Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.235
Filter
1.
PLoS One ; 19(8): e0307299, 2024.
Article in English | MEDLINE | ID: mdl-39173039

ABSTRACT

The classification of Microbispora, a bacterial genus of significant ecological, agricultural, biotechnological, and clinical importance, has traditionally been carried out based on 16S rRNA gene sequences or phenotypic characteristics, which may lead to equivocal conclusions and it is not in line with the current standards. Moreover, some of the recent species descriptions have not been made using whole genome sequences (WGS), or when used, not all the species were included in the analyses. Consequently, some of the taxonomic conclusions drawn are equivocal, and therefore some currently accepted species should be synonymized. In this study, we revised the taxonomy of the genus Microbispora using digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values, and by reconstructing phylogenetic relationships using whole genome sequences. Based on the clear phylogenomic separations and on the sequence divergence values, we propose to elevate Microbispora rosea subsp. rosea and Microbispora rosea subsp. aerata to the species level, and therefore to create Microbispora aerata sp. nov. with JCM 3076T (= DSM 43176T = ATCC 15448T = IFO 14624T = NBRC 14624T = VKM Ac-1507T) as the type strain. Hence, with this proposition, the correct name for Microbispora rosea subsp. rosea is M. rosea. Furthermore, we propose to reclassify M. camponoti as a subspecies within M. bryophytorum. Consequently, we propose the creation of the following two subspecies: Microbispora bryophytorum subsp. bryophytorum subsp. nov. with DSM 46710T (= CGMCC 4.7138T = NEAU TX2-2T) as the type strain, and Microbispora bryophytorum subsp. camponoti subsp. nov., comb. nov. with DSM 2C-HV3T (= DSM 100527T = CGMCC 4.7281T) as the type strain. In addition, we propose to reinstate M. amethystogenes as an independent species and not as a M. rosea synonym, and reclassify "M. cellulosiformans" as a subspecies within M. amethystogenes. Hence, we propose the creation of the following two subspecies: Microbispora amethystogenes subsp. amethystogenes subsp. nov. with NBRC 101907T (= DSM 43164T = JCM 3021T = NRRL B-2637T) as the type strain, and Microbispora amethystogenes subsp. cellulosiformans subsp. nov., comb. nov. with Gxj-6T (= DSM 109712T = CGMCC 4.7605T) as the type strain. Lastly, we propose M. fusca NEAU-HEGS1-5T and "M. tritici" MT50T as later homotypic synonyms of M. triticiradicis NEAU-HRDPA2-9T.


Subject(s)
Genome, Bacterial , Phylogeny , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Whole Genome Sequencing , Nucleic Acid Hybridization
2.
Article in English | MEDLINE | ID: mdl-39140846

ABSTRACT

Two Gram-negative, obligately aerobic, rod-shaped bacteria, strains G1-22T and G1-23T, were isolated from the phycosphere of a marine brown alga. Both strains exhibited catalase- and oxidase-positive activities. Strain G1-22T displayed optimal growth at 25 °C, pH 8.0, and 2.0-3.0% (w/v) NaCl, while strain G1-23T exhibited optimal growth at 25 °C, pH 8.0, and 4.0% NaCl. Ubiquinone-8 was identified as the sole isoprenoid quinone in both strains. As major fatty acids (> 5%), strain G1-22T contained C16 : 0, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), C12 : 1 3-OH, and C10 : 0 3-OH, while strain G1-23T contained C16 : 0, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), and C14 : 0. Phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol were major polar lipids in both strains. Strains G1-22T and G1-23T had DNA G+C contents of 40.2 and 38.9 mol%, respectively. Phylogenetic analyses based on 16S rRNA and genome sequences revealed that strains G1-22T and G1-23T formed distinct phylogenetic lineages within the genera Psychrosphaera and Paraglaciecola, respectively. Strain G1-22T showed closest relatedness to Psychrosphaera ytuae MTZ26T with 97.8% 16S rRNA gene sequence similarity, 70.2% average nucleotide identity (ANI), and a 21.5% digital DNA-DNA hybridization (dDDH) value, while strain G1-23T was most closely related to Paraglaciecola aquimarina KCTC 32108T with 95.6% 16S rRNA gene sequence similarity, 74.6% ANI, and a 20.1% dDDH value. Based on phenotypic and molecular characteristics, strains G1-22T and G1-23T are proposed to represent two novel species, namely Psychrosphaera algicola sp. nov. (type strain G1-22T=KACC 22486T=JCM 34971T) and Paraglaciecola algarum sp. nov. (type strain G1-23T=KACC 22490T=JCM 34972T), respectively. Additionally, based on the comparison of whole genome sequences, it is proposed that Pseudoalteromonas elyakovii, Pseudoalteromonas flavipulchra, and Pseudoalteromonas profundi are reclassified as later heterotypic synonyms of Pseudoalteromonas distincta, Pseudoalteromonas maricaloris, and Pseudoalteromonas gelatinilytica, respectively.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Nucleic Acid Hybridization , Phylogeny , Pseudoalteromonas , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Ubiquinone , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Pseudoalteromonas/genetics , Pseudoalteromonas/classification , Pseudoalteromonas/isolation & purification , Phaeophyceae/microbiology
3.
Article in English | MEDLINE | ID: mdl-39141420

ABSTRACT

In Florida, angular leaf spot, caused by Xanthomonas fragariae, was the only known bacterial disease in strawberry, which is sporadic and affects the foliage and calyx. However, from the 2019-2020 to 2023-2024 Florida strawberry seasons, unusual bacterial-like symptoms were observed in commercial farms, with reports of up to 30 % disease incidence. Typical lesions were water-soaked and angular in early stages that later became necrotic with a circular-ellipsoidal purple halo, and consistently yielded colonies resembling Pseudomonas on culture media. Strains were pathogenic on strawberry, fluorescent, oxidase- and arginine-dihydrolase-negative, elicited a hypersensitive reaction on tobacco, and lacked pectolytic activity. Although phenotypic assays, such as fatty acid methyl profiles and Biolog protocols, placed the strains into the Pseudomonas group, there was a low similarity at the species level. Further analysis using 16S rRNA genes, housekeeping genes, and whole genome sequencing showed that the strains cluster into the Pseudomonas group but do not share more than 95 % average nucleotide identity compared to representative members. Therefore, the genomic and phenotypic analysis confirm that the strains causing bacterial spot in strawberry represent a new plant pathogenic bacterial species for which we propose the name Pseudomonas fragariae sp. nov. with 20-417T (17T=LMG 32456T=DSM 113340 T) as the type strain, in relation to Fragaria×ananassa, the plant species from which the pathogen was first isolated. Future work is needed to assess the epidemiology, cultivar susceptibility, chemical sensitivity, and disease management of this possible new emerging strawberry pathogen.


Subject(s)
Bacterial Typing Techniques , DNA, Bacterial , Fragaria , Phylogeny , Plant Diseases , Plant Leaves , Pseudomonas , RNA, Ribosomal, 16S , Fragaria/microbiology , RNA, Ribosomal, 16S/genetics , Plant Diseases/microbiology , Pseudomonas/genetics , Pseudomonas/isolation & purification , Pseudomonas/classification , DNA, Bacterial/genetics , Plant Leaves/microbiology , Florida , Sequence Analysis, DNA , Whole Genome Sequencing , Fatty Acids , Genes, Essential/genetics
4.
Food Res Int ; 192: 114789, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147464

ABSTRACT

Yersinia enterocolitica (Ye) is a foodborne pathogen isolated from humans, food, animals, and the environment. Yersiniosis is the third most frequently reported foodborne zoonosis in the European Union. Ye species are divided into six biotypes 1A, 1B, 2, 3, 4, and 5, based on biochemical reactions and about 70 serotypes. Biotype 1A is non-pathogenic, 1B is highly pathogenic, and biotypes 2-5 have moderate or low pathogenicity. The reference analysis method for detecting pathogenic Ye species underestimates the presence of the pathogen due to similarities between Yersinia enterocolitica-like species and other Yersiniaceae and/or Enterobacteriaceae, low concentrations of distribution pathogenic strains and the heterogeneity of Yersinia enterocolitica species. In this study, the real-time PCR method ISO/TS 18867 to identify pathogenic biovars of Ye in bivalve molluscs was validated. The sensitivity, specificity and accuracy of the molecular method were evaluated using molluscs experimentally contaminated. The results fully agree with those obtained with the ISO 10273 method. Finally, we evaluated the presence of Ye in seventy commercial samples of bivalve molluscs collected in the Gulf of Naples using ISO/TS 18867. Only one sample tested resulted positive for the ail gene, which is considered the target gene for detection of pathogenic Ye according to ISO/TS 18867. Additionally, the presence of the ystB gene, used as target for Ye biotype 1A, was assessed in all samples using a real-time PCR SYBR Green platform. The results showed amplification ystB gene aim two samples.


Subject(s)
Bivalvia , Real-Time Polymerase Chain Reaction , Yersinia enterocolitica , Yersinia enterocolitica/genetics , Yersinia enterocolitica/isolation & purification , Yersinia enterocolitica/classification , Animals , Real-Time Polymerase Chain Reaction/methods , Bivalvia/microbiology , Italy , Food Microbiology , Benzothiazoles , DNA, Bacterial/genetics , Organic Chemicals , Diamines , Reproducibility of Results , Food Contamination/analysis , Sensitivity and Specificity , Shellfish/microbiology , Quinolines
5.
Front Cell Infect Microbiol ; 14: 1423155, 2024.
Article in English | MEDLINE | ID: mdl-39176262

ABSTRACT

Mycoplasma pneumoniae is a significant pathogen responsible for community-acquired pneumonia, predominantly affecting children and adolescents. Here, we devised a rapid method for M. pneumoniae that combined multiple cross displacement amplification (MCDA) with real-time fluorescence technology. A set of ten primers, which were specifically designed for M. pneumoniae detection, were employed in a real-time fluorescence MCDA reaction. Of these, one primer incorporated a restriction endonuclease recognition sequence, a fluorophore, and a quencher, facilitating real-time fluorescence detection. The real-time (RT)-MCDA reactions were monitored in a simple real-time fluorescence instrument and conducted under optimised conditions (64°C for 40 min). The detection limit of the M. pneumoniae RT-MCDA assay for genomic DNA extracted from M. pneumoniae culture was down to 43 fg/µl. This assay accurately identified M. pneumoniae strains without cross-reacting with other bacteria. To validate its practical application, we tested the M. pneumoniae RT-MCDA assay using genomic DNA extracted from clinical samples. The assay's detection capability proved comparable with real-time PCR, MCDA-based biosensor detection, and visual inspection under blue light. The entire process, including rapid DNA extraction and real-time MCDA detection, was completed within 1 h. Overall, the M. pneumoniae RT-MCDA assay reported here is a simple and effective diagnostic tool for rapid M. pneumoniae detection, which holds significant potential for point-of-care testing and in resource-limited regions.


Subject(s)
DNA, Bacterial , Mycoplasma pneumoniae , Nucleic Acid Amplification Techniques , Pneumonia, Mycoplasma , Sensitivity and Specificity , Mycoplasma pneumoniae/genetics , Mycoplasma pneumoniae/isolation & purification , Humans , Pneumonia, Mycoplasma/diagnosis , Pneumonia, Mycoplasma/microbiology , Nucleic Acid Amplification Techniques/methods , DNA, Bacterial/genetics , Fluorescence , Molecular Diagnostic Techniques/methods , DNA Primers/genetics , Real-Time Polymerase Chain Reaction/methods , Limit of Detection
6.
Sci Rep ; 14(1): 18654, 2024 08 12.
Article in English | MEDLINE | ID: mdl-39134642

ABSTRACT

This study aimed to determine the sequence type (ST) of Bartonella henselae infecting small Indian mongooses from Saint Kitts via multi-locus sequence typing (MLST). This investigation used stored EDTA blood (n = 22) samples from mongooses previously identified as positive for B. henselae. Chocolate agar plates were enriched with Bartonella alpha-Proteobacteria growth medium (BAPGM) to culture and isolate Bartonella from the blood samples. To perform MLST, DNA was extracted and purified from isolates followed by amplification by conventional PCR (300-500 bp) for eight genes (16S rDNA, batR, gltA, groEL, ftsZ, nlpD, ribC, and rpoB). Bartonella henselae STs were deposited in the PubMLST repository. Out of 22 B. henselae-positive blood samples, isolates were obtained from 12 mongooses (54.5%; 12/22). Each mongoose was infected with one ST. The studied mongoose population was infected with sequence types ST2, ST3, ST8, and a novel ST represented by ST38. Bartonella henselae ST2, ST3 and ST8 infecting mongooses are known to circulate in humans and cats, with ST2 and ST8 associated with Cat Scratch Disease (bartonellosis) in humans. The results presented herein denote the circulation of B. henselae STs with zoonotic potential in mongooses with risk of B. henselae transmission to humans.


Subject(s)
Bartonella henselae , Herpestidae , Bartonella henselae/genetics , Bartonella henselae/isolation & purification , Herpestidae/microbiology , Animals , Multilocus Sequence Typing , Phylogeny , DNA, Bacterial/genetics , India , Humans
7.
Microb Ecol ; 87(1): 107, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162854

ABSTRACT

Cigars and cigarillos are emerging as popular tobacco alternatives to cigarettes. However, these products may be equally harmful to human health than cigarettes and are associated with similar adverse health effects. We used 16S rRNA gene amplicon sequencing to extensively characterize the microbial diversity and investigate differences in microbial composition across 23 different products representing three different cigar product categories: filtered cigar, cigarillo, and large cigar. High throughput sequencing of the V4 hypervariable region of the 16 s rRNA gene revealed 2124 Operational Taxonomic Units (OTUs). Our findings showed that the three categories of cigars differed significantly in observed richness and Shannon diversity, with filtered cigars exhibiting lower diversity compared to large cigars and cigarillos. We also found a shared and unique microbiota among different product types. Firmicutes was the most abundant phylum in all product categories, followed by Actinobacteria. Among the 16 genera shared across all product types were Bacillus, Staphylococcus, Pseudomonas, and Pantoea. Nine genera were exclusively shared by large cigars and cigarillos and an additional thirteen genera were exclusive to filtered cigars. Analysis of individual cigar products showed consistent microbial composition across replicates for most large cigars and cigarillos while filtered cigars showed more inter-product variability. These findings provide important insights into the microbial diversity of the different cigar product types.


Subject(s)
Bacteria , Biodiversity , Microbiota , RNA, Ribosomal, 16S , Tobacco Products , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Phylogeny , High-Throughput Nucleotide Sequencing , DNA, Bacterial/genetics
8.
Nat Commun ; 15(1): 7137, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164300

ABSTRACT

The histone-like nucleoid structuring (H-NS) protein is a DNA binding factor, found in gammaproteobacteria, with functional equivalents in diverse microbes. Universally, such proteins are understood to silence transcription of horizontally acquired genes. Here, we identify transposon capture as a major overlooked function of H-NS. Using genome-scale approaches, we show that H-NS bound regions are transposition "hotspots". Since H-NS often interacts with pathogenicity islands, such targeting creates clinically relevant phenotypic diversity. For example, in Acinetobacter baumannii, we identify altered motility, biofilm formation, and interactions with the human immune system. Transposon capture is mediated by the DNA bridging activity of H-NS and, if absent, more ubiquitous transposition results. Consequently, transcribed and essential genes are disrupted. Hence, H-NS directs transposition to favour evolutionary outcomes useful for the host cell.


Subject(s)
Acinetobacter baumannii , Bacterial Proteins , DNA Transposable Elements , DNA-Binding Proteins , DNA Transposable Elements/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Acinetobacter baumannii/genetics , Acinetobacter baumannii/metabolism , Humans , Biofilms/growth & development , Gene Expression Regulation, Bacterial , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Genome, Bacterial , Genomic Islands
9.
Microbiologyopen ; 13(4): e1432, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39166362

ABSTRACT

The long-read sequencing platform MinION, developed by Oxford Nanopore Technologies, enables the sequencing of bacterial genomes in resource-limited settings, such as field conditions or low- and middle-income countries. For this purpose, protocols for extracting high-molecular-weight DNA using nonhazardous, inexpensive reagents and equipment are needed, and some methods have been developed for gram-negative bacteria. However, we found that without modification, these protocols are unsuitable for gram-positive Streptococcus spp., a major threat to fish farming and food security in low- and middle-income countries. Multiple approaches were evaluated, and the most effective was an extraction method using lysozyme, sodium dodecyl sulfate, and proteinase K for lysis of bacterial cells and magnetic beads for DNA recovery. We optimized the method to consistently achieve sufficient yields of pure high-molecular-weight DNA with minimal reagents and time and developed a version of the protocol which can be performed without a centrifuge or electrical power. The suitability of the method was verified by MinION sequencing and assembly of 12 genomes of epidemiologically diverse fish-pathogenic Streptococcus iniae and Streptococcus agalactiae isolates. The combination of effective high-molecular-weight DNA extraction and MinION sequencing enabled the discovery of a naturally occurring 15 kb low-copy number mobilizable plasmid in S. iniae, which we name pSI1. We expect that our resource-limited settings-adapted protocol for high-molecular-weight DNA extraction could be implemented successfully for similarly recalcitrant-to-lysis gram-positive bacteria, and it represents a method of choice for MinION-based disease diagnostics in low- and middle-income countries.


Subject(s)
DNA, Bacterial , Nanopore Sequencing , Streptococcus , Streptococcus/genetics , Streptococcus/isolation & purification , Streptococcus/classification , DNA, Bacterial/genetics , Nanopore Sequencing/methods , Animals , Genome, Bacterial/genetics , Molecular Weight , Sequence Analysis, DNA/methods , Fishes/microbiology , Fish Diseases/microbiology , Streptococcal Infections/microbiology , Resource-Limited Settings
10.
Sci Rep ; 14(1): 19124, 2024 08 18.
Article in English | MEDLINE | ID: mdl-39155334

ABSTRACT

Clustered DNA damage, when multiple lesions are generated in close proximity, has various biological consequences, including cell death, chromosome aberrations, and mutations. It is generally perceived as a hallmark of ionizing radiation. The enhanced mutagenic potential of lesions within a cluster has been suggested to result, at least in part, from the selection of the strand with the mutagenic lesion as the preferred template strand, and that this process is relevant to the tolerance of persistent single-strand breaks generated during an attempted repair. Using a plasmid-based assay in Escherichia coli, we examined how the strand bias is affected in mutant strains deficient in different DNA polymerase I activities. Our study revealed that the strand-displacement and 5'-flap endonuclease activities are required for this process, while 3'-to-5' exonuclease activity is not. We also found the strand template that the mutagenic lesion was located on, whether lagging or leading, had no effect on this strand bias. Our results imply that an unknown pathway operates to repair/tolerate the single-strand break generated at a bi-stranded clustered damage site, and that there exist different backup pathways, depending on which DNA polymerase I activity is compromised.


Subject(s)
DNA Breaks, Single-Stranded , DNA Polymerase I , DNA Repair , Escherichia coli , Escherichia coli/genetics , DNA Polymerase I/metabolism , DNA Polymerase I/genetics , DNA Damage , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Mutation , DNA, Bacterial/genetics , DNA, Bacterial/metabolism
11.
Antonie Van Leeuwenhoek ; 117(1): 114, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164415

ABSTRACT

The kiwifruit industry typically uses commercial pollen for artificial pollination. However, during the collection of male flowers and pollen production, pollen can be easily contaminated by pathogenic bacteria that cause diseases such as canker and flower rot. Consequently, it is crucial to understand the structure of the pollen microbial community. This study employed Illumina high-throughput sequencing technology to analyze the fungal and bacterial composition in pollen samples from various regions in Shaanxi Province. Concurrently, potential pathogenic strains were isolated using traditional microbial isolation and cultivation techniques, and their molecular identification was performed through 16S rDNA sequence analysis. A tieback test was conducted on healthy branches to verify the pathogenicity of the strains. The results revealed a rich diversity of fungi and bacteria in kiwifruit pollen. At the phylum level, pollen fungi were mainly distributed in Ascomycota, and bacteria were mainly distributed in Proteobacteria and Firmicutes. The dominant fungal genera were Mycosphaerella, Aspergillus, and Cladosporium; the dominant bacterial genera were Weissella, Pantoea, Enterobacter, and Pseudomonas, respectively. Additionally, both Erwinia persicina and Pseudomonas fluorescens, isolated from pollen, exhibited high pathogenicity toward healthy kiwifruit branches. These findings contribute to a deeper understanding of the microbial diversity in commercial kiwifruit pollen used for mass pollination.


Subject(s)
Actinidia , Bacteria , Fungi , Microbiota , Pollen , RNA, Ribosomal, 16S , Actinidia/microbiology , Pollen/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , RNA, Ribosomal, 16S/genetics , Biodiversity , Phylogeny , High-Throughput Nucleotide Sequencing , DNA, Bacterial/genetics
12.
Curr Microbiol ; 81(10): 318, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39164555

ABSTRACT

Two endophytic bacterial strains, designated S1-1-2 T and S1-1-8, were isolated from the leaves of a mangrove plant, Avicennia marina. The isolates were Gram-stain-negative, motile, rod-shaped bacteria with lateral flagella. Growth occurred at 4-41 °C, pH 4.0-11.0, and 0.5-25.0% NaCl. The predominant fatty acids of the novel strains were C18:1 ω6c/ω7c, C19:0 cyclo ω8c, and C16:0. The predominant respiratory quinone was Q-9. The DNA G + C contents of strains S1-1-2 T and S1-1-8 analyzed by genome sequences were 63.8%. Phylogenetic analysis based on 16S rRNA gene sequences obtained using sanger sequencing and whole-genome phylogenetic analysis revealed an affiliation between the two strains and the genus Salinicola in the class Gammaproteobacteria. Detailed genotypic, chemotaxonomic, and phenotypic data support the conclusion that these two strains should be described as a novel species in the genus Salinicola. Here, Salinicola avicenniae sp. nov. (type strain S1-1-2 T = LMG 32655 T = MCCC 1A19027T) is proposed.


Subject(s)
Avicennia , Base Composition , DNA, Bacterial , Gammaproteobacteria , Phylogeny , RNA, Ribosomal, 16S , Avicennia/microbiology , RNA, Ribosomal, 16S/genetics , China , DNA, Bacterial/genetics , Gammaproteobacteria/classification , Gammaproteobacteria/genetics , Gammaproteobacteria/isolation & purification , Fatty Acids/analysis , Bacterial Typing Techniques , Sequence Analysis, DNA , Plant Leaves/microbiology , Endophytes/genetics , Endophytes/classification , Endophytes/isolation & purification
13.
Article in English | MEDLINE | ID: mdl-39120518

ABSTRACT

Four Gram-stain-positive and two Gram-stain-negative bacterial strains, designated as W4T, FW7T, TW48T, UW52T, PT-3T, and RJY3T, were isolated from soil samples collected from the Republic of Korea. The 16S rRNA gene sequence analysis showed that strains W4T and FW7T belonged to the genus Microbacterium, strains TW48T and UW52T were affiliated to the genus Paenibacillus, strain PT-3T was related to the genus Flavobacterium, and strain RJY3T was associated with the genus Aquabacterium. The closest phylogenetic taxa to W4T, FW7T, TW48T, UW52T, PT-3T, and RJY3T were Microbacterium bovistercoris NEAU-LLET (97.7 %), Microbacterium protaetiae DFW100M-13T (97.9 %), Paenibacillus auburnensis JJ-7T (99.6 %), Paenibacillus allorhizosphaerae JJ-447T (95.7 %), Flavobacterium buctense T7T (97.1 %), and Aquabacterium terrae S2T (99.5 %), respectively. Average nucleotide identity and digital DNA-DNA hybridization values between the novel strains and related reference type strains were <95.0 % and <70.0 %, respectively. The major cellular fatty acid in strains W4T, FW7T TW48T, and UW52T was antiso-C15 : 0. Similarly, strain PT-3T revealed iso-C15 : 0, iso-C15 : 1 G, iso-C17 : 0 3-OH, and iso-C15 : 0 3-OH as its principal fatty acids. On the other hand, RJY3T exhibited summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0, summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), and C12 : 0 as its predominant fatty acids. Overall, the polyphasic taxonomic data indicated that strains W4T, FW7T, TW48T, UW52T, PT-3T, and RJY3T represent novel species within the genera Microbacterium, Paenibacillus, Flavobacterium, and Aquabacterium. Accordingly, we propose the names Microbacterium humicola sp. nov., with the type strain W4T (=KCTC 49888T=NBRC 116001T), Microbacterium terrisoli sp. nov., with the type strain FW7T (=KCTC 49859T=NBRC 116000T), Paenibacillus pedocola sp. nov., with the type strain TW48T (=KCTC 43470T=NBRC 116017T), Paenibacillus silviterrae sp. nov., with the type strain UW52T (=KCTC 43477T=NBRC 116018T), Flavobacterium terrisoli sp. nov., with the type strain PT-3T (=KCTC 92106T=NBRC 116012T), and Aquabacterium humicola sp. nov., with the type strain RJY3T (=KCTC 92105T=NBRC 115831T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Flavobacterium , Microbacterium , Nucleic Acid Hybridization , Paenibacillus , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Soil Microbiology , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Paenibacillus/classification , Paenibacillus/genetics , Paenibacillus/isolation & purification , Republic of Korea , Flavobacterium/genetics , Flavobacterium/classification , Flavobacterium/isolation & purification , Microbacterium/genetics
14.
Curr Microbiol ; 81(9): 291, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088066

ABSTRACT

A novel Gram-stain-positive, aerobic, catalase-positive, oxidase-negative, non-motile, and rod-shaped bacterium with ibuprofen-degrading capacity, designated DM4T, was isolated from the sewage of a wastewater treatment plant (WWTP) in Guangzhou city, China. Strain DM4T grew optimally at 0% (w/v) NaCl, pH 5.0-7.0, and 30 °C, forming white colonies on trypticase soy agar. C18:1ω9c, C18:2ω9.12c and C15:1ω10c were the predominant fatty acids. Results of 16S rRNA gene alignment and phylogenetic analysis indicated that strain DM4T belonged to the genus Patulibacter, was closely related to Patulibacter medicamentivorans DSM 25692T (98.5%) and P. brassicae KCTC 39817T (98.1%). Strain DM4T had a genome size of 5.33Mbp, and the DNA G + C content was 75.0%. The average nucleotide identity (ANI), average amino acid identity (AAI), and digital DNA-DNA hybridisation (dDDH) values between strain DM4T and P. medicamentivorans were 85.2%, 83.9%, and 29.0% respectively, while those between strain DM4T and P. brassicae were 78.5%, 71.3%, and 22.2%, respectively. Strain DM4T could significantly degrade ibuprofen by almost 80% after 84 h of incubation, and the degradation kinetics was well fitted with the first-order kinetics. Evidence from phenotypic, phylogenetic and chemotaxonomic analyses support that strain DM4T (= GDMCC 1.4574T = KCTC 59145T) represents a new species of the genus Patulibacter, for which the name Patulibacter defluvii sp. nov. is proposed.


Subject(s)
Base Composition , DNA, Bacterial , Fatty Acids , Phylogeny , RNA, Ribosomal, 16S , Wastewater , China , Wastewater/microbiology , RNA, Ribosomal, 16S/genetics , Fatty Acids/analysis , DNA, Bacterial/genetics , Bacterial Typing Techniques , Sewage/microbiology , Sequence Analysis, DNA , Ibuprofen
15.
Curr Microbiol ; 81(9): 293, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090416

ABSTRACT

Hot springs are inhabited by specific microbial communities which are reservoirs of novel taxa. In this work strain 4228-RoLT was isolated from the Solnechny hot spring, Uzon Caldera, Kamchatka. Cells of the strain 4228-RoLT were Gram-negative rods forming multicellular filaments. The strain grew optimally at 60 °C and pH 7.0 and fermented various organic compounds including polysaccharides (microcrystalline cellulose, xylan, chitin, starch, dextrin, dextran, beta-glucan, galactomannan, glucomannan, mannan). Major fatty acids were iso-C17:0, C16:0, C18:0, C20:0, iso-C19:0, anteiso-C17:0 and C22:0. Genome of the strain was of 3.25 Mbp with GC content of 54.2%. Based on the whole genome comparisons and phylogenomic analysis the new isolate was affiliated to a novel species of Thermanaerothrix genus within Anaerolineae class of phylum Chloroflexota, for which the name T. solaris sp. nov. was proposed with 4228-RoLT (= VKM B-3776 T = UQM 41594 T = BIM B-2058 T) as the type strain. 114 CAZymes including 43 glycoside hydrolases were found to be encoded in the genome of strain 4228-RoLT. Cell-bound and extracellular enzymes of strain 4228-RoLT were active against starch, dextran, mannan, xylan and various kinds of celluloses, with the highest activity against beta-glucan. Altogether, growth experiments, enzymatic activities determination and genomic analysis suggested that T. solaris strain 4228-RoLT could serve as a source of glycosidases suitable for plant biomass hydrolysis.


Subject(s)
Base Composition , Hot Springs , Phylogeny , Hot Springs/microbiology , Hydrolysis , Genome, Bacterial , Fatty Acids/metabolism , RNA, Ribosomal, 16S/genetics , Polysaccharides/metabolism , DNA, Bacterial/genetics , Bacterial Typing Techniques
16.
Curr Microbiol ; 81(9): 292, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090417

ABSTRACT

The taxonomic relationship between Streptomyces violarus and Streptomyces violaceus was reevaluated using a polyphasic taxonomic approach in this work. Phylogenetic analysis based on 16S rRNA gene sequences indicated that Streptomyces violarus JCM 4534 T was closely related to Streptomyces arenae ISP 5293 T. However, phylogenetic analysis based on five house-keeping gene (atpD, gyrB, recA, rpoB and trpB) showed that the evolutionary neighbor of Streptomyces violarus JCM 4534 T was Streptomyces violaceus CGMCC 4.1456 T, suggesting that there was a close genetic relationship between these two strains. The average nucleotide identity and digital DNA-DNA hybridization values between them were 97.0 and 72.9%, respectively, greater than the 96.7 and 70% cut-off points recommended for delineating a Streptomyces species. This result indicated that they belonged to the same genomic species which was also verified by a comprehensive comparison of phenotypic and chemotaxonomic characteristics between Streptomyces violarus JCM 4534 T and Streptomyces violaceus CGMCC 4.1456 T. According to all these data and the rule of priority in nomenclature, it is proposed the Streptomyces violarus (Artamonova and Krassilnikov 1960) Pridham 1970 is a later heterotypic synonym of Streptomyces violaceus (Rossi Doria 1891) Waksman 1953. In addition, based on dDDH, Streptomyces violaceus and Streptomyces violarus are simultaneously designated as two different subspecies, i.e., Streptomyces violaceus subsp. violaceus and Streptomyces violaceus subsp. violarus.


Subject(s)
DNA, Bacterial , Phylogeny , RNA, Ribosomal, 16S , Streptomyces , Streptomyces/genetics , Streptomyces/classification , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Bacterial Typing Techniques , Sequence Analysis, DNA , Nucleic Acid Hybridization , Bacterial Proteins/genetics
17.
Curr Microbiol ; 81(9): 298, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107520

ABSTRACT

Pigments and other secondary metabolites originating from marine microbes have been a promising natural colorants and drugs for multifaceted applications. However, marine actinobacteria producing such natural molecules are least investigated in terms of their taxonomy, chemical diversity and applications in biomedical, textile, and food industries. In this study, sioxanthin pigment-producing Gram-positive actinobacteria, Micromonospora sp. strain SH-82 was isolated from a marine sponge, Scopalina hapalia, and its whole genome was analyzed. Strain SH-82is a prolific producer of diverse chemical molecules as it produced more compounds on A1 medium with different culture conditions. The genome size of SH-82 is 6.24 Mb (6,246,890 bp) carrying 23 identified biosynthetic gene clusters. A total of 5415 CDS, 60 tRNA, 9 rRNA, and 1 tmRNA are identified from SH-82 genome. The GC content (%) of whole genome was 71.6%. Strain SH-82 harbors genes encoding type I, type II, and type III polyketide synthases. Based on the multi-locus sequence analysis and fatty acid methyl ester (FAME) composition, strain SH-82 is confirmed as a novel species. The genetic information of Micromonospora sp. SH-82 has been deposited to NCBI under the BioProject ID PRJNA1087320, with corresponding identifiers in the Sequence Read Archive (SRA) as SAMN40439676 and the Genome accession as CP148049.


Subject(s)
Base Composition , Genome, Bacterial , Micromonospora , Phylogeny , Porifera , Micromonospora/genetics , Micromonospora/classification , Micromonospora/isolation & purification , Micromonospora/metabolism , Animals , Porifera/microbiology , Multigene Family , Xanthophylls/metabolism , Fatty Acids , DNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Multilocus Sequence Typing
18.
FEMS Microbiol Ecol ; 100(9)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39118367

ABSTRACT

Thermophilic acetogenic bacteria have attracted attention as promising candidates for biotechnological applications such as syngas fermentation, microbial electrosynthesis, and methanol conversion. Here, we aimed to isolate and characterize novel thermophilic acetogens from diverse environments. Enrichment of heterotrophic and autotrophic acetogens was monitored by 16S rRNA gene-based bacterial community analysis. Seven novel Moorella strains were isolated and characterized by genomic and physiological analyses. Two Moorella humiferrea isolates showed considerable differences during autotrophic growth. The M. humiferrea LNE isolate (DSM 117358) fermented carbon monoxide (CO) to acetate, while the M. humiferrea OCP isolate (DSM 117359) transformed CO to hydrogen and carbon dioxide (H2 + CO2), employing the water-gas shift reaction. Another carboxydotrophic hydrogenogenic Moorella strain was isolated from the covering soil of an active charcoal burning pile and proposed as the type strain (ACPsT) of the novel species Moorella carbonis (DSM 116161T and CCOS 2103T). The remaining four novel strains were affiliated with Moorella thermoacetica and showed, together with the type strain DSM 2955T, the production of small amounts of ethanol from H2 + CO2 in addition to acetate. The physiological analyses of the novel Moorella strains revealed isolate-specific differences that considerably increase the knowledge base on thermophilic acetogens for future applications.


Subject(s)
Moorella , Phylogeny , RNA, Ribosomal, 16S , RNA, Ribosomal, 16S/genetics , Moorella/metabolism , Moorella/genetics , Moorella/growth & development , Carbon Dioxide/metabolism , Hydrogen/metabolism , Fermentation , Carbon Monoxide/metabolism , Soil Microbiology , Acetates/metabolism , Biocatalysis , DNA, Bacterial/genetics
19.
Article in English | MEDLINE | ID: mdl-39150443

ABSTRACT

Two bacterial strains, SP1S1-4T and SP2S1-2T, were isolated from sediment samples collected in the Stockholm archipelago in November 2021. Following whole-genome sequencing, these strains were identified as tentatively belonging to two novel Shewanella genospecies, based on digital DNA-DNA hybridization, as implemented in the Type Strain Genome Server. Shewanella septentrionalis, Shewanella baltica and Shewanella hafniensis were, in this order and within a narrow genomic relatedness range, their closest genotypic relatives. Additional sampling and sequencing efforts led to the retrieval of distinct isolates that were monophyletic with SP1S1-4T and SP2S1-2T, respectively, based on phylogenomic analysis of whole-genome sequences. Comparative analyses of genome sequence data, which included blast-based average nucleotide identity, core genome-based and core proteome-based phylogenomics, in addition to MALDI-TOF MS-based protein profiling, confirmed the distinctness of the putative novel genospecies with respect to their closest genotypic relatives. A comprehensive phenotypic characterisation of SP1S1-4T and SP2S1-2T revealed only minor differences with respect to the type strains of S. septentrionalis, S. baltica and S. hafniensis. Based on the collective phylogenomic, proteomic, and phenotypic evidence presented here, we describe two novel genospecies within the genus Shewanella, for which the names Shewanella scandinavica sp. nov. and Shewanella vaxholmensis sp. nov. are proposed. The type strains are, respectively, SP2S1-2T (=CCUG 76457T=CECT 30688T), with a draft genome sequence of 5 041 805 bp and a G+C content of 46.3 mol%, and SP1S1-4T (=CCUG 76453T=CECT 30684T), with a draft genome sequence of 4 920147 bp and a G+C content of 46.0 mol%. Our findings suggest the existence of a species complex formed by the species S. baltica, S. septentrionalis, S. scandinavica sp. nov., and S. vaxholmensis sp. nov., with S. hafniensis falling in the periphery, where distinct genomic species clusters could be identified. However, this does not exclude the possibility of a continuum of genomic diversity within this sedimental ecosystem, as discussed herein with additional sequenced isolates.


Subject(s)
Bacterial Typing Techniques , DNA, Bacterial , Genome, Bacterial , Geologic Sediments , Phylogeny , Sequence Analysis, DNA , Shewanella , Whole Genome Sequencing , Shewanella/genetics , Shewanella/isolation & purification , Shewanella/classification , Geologic Sediments/microbiology , DNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Nucleic Acid Hybridization , Seawater/microbiology , Genotype , Base Composition
20.
Curr Microbiol ; 81(10): 310, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152363

ABSTRACT

A Gram-stain-negative, strictly aerobic, non-motile, rod-shaped, designated strain CAU 1642 T, was isolated from a Salicornia herbacea collected from a tidal flat in the Yellow Sea. Strain CAU 1642 T grew optimally at pH 8.0 and 30 °C. The highest 16S rRNA gene sequence similarity was 97.25%, with Pseudomarinomonas arenosa CAU 1598 T, and phylogenetic analysis indicated that strain CAU 1642 T belongs to the genus Pseudomarinomonas. The major cellular fatty acids were iso-C15:0, iso-C16:0, and summed feature 9 (iso-C17:1ω9c and/or 10-methyl C16:0). Ubiquinone-8 was the major respiratory quinone. The draft genome of strain CAU 1642 T was 4.5 Mb, with 68.7 mol% of G + C content. The phylogenetic, phenotypic, and chemotaxonomic analysis data reveal strain CAU 1642 T to be of a novel genus in the family Lysobacteraceae, with the proposed name Pseudomarinomonas salicorniae sp. nov. with type strain CAU 1642 T (= KCTC 92084 T = MCCC 1K07085T).


Subject(s)
Base Composition , Chenopodiaceae , DNA, Bacterial , Fatty Acids , Phylogeny , RNA, Ribosomal, 16S , Chenopodiaceae/microbiology , RNA, Ribosomal, 16S/genetics , Fatty Acids/analysis , Fatty Acids/chemistry , DNA, Bacterial/genetics , Seawater/microbiology , Bacterial Typing Techniques , Sequence Analysis, DNA , Quinones/analysis , Ubiquinone/chemistry , Ubiquinone/analogs & derivatives , Genome, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL