/immunology , Intestines/immunology , Intestines/virology , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/immunology , Immunity, Innate , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , RNA, Viral/immunology , RNA, Viral/metabolism , RNA, Viral/genetics
12.
Nat Commun ; 15(1): 6009, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019926

ABSTRACT

RNA helicase DHX9 is essential for genome stability by resolving aberrant R-loops. However, its regulatory mechanisms remain unclear. Here we show that SUMOylation at lysine 120 (K120) is crucial for DHX9 function. Preventing SUMOylation at K120 leads to R-loop dysregulation, increased DNA damage, and cell death. Cells expressing DHX9 K120R mutant which cannot be SUMOylated are more sensitive to genotoxic agents and this sensitivity is mitigated by RNase H overexpression. Unlike the mutant, wild-type DHX9 interacts with R-loop-associated proteins such as PARP1 and DDX21 via SUMO-interacting motifs. Fusion of SUMO2 to the DHX9 K120R mutant enhances its association with these proteins, reduces R-loop accumulation, and alleviates survival defects of DHX9 K120R. Our findings highlight the critical role of DHX9 SUMOylation in maintaining genome stability by regulating protein interactions necessary for R-loop balance.


Subject(s)
DEAD-box RNA Helicases , Genomic Instability , R-Loop Structures , Sumoylation , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Humans , HEK293 Cells , DNA Damage , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Lysine/metabolism , Mutation , Small Ubiquitin-Related Modifier Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/genetics , Neoplasm Proteins
13.
J Cell Mol Med ; 28(14): e18465, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39022816

ABSTRACT

Lung cancer (LC) is one of the malignancies with the highest incidence and mortality in the world, approximately 85% of which is non-small cell lung cancer (NSCLC). Circular RNAs (circRNAs) exert multiple roles in NSCLC occurrence and development. The sequencing results in previous literature have illustrated that multiple circRNAs exhibit upregulation in NSCLC. We attempted to figure out which circRNA exerts an oncogenic role in NSLCL progression. RT-qPCR evaluated circDHTKD1 level in NSCLC tissue specimens and cells. Reverse transcription as well as RNase R digestion assay evaluated circDHTKD1 circular characterization in NSCLC cells. FISH determined circDHTKD1 subcellular distribution in NSCLC cells. Loss- and gain-of-function assays clarified circDHTKD1 role in NSCLC cell growth, tumour growth and glycolysis. Bioinformatics and RIP and RNA pull-down assessed association of circDHTKD1 with upstream molecule Eukaryotic initiation factor 4A-III (EIF4A3) or downstream molecule phosphofructokinase-1 liver type (PFKL) and insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) in NSCLC cells. Rescue assays assessed regulatory function of PFKL in circDHTKD1-meidated NSCLC cellular phenotypes. CircDHTKD1 exhibited upregulation and stable circular nature in NSCLC cells. EIF4A3 upregulated circDHTKD1 in NSCLC cells. CircDHTKD1 exerted a promoting influence on NSCLC cell malignant phenotypes and tumour growth. CircDHTKD1 exerted a promoting influence on NSCLC glucose metabolism. CircDHTKD1 exerts a promoting influence on NSCLC glucose metabolism through PFKL upregulation. RIP and RNA pull-down showed that circDHTKD1 could bind to IGF2BP, PFKL could bind to IGF2BP2, and circDHTKD1 promoted the binding of PFKL to IGF2BP2. In addition, RT-qPCR showed that IGF2BP2 knockdown promoted PFKL mRNA degradation, suggesting that IGF2BP2 stabilized PFKL in NSCLC cells. CircDHTKD1 exhibits upregulation in NSCLC. We innovatively validate that EIF4A3-triggered circDHTKD1 upregulation facilitates NSCLC glycolysis through recruiting m6A reader IGF2BP2 to stabilize PFKL, which may provide a new direction for seeking targeted therapy plans of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Eukaryotic Initiation Factor-4A , Gene Expression Regulation, Neoplastic , Glycolysis , Lung Neoplasms , RNA, Circular , RNA-Binding Proteins , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , RNA, Circular/genetics , RNA, Circular/metabolism , Glycolysis/genetics , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Eukaryotic Initiation Factor-4A/metabolism , Eukaryotic Initiation Factor-4A/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Mice , Mice, Nude , Male , Female , DEAD-box RNA Helicases
14.
Nat Commun ; 15(1): 6348, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068178

ABSTRACT

The spliceosome executes pre-mRNA splicing through four sequential stages: assembly, activation, catalysis, and disassembly. Activation of the spliceosome, namely remodeling of the pre-catalytic spliceosome (B complex) into the activated spliceosome (Bact complex) and the catalytically activated spliceosome (B* complex), involves major flux of protein components and structural rearrangements. Relying on a splicing inhibitor, we have captured six intermediate states between the B and B* complexes: pre-Bact, Bact-I, Bact-II, Bact-III, Bact-IV, and post-Bact. Their cryo-EM structures, together with an improved structure of the catalytic step I spliceosome (C complex), reveal how the catalytic center matures around the internal stem loop of U6 snRNA, how the branch site approaches 5'-splice site, how the RNA helicase PRP2 rearranges to bind pre-mRNA, and how U2 snRNP undergoes remarkable movement to facilitate activation. We identify a previously unrecognized key role of PRP2 in spliceosome activation. Our study recapitulates a molecular choreography of the human spliceosome during its catalytic activation.


Subject(s)
Cryoelectron Microscopy , RNA Precursors , RNA Splicing , RNA, Small Nuclear , Spliceosomes , Spliceosomes/metabolism , Humans , RNA Precursors/metabolism , RNA Precursors/genetics , RNA, Small Nuclear/metabolism , Ribonucleoprotein, U2 Small Nuclear/metabolism , Ribonucleoprotein, U2 Small Nuclear/genetics , Models, Molecular , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Catalytic Domain
15.
Elife ; 132024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989862

ABSTRACT

Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.


Subject(s)
DEAD-box RNA Helicases , Protein Biosynthesis , Proto-Oncogene Proteins , RNA Stability , RNA, Messenger , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Humans , RNA, Messenger/metabolism , RNA, Messenger/genetics , RNA Stability/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Ribosomes/metabolism , HEK293 Cells
17.
Genome Res ; 34(6): 952-966, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38986579

ABSTRACT

DEAD box (DDX) RNA helicases are a large family of ATPases, many of which have unknown functions. There is emerging evidence that besides their role in RNA biology, DDX proteins may stimulate protein kinases. To investigate if protein kinase-DDX interaction is a more widespread phenomenon, we conducted three orthogonal large-scale screens, including proteomics analysis with 32 RNA helicases, protein array profiling, and kinome-wide in vitro kinase assays. We retrieved Ser/Thr protein kinases as prominent interactors of RNA helicases and report hundreds of binary interactions. We identified members of ten protein kinase families, which bind to, and are stimulated by, DDX proteins, including CDK, CK1, CK2, DYRK, MARK, NEK, PRKC, SRPK, STE7/MAP2K, and STE20/PAK family members. We identified MARK1 in all screens and validated that DDX proteins accelerate the MARK1 catalytic rate. These findings indicate pervasive interactions between protein kinases and DEAD box RNA helicases, and provide a rich resource to explore their regulatory relationships.


Subject(s)
DEAD-box RNA Helicases , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Humans , Protein Binding , Proteomics/methods , Protein Kinases/metabolism , Protein Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics
18.
Commun Biol ; 7(1): 859, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003349

ABSTRACT

Our study employs pooled CRISPR screens, integrating 2D and 3D culture models, to identify miRNAs critical in Breast Cancer (BC) tumoursphere formation. These screens combine with RNA-seq experiments allowing identification of miRNA signatures and targets essential for tumoursphere growth. miR-4787-3p exhibits significant up-regulation in BC, particularly in basal-like BCs, suggesting its association with aggressive disease. Surprisingly, despite its location within the 5'UTR of a protein coding gene, which defines DROSHA-independent transcription start site (TSS)-miRNAs, we find it dependant on both DROSHA and DICER1 for maturation. Inhibition of miR-4787-3p hinders tumoursphere formation, highlighting its potential as a therapeutic target in BC. Our study proposes elevated miR-4787-3p expression as a potential prognostic biomarker for adverse outcomes in BC. We find that protein-coding genes positively selected in the CRISPR screens are enriched of miR-4787-3p targets. Of these targets, we select ARHGAP17, FOXO3A, and PDCD4 as known tumour suppressors in cancer and experimentally validate the interaction of miR-4787-3p with their 3'UTRs. Our work illuminates the molecular mechanisms underpinning miR-4787-3p's oncogenic role in BC. These findings advocate for clinical investigations targeting miR-4787-3p and underscore its prognostic significance, offering promising avenues for tailored therapeutic interventions and prognostic assessments in BC.


Subject(s)
Breast Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic , Transcription Initiation Site , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Cell Proliferation/genetics , Cell Line, Tumor , Ribonuclease III/genetics , Ribonuclease III/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Spheroids, Cellular/pathology , DEAD-box RNA Helicases
19.
Mol Cancer ; 23(1): 151, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085875

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is the second most common malignant tumor worldwide, and its incidence rate increases annually. Early diagnosis and treatment are crucial for improving the prognosis of patients with colorectal cancer. Circular RNAs are noncoding RNAs with a closed-loop structure that play a significant role in tumor development. However, the role of circular RNAs in CRC is poorly understood. METHODS: The circular RNA hsa_circ_0000467 was screened in CRC circRNA microarrays using a bioinformatics analysis, and the expression of hsa_circ_0000467 in CRC tissues was determined by in situ hybridization. The associations between the expression level of hsa_circ_0000467 and the clinical characteristics of CRC patients were evaluated. Then, the role of hsa_circ_0000467 in CRC growth and metastasis was assessed by CCK8 assay, EdU assay, plate colony formation assay, wound healing assay, and Transwell assay in vitro and in a mouse model of CRC in vivo. Proteomic analysis and western blotting were performed to investigate the effect of hsa_circ_0000467 on c-Myc signaling. Polysome profiling, RT‒qPCR and dual-luciferase reporter assays were performed to determine the effect of hsa_circ_0000467 on c-Myc translation. RNA pull-down, RNA immunoprecipitation (RIP) and immunofluorescence staining were performed to assess the effect of hsa_circ_0000467 on eIF4A3 distribution. RESULTS: In this study, we found that the circular RNA hsa_circ_0000467 is highly expressed in colorectal cancer and is significantly correlated with poor prognosis in CRC patients. In vitro and in vivo experiments revealed that hsa_circ_0000467 promotes the growth and metastasis of colorectal cancer cells. Mechanistically, hsa_circ_0000467 binds eIF4A3 to suppress its nuclear translocation. In addition, it can also act as a scaffold molecule that binds eIF4A3 and c-Myc mRNA to form complexes in the cytoplasm, thereby promoting the translation of c-Myc. In turn, c-Myc upregulates its downstream targets, including the cell cycle-related factors cyclin D2 and CDK4 and the tight junction-related factor ZEB1, and downregulates E-cadherin, which ultimately promotes the growth and metastasis of CRC. CONCLUSIONS: Our findings revealed that hsa_circRNA_0000467 plays a role in the progression of CRC by promoting eIF4A3-mediated c-Myc translation. This study provides a theoretical basis and molecular target for the diagnosis and treatment of CRC.


Subject(s)
Cell Proliferation , Colorectal Neoplasms , Eukaryotic Initiation Factor-4A , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins c-myc , RNA, Circular , RNA, Circular/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Humans , Eukaryotic Initiation Factor-4A/metabolism , Eukaryotic Initiation Factor-4A/genetics , Animals , Mice , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Disease Progression , Cell Line, Tumor , Male , Prognosis , Female , Protein Biosynthesis , Cell Movement/genetics , Biomarkers, Tumor/genetics , DEAD-box RNA Helicases
20.
Pathologica ; 116(3): 170-175, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38979591

ABSTRACT

Embryonal tumors with multilayered rosettes (ETMR) are highly aggressive and therapy-resistant pediatric central nervous system (CNS) tumors that have three histological patters: embryonal tumor with abundant neuropil and true rosettes, ependymoblastoma, and medulloepithelioma. We present a case of ETMR in an 18-year-old woman with DICER1 syndrome. This report confirms the important role of DNA-methylation analysis in the classification of CNS embryonal tumors and the importance of investigating somatic and germline DICER1 mutations in all CNS embryonal tumors.


Subject(s)
DEAD-box RNA Helicases , Neoplasms, Germ Cell and Embryonal , Ribonuclease III , Humans , Female , Ribonuclease III/genetics , DEAD-box RNA Helicases/genetics , Adolescent , Neoplasms, Germ Cell and Embryonal/genetics , Neoplasms, Germ Cell and Embryonal/pathology , DNA Methylation
SELECTION OF CITATIONS
SEARCH DETAIL