Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35.479
Filter
1.
Vet Res ; 55(1): 124, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39334482

ABSTRACT

Feline infectious peritonitis (FIP) is a lethal, immune-mediated disease in cats caused by feline infectious peritonitis virus (FIPV), a biotype of feline coronavirus (FCoV). In contrast to feline enteric coronavirus (FECV), which exclusively infects enterocytes and causes diarrhea, FIPV specifically targets macrophages, resulting in the development of FIP. The transmission and infection mechanisms of this complex, invariably fatal disease remain unclear, with no effective vaccines or approved drugs for its prevention or control. In this study, a full-length infectious cDNA clone of the wild-type FIPV WSU79-1149 strain was constructed to generate recombinant FIPV (rFIPV-WT), which exhibited similar growth kinetics and produced infectious virus titres comparable to those of the parental wild-type virus. In addition, the superfold green fluorescent protein (msfGFP) and Renilla luciferase (Rluc) reporter genes were incorporated into the rFIPV-WT cDNA construct to generate reporter rFIPV-msfGFP and rFIPV-Rluc viruses. While the growth characteristics of the rFIPV-msfGFP virus were similar to those of its parental rFIPV-WT, the rFIPV-Rluc virus replicated more slowly, resulting in the formation of smaller plaques than did the rFIPV-WT and rFIPV-msfGFP viruses. In addition, by replacing the S, E, M, and ORF3abc genes with msfGFP and Rluc genes, the replicon systems repFIPV-msfGFP and repFIPV-Rluc were generated on the basis of the cDNA construct of rFIPV-WT. Last, the use of reporter recombinant viruses and replicons in antiviral screening assays demonstrated their high sensitivity for quantifying the antiviral effectiveness of the tested compounds. This integrated system promises to significantly streamline the investigation of virus replication within host cells, enabling efficient screening for anti-FIPV compounds and evaluating emerging drug-resistant mutations within the FIPV genome.


Subject(s)
Coronavirus, Feline , Feline Infectious Peritonitis , Reverse Genetics , Coronavirus, Feline/genetics , Coronavirus, Feline/physiology , Reverse Genetics/methods , Animals , Cats , Feline Infectious Peritonitis/virology , Antiviral Agents/pharmacology , Cell Line , Virus Replication , DNA, Complementary/genetics
2.
Fish Shellfish Immunol ; 153: 109830, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39142374

ABSTRACT

Cuticle proteins (CPs) are the vital components of the cuticle and chitin lining covering the digestive tract of crustaceans. In this study, four new CP genes (designated as EsCP3, EsCP4, EsCP5, and EsCP8) were initially cloned and identified from the Chinese mitten crab Eriocheir sinensis. EsCP3/4/5/8 included 375, 411, 381, and 570 bp open reading frame encoding 124, 136, 126, and 189 amino acid proteins, respectively. Except for EsCP8, EsCP3/4/5 all contained a Chitin_bind_4 domain. EsCP3/4/5/8 were clustered into different groups in the phylogenetic tree. Quantitative real-time PCR results indicated that four EsCP genes have different patterns of tissue distribution. Changes in the expression levels of these four EsCP genes were observed in the intestine of crabs under Vibrio parahaemolyticus challenge. RNA interference assay showed that the knockdown of EsCPs in the intestine could inhibit the expression of antimicrobial peptides (AMPs), including crustins and anti-lipopolysaccharide factors. In addition, the knockdown of EsRelish in the intestine decreased the expression levels of these four EsCP genes. These results indicated that EsCPs were involved in regulating the expression of AMPs, and EsCPs were regulated by EsRelish.


Subject(s)
Arthropod Proteins , Brachyura , Gene Expression Regulation , Vibrio parahaemolyticus , Animals , Amino Acid Sequence , Antimicrobial Peptides/genetics , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/immunology , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Arthropod Proteins/chemistry , Base Sequence , Brachyura/genetics , Brachyura/immunology , Brachyura/microbiology , Cloning, Molecular , DNA, Complementary/genetics , Gene Expression Profiling , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Phylogeny , Sequence Alignment/veterinary , Vibrio parahaemolyticus/physiology
3.
Fish Shellfish Immunol ; 153: 109838, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39151839

ABSTRACT

IL-26 is a crucial inflammatory cytokine that participates in defending host cells against infections. We initially cloned and identified the cDNA sequences of interleukin (IL)-26 in channel catfish (Ictalurus punctatus). The open reading frame (ORF) of IpIL-26 was 537 bp in length, encoding 178 amino acids (aa). Constitutive expression of IpIL-26 was observed in tested tissues, with the highest level found in the gill and spleen. To explore the function of IpIL-26 in channel catfish, different stimuli were used to act on both channel catfish and channel catfish kidney cells (CCK). The expression of IpIL-26 could be up-regulated by bacteria and viruses in multiple tissues. In vitro, recombinant IpIL-26 (rIpIL-26) could induce the expression levels of inflammatory cytokines such as TNF-α, IL-1ß, IL-6, IL-20, and IL-22 playing vital roles in defending the host against infections. Our results demonstrated that IpIL-26 might be an essential cytokine, significantly affecting the immune defense of channel catfish against pathogen infections.


Subject(s)
Amino Acid Sequence , Fish Diseases , Fish Proteins , Gene Expression Regulation , Ictaluridae , Immunity, Innate , Interleukins , Phylogeny , Sequence Alignment , Animals , Ictaluridae/immunology , Ictaluridae/genetics , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/chemistry , Interleukins/genetics , Interleukins/immunology , Immunity, Innate/genetics , Fish Diseases/immunology , Sequence Alignment/veterinary , Gene Expression Regulation/immunology , Gene Expression Profiling/veterinary , Base Sequence , DNA, Complementary/genetics
4.
Viruses ; 16(8)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39205172

ABSTRACT

The live attenuated human rotavirus vaccine strain RIX4414 (Rotarix®) is used worldwide to prevent severe rotavirus-induced diarrhea in infants. This strain was attenuated through the cell culture passaging of its predecessor, human strain 89-12, which resulted in multiple genomic mutations. However, the specific molecular reasons underlying its attenuation have remained elusive, primarily due to the absence of a suitable reverse genetics system enabling precise genetic manipulations. Therefore, we first completed the sequencing of its genome and then developed a reverse genetics system for the authentic RIX4414 virus. Our experimental results demonstrate that the rescued recombinant RIX4414 virus exhibits biological characteristics similar to those of the parental RIX4414 virus, both in vitro and in vivo. This novel reverse genetics system provides a powerful tool for investigating the molecular basis of RIX4414 attenuation and may facilitate the rational design of safer and more effective human rotavirus vaccines.


Subject(s)
DNA, Complementary , Reverse Genetics , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Vaccines, Attenuated , Rotavirus Vaccines/genetics , Rotavirus Vaccines/immunology , Reverse Genetics/methods , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Rotavirus/genetics , Rotavirus/immunology , Humans , Animals , Rotavirus Infections/prevention & control , Rotavirus Infections/virology , DNA, Complementary/genetics , Genome, Viral , Mice , Cell Line
5.
Science ; 386(6717): eadq0876, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39116258

ABSTRACT

Defense-associated reverse transcriptase (DRT) systems perform DNA synthesis to protect bacteria against viral infection, but the identities and functions of their DNA products remain largely unknown. We show that DRT2 systems encode an unprecedented immune pathway that involves de novo gene synthesis through rolling circle reverse transcription of a noncoding RNA (ncRNA). Programmed template jumping on the ncRNA generates a concatemeric cDNA, which becomes double-stranded upon viral infection. This DNA product constitutes a protein-coding, nearly endless open reading frame (neo) gene whose expression leads to potent cell growth arrest, restricting the viral infection. Our work highlights an elegant expansion of genome coding potential through RNA-templated gene creation and challenges conventional paradigms of genetic information encoded along the one-dimensional axis of genomic DNA.


Subject(s)
DNA, Complementary , Klebsiella pneumoniae , RNA, Untranslated , RNA-Directed DNA Polymerase , Reverse Transcription , Siphoviridae , DNA, Complementary/biosynthesis , DNA, Complementary/genetics , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/virology , Open Reading Frames , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/metabolism , Templates, Genetic , Siphoviridae/genetics , Siphoviridae/growth & development
6.
Science ; 386(6717): eadq3977, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39208082

ABSTRACT

Reverse transcription has frequently been co-opted for cellular functions and in prokaryotes is associated with protection against viral infection, but the underlying mechanisms of defense are generally unknown. Here, we show that in the DRT2 defense system, the reverse transcriptase binds a neighboring pseudoknotted noncoding RNA. Upon bacteriophage infection, a template region of this RNA is reverse transcribed into an array of tandem repeats that reconstitute a promoter and open reading frame, allowing expression of a toxic repetitive protein and an abortive infection response. Biochemical reconstitution of this activity and cryo-electron microscopy provide a molecular basis for repeat synthesis. Gene synthesis from a noncoding RNA is a previously unknown mode of genetic regulation in prokaryotes.


Subject(s)
DNA, Complementary , Klebsiella pneumoniae , Promoter Regions, Genetic , RNA, Untranslated , RNA-Directed DNA Polymerase , Reverse Transcription , Siphoviridae , Cryoelectron Microscopy , Escherichia coli/genetics , Escherichia coli/virology , Nucleic Acid Conformation , Open Reading Frames , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , RNA-Directed DNA Polymerase/chemistry , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/metabolism , Tandem Repeat Sequences , Siphoviridae/genetics , Siphoviridae/growth & development , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/virology , DNA, Complementary/biosynthesis , DNA, Complementary/genetics
7.
Virology ; 598: 110170, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39003987

ABSTRACT

The genus Orthonairovirus includes highly pathogenic tick-borne viruses such as the Crimean-Congo hemorrhagic fever orthonairovirus (CCHFV). A reverse genetics system is an indispensable tool for determining the viral factors related to pathogenicity. Tofla orthonairovirus (TFLV) is a recently identified virus isolated from ticks in Japan and our research has suggested that TFLV is a useful model for studying pathogenic orthonairoviruses. In this study, we successfully established a reverse genetics system for TFLV using T7 RNA polymerase. Recombinant TFLV was generated by transfecting cloned complementary DNAs encoding the TFLV genome into BSR T7/5 cells expressing T7 RNA polymerase. We were able to rescue infectious recombinant TFLV mutant (rTFLVmt) and wild-type TFLV (rTFLVpt) viruses, which exhibited indistinguishable growth kinetics in mammalian cells and pathogenicity in A129 mice compared with the authentic virus. Our approach provides a valuable method for establishing reverse genetics system for orthonairoviruses.


Subject(s)
DNA, Complementary , Reverse Genetics , Animals , Reverse Genetics/methods , Mice , DNA, Complementary/genetics , Cell Line , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Cloning, Molecular , Viral Proteins/genetics , Viral Proteins/metabolism , Nairovirus/genetics , Virus Replication , Genome, Viral
8.
Drug Metab Dispos ; 52(9): 1009-1019, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38951034

ABSTRACT

Pigs are sometimes used in preclinical drug metabolism studies, with growing interest, and thus their drug-metabolizing enzymes, including the cytochromes P450 (P450 or CYP; EC 1.14.14.1), need to be examined. In the present study, novel CYP4A cDNAs were isolated and characterized, namely, pig CYP4A23 and CYP4A90; cat CYP4A37 and CYP4A106; and tree shrew CYP4A11a, CYP4A11d, CYP4A11e, CYP4A11f, and CYP4A11g. For comparison, the following known CYP4A cDNAs were also analyzed: pig CYP4A21 and dog CYP4A37, CYP4A38, and CYP4A39. These CYP4A cDNAs all contained open reading frames of 504-513 amino acids and had high amino acid sequence identity (74%-80%) with human CYP4As. Phylogenetic analysis of amino acid sequences revealed that these CYP4As were clustered in each species. All CYP4A genes contained 12 coding exons and formed a gene cluster in the corresponding genomic regions. A range of tissue types were analyzed, and these CYP4A mRNAs were preferentially expressed in liver and/or kidney, except for pig CYP4A90, which showed preferential expression in lung and duodenum. CYP4A enzymes, heterologously expressed in Escherichia coli, preferentially catalyzed lauric acid 12-hydroxylation and arachidonic acid 20-hydroxylation, just as human CYP4A11 does, with the same regioselectivity (i.e., at the ω-position of fatty acids). These results imply that dog, cat, pig, and tree shrew CYP4As have functional characteristics similar to those of human CYP4A11, with minor differences in lauric acid 12-hydroxylation. SIGNIFICANCE STATEMENT: Cytochrome P450 (P450, CYP) 4As are important P450s in human biological processes because of their fatty acid-metabolizing ability. Pig CYP4A21, CYP4A23, and CYP4A90; cat CYP4A37 and CYP4A106; tree shrew CYP4A11a, CYP4A11d, CYP4A11e, CYP4A11f, and CYP4A11g; and dog CYP4A37, CYP4A38, and CYP4A39 cDNAs were isolated and analyzed. These CYP4A cDNAs shared relatively high sequence identities with human CYP4A11 and CYP4A22. Pig, cat, tree shrew, and dog CYP4As in the liver and kidneys are likely to catalyze the ω-hydroxylation of fatty acids.


Subject(s)
Amino Acid Sequence , Cytochrome P-450 CYP4A , Kidney , Liver , Phylogeny , Tupaiidae , Animals , Humans , Dogs , Liver/metabolism , Liver/enzymology , Cytochrome P-450 CYP4A/metabolism , Cytochrome P-450 CYP4A/genetics , Kidney/metabolism , Swine , Cats , Tupaiidae/genetics , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , DNA, Complementary/genetics , Molecular Sequence Data , Species Specificity
9.
J Fish Biol ; 105(4): 1314-1326, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38965864

ABSTRACT

The hedgehog signaling pathway plays an important role in early development and growth of most vertebrates. Sonic hedgehog (shh) gene is a critical regulator of embryonic development in many species, including humans. However, it is not clear what roles shh can play in the development of fish. In this paper, shh gene was cloned from Pseudopleuronectes yokohamae. The full-length complementary DNA (cDNA) of P. yokohamae sonic hedgehog gene (Pyshh) comprises 3194 bp, with a 1317-bp open reading frame (ORF) that encodes a polypeptide of 438 amino acids with a typical HH-signal domain and Hint-N domain. The conserved sequences of the protein among species were predicted by using multiple sequence comparison. The phylogenetic tree construction showed that PySHH is clustered in a branch of Pleuronectidae. To explore the expression of Pyshh gene in various tissues of P. yokohamae, we used real-time fluorescence quantitative PCR technology to detect it. The results showed that Pyshh gene is widely distributed in various tissues of P. yokohamae juveniles, different tissues of adult males and females, and is particularly expressed in immune organs. The Pyshh gene expression was higher in the muscle and brain of juvenile fish, and higher in bone, gill, and skin of male fish than that of female fish, suggesting that Pyshh might be involved in the formation of immune organs of P. yokohamae. The expression of Pyshh gene significantly upregulated from the gastrula stage to the hatching stage. Western blotting of the expression levels of PySHH during different embryonic development stages revealed that PySHH levels increased gradually during development stages from oosperm stage to hatching stage. These results indicate that Pyshh is highly conserved among species and plays a critical role in the complex process of embryonic development. Its precise regulation is essential for the proper formation of many organs and tissues in the body, and disruptions in its function may have serious consequences for the formation of immune organs in fish.


Subject(s)
Amino Acid Sequence , Cloning, Molecular , Fish Proteins , Gene Expression Regulation, Developmental , Hedgehog Proteins , Phylogeny , Animals , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Female , Male , Fish Proteins/genetics , Fish Proteins/metabolism , Sequence Alignment , DNA, Complementary/genetics , Base Sequence , Flatfishes/genetics , Flatfishes/embryology , Flatfishes/growth & development
10.
RNA ; 30(9): 1246-1258, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38942481

ABSTRACT

Direct methods for determining the fidelity of DNA polymerases are robust, with relatively little sample manipulation before sequencing. In contrast, methods for measuring RNA polymerase and reverse transcriptase fidelities are complicated by additional preparation steps that introduce ambiguity and error. Here, we describe a sequencing method, termed Roll-Seq, for simultaneously determining the individual fidelities of RNA polymerases and reverse transcriptases (RT) using Pacific Biosciences single molecule real-time sequencing. By using reverse transcriptases with high rolling-circle activity, Roll-Seq generates long concatemeric cDNA from a circular RNA template. To discern the origin of a mutation, errors are recorded and determined to occur within a single concatemer (reverse transcriptase error) or all concatemers (RNA polymerase error) over the cDNA strand. We used Roll-Seq to measure the fidelities of T7 RNA polymerases, a Group II intron-encoded RT (Induro), and two LINE RTs (Fasciolopsis buski R2-RT and human LINE-1). Substitution rates for Induro and R2-RT are the same for cDNA and second-strand synthesis while LINE-1 has 2.5-fold lower fidelity when performing second-strand synthesis. Deletion and insertion rates increase for all RTs during second-strand synthesis. In addition, we find that a structured RNA template impacts fidelity for both RNA polymerase and RT. The accuracy and precision of Roll-Seq enable this method to be applied as a complementary analysis to structural and mechanistic characterization of RNA polymerases and reverse transcriptases or as a screening method for RNAP and RT fidelity.


Subject(s)
DNA-Directed RNA Polymerases , RNA-Directed DNA Polymerase , RNA-Directed DNA Polymerase/metabolism , RNA-Directed DNA Polymerase/genetics , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/genetics , Humans , Viral Proteins/genetics , Viral Proteins/metabolism , Evolution, Molecular , Mutation , DNA, Complementary/genetics
11.
Biosci Biotechnol Biochem ; 88(9): 1034-1046, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-38925644

ABSTRACT

Euglena gracilis, a fascinating organism in the scientific realm, exhibits characteristics of both animals and plants. It maintains redox homeostasis through a variety of enzymatic and non-enzymatic antioxidant molecules. In contrast to mammals, Euglena possesses nonselenocysteine glutathione peroxidase homologues that regulate its intracellular pools of reactive oxygen species. In the present study, a full-length cDNA of chloroplastic EgGPXL-1 was isolated and subjected to biochemical and functional characterization. Recombinant EgGPXL-1 scavenged H2O2 and t-BOOH, utilizing thioredoxin as an electron donor rather than glutathione. Despite its monomeric nature, EgGPXL-1 exhibits allosteric behavior with H2O2 as the electron acceptor and follows typical Michaelis-Menten kinetics with t-BOOH. Suppression of EgGPXL-1 gene expression under normal and high-light conditions did not induce critical situations in E. gracilis, suggesting the involvement of compensatory mechanisms in restoring normal conditions.


Subject(s)
Euglena gracilis , Glutathione Peroxidase , Thioredoxins , Euglena gracilis/enzymology , Euglena gracilis/genetics , Euglena gracilis/metabolism , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/genetics , Glutathione Peroxidase/chemistry , Thioredoxins/metabolism , Thioredoxins/genetics , Thioredoxins/chemistry , Hydrogen Peroxide/metabolism , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Chloroplasts/metabolism , Chloroplasts/enzymology , Chloroplasts/genetics , Amino Acid Sequence , Kinetics , Cloning, Molecular , DNA, Complementary/genetics
12.
Viruses ; 16(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38932135

ABSTRACT

Hepatitis E virus (HEV) can cause self-limiting acute and chronic hepatitis infections, particularly in immunocompromised individuals. In developing countries, HEV is mainly transmitted via drinking contaminated water, whereas zoonotic transmission dominates the route of infection in developed countries, including Japan. Pigs are an important reservoir for HEV infection. Wild boars, which share the same genus and species as domestic pigs, are also an HEV reservoir. During our nationwide study of HEV infection in wild boar populations in Japan, a genotype 6 (HEV-6) strain, wbJHG_23, was isolated in Hyogo Prefecture in 2023. The genomic length was 7244 nucleotides, excluding the poly(A) tract. The wbJHG_23 strain exhibited the highest nucleotide identity throughout its genome with two previously reported HEV-6 strains (80.3-80.9%). Conversely, it displayed lower similarity (73.3-78.1%) with the HEV-1-5, HEV-7, and HEV-8 strains, indicating that, although closely related, the wbJHG_23 strain differs significantly from the reported HEV-6 strains and might represent a novel subtype. The wbJHG_23 strain successfully infected the human-derived cancer cell lines, PLC/PRF/5 and A549 1-1H8 cells, suggesting that HEV-6 has the potential for zoonotic infection. An infectious cDNA clone was constructed using a reverse genetics system, and a cell culture system supporting the efficient propagation of the HEV-6 strain was established, providing important tools for further studies on this genotype. Using this cell culture system, we evaluated the sensitivity of the wbJHG_23 strain to ribavirin treatment. Its good response to this treatment suggested that it could be used to treat human infections caused by HEV-6.


Subject(s)
Genome, Viral , Hepatitis E virus , Hepatitis E , Phylogeny , Sus scrofa , Animals , Cell Line , DNA, Complementary/genetics , Genotype , Hepatitis E/virology , Hepatitis E/veterinary , Hepatitis E/transmission , Hepatitis E virus/genetics , Hepatitis E virus/classification , Hepatitis E virus/isolation & purification , Japan , RNA, Viral/genetics , Sus scrofa/virology , Swine , Swine Diseases/virology , Swine Diseases/transmission
13.
J Vis Exp ; (207)2024 May 17.
Article in English | MEDLINE | ID: mdl-38829124

ABSTRACT

Functional genomics screening offers a powerful approach to probe gene function and relies on the construction of genome-wide plasmid libraries. Conventional approaches for plasmid library construction are time-consuming and laborious. Therefore, we recently developed a simple and efficient method, CRISPR-based modular assembly (CRISPRmass), for high-throughput construction of a genome-wide upstream activating sequence-complementary DNA/open reading frame (UAS-cDNA/ORF) plasmid library. Here, we present a protocol for CRISPRmass, taking as an example the construction of a GAL4/UAS-based UAS-cDNA/ORF plasmid library. The protocol includes massively parallel two-step test tube reactions followed by bacterial transformation. The first step is to linearize the existing complementary DNA (cDNA) or open reading frame (ORF) cDNA or ORF library plasmids by cutting the shared upstream vector sequences adjacent to the 5' end of cDNAs or ORFs using CRISPR/Cas9 together with single guide RNA (sgRNA), and the second step is to insert a UAS module into the linearized cDNA or ORF plasmids using a single step reaction. CRISPRmass allows the simple, fast, efficient, and cost-effective construction of various plasmid libraries. The UAS-cDNA/ORF plasmid library can be utilized for gain-of-function screening in cultured cells and for constructing a genome-wide transgenic UAS-cDNA/ORF library in Drosophila.


Subject(s)
CRISPR-Cas Systems , Gene Library , Open Reading Frames , Plasmids , Plasmids/genetics , Animals , CRISPR-Cas Systems/genetics , Open Reading Frames/genetics , DNA, Complementary/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Drosophila melanogaster/genetics
14.
Parasites Hosts Dis ; 62(2): 226-237, 2024 May.
Article in English | MEDLINE | ID: mdl-38835263

ABSTRACT

Ticks, blood-sucking ectoparasites, spread diseases to humans and animals. Haemaphysalis longicornis is a significant vector for tick-borne diseases in medical and veterinary contexts. Identifying protective antigens in H. longicornis for an anti-tick vaccine is a key tick control strategy. Enolase, a multifunctional protein, significantly converts D-2-phosphoglycerate and phosphoenolpyruvate in glycolysis and gluconeogenesis in cell cytoplasm. This study cloned a complete open reading frame (ORF) of enolase from the H. longicornis tick and characterized its transcriptional and silencing effect. We amplified the full-length cDNA of the enolase gene using rapid amplification of cDNA ends. The complete cDNA, with an ORF of 1,297 nucleotides, encoded a 432-amino acid polypeptide. Enolase of the Jeju strain H. longicornis exhibited the highest sequence similarity with H. flava (98%), followed by Dermacentor silvarum (82%). The enolase motifs identified included N-terminal and C-terminal regions, magnesium binding sites, and several phosphorylation sites. Reverse transcription-polymerase chain reaction (RT-PCR) analysis indicated that enolase mRNA transcripts were expressed across all developmental stages of ticks and organs such as salivary gland and midgut. RT-PCR showed higher transcript levels in syn-ganglia, suggesting that synganglion nerves influence enolase,s role in tick salivary glands. We injected enolase double-stranded RNA into adult unfed female ticks, after which they were subsequently fed with normal unfed males until they spontaneously dropped off. RNA interference significantly (P<0.05) reduced feeding and reproduction, along with abnormalities in eggs (no embryos) and hatching. These findings suggest enolase is a promising target for future tick control strategies.


Subject(s)
Amino Acid Sequence , Cloning, Molecular , Ixodidae , Phosphopyruvate Hydratase , Animals , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism , Ixodidae/genetics , Ixodidae/enzymology , Female , Molecular Sequence Data , Life Cycle Stages/genetics , Gene Silencing , Male , Phylogeny , Base Sequence , DNA, Complementary/genetics , Haemaphysalis longicornis
15.
Methods Mol Biol ; 2822: 207-226, 2024.
Article in English | MEDLINE | ID: mdl-38907921

ABSTRACT

Single-cell RNA sequencing supports the isolation of individual cells and barcoding of cDNA, specific to each cell of origin. Subsequent sequencing of the generated library yields both the gene expression sequences and the cellular barcode, allowing distinction of gene expression patterns across individual cells. The 10X Genomics 3' HT assay uses a droplet-based method to isolate individual cells within oil emulsions, combined with a gel bead coated in uniquely barcoded primers, specific to each bead. The high-throughput, HT, assay is similar to its predecessor (3' v3.1) in reaction chemistry but utilizes (a) higher numbers of cellular barcodes, (b) a new, proprietary chip designed to target up to 60,000 cells per lane, and (c) captures up to 16 samples per run. The 3' HT assay supports whole cells and nuclei as input, with an approximate 60% capture rate. Here we describe the methods for sample quality control (QC) assays, loading and operation of the Chromium X instrument for cell capture, and cDNA synthesis and library preparation for downstream Illumina sequencing.


Subject(s)
Gene Library , Genomics , High-Throughput Nucleotide Sequencing , Single-Cell Analysis , Humans , High-Throughput Nucleotide Sequencing/methods , Genomics/methods , Single-Cell Analysis/methods , Sequence Analysis, RNA/methods , Gene Expression Profiling/methods , DNA, Complementary/genetics
16.
Methods Mol Biol ; 2813: 65-78, 2024.
Article in English | MEDLINE | ID: mdl-38888770

ABSTRACT

Reverse genetic methods to manipulate viral genomes are key tools in modern virological experimentation. They allow for the generation of reporter virus genomes to simplify the assessment of virus growth and for the analysis of the impact of specific mutations in the genome on virus phenotypes. For SARS-CoV-2, reverse genetic systems are complicated by the large size of the viral genome and the instability of certain genomic sections in bacteria requiring the use of low-copy number bacterial artificial chromosome plasmids (bacmids). However, even with the use of bacmids, faithfully amplifying SARS-CoV-2 bacmids is often challenging. In this chapter, we describe a detailed protocol to grow SARS-CoV-2 bacmids and highlight the challenges and optimal techniques to produce large quantities of SARS-CoV-2 bacmids that are free of deletions and mutations. Overall, this chapter has recapitulated an overview of the maxi-preparation procedure for large unstable bacmids like SARS-CoV-2 to facilitate downstream applications.


Subject(s)
COVID-19 , Chromosomes, Artificial, Bacterial , DNA, Complementary , Genome, Viral , Plasmids , SARS-CoV-2 , SARS-CoV-2/genetics , Plasmids/genetics , Chromosomes, Artificial, Bacterial/genetics , Humans , COVID-19/virology , DNA, Complementary/genetics , Reverse Genetics/methods , RNA, Viral/genetics
17.
Viruses ; 16(5)2024 05 04.
Article in English | MEDLINE | ID: mdl-38793610

ABSTRACT

APOBEC3G (A3G) restricts HIV-1 replication primarily by reducing viral cDNA and inducing G-to-A hypermutations in viral cDNA. HIV-1 encodes virion infectivity factor (Vif) to counteract A3G primarily by excluding A3G viral encapsidation. Even though the Vif-induced exclusion is robust, studies suggest that A3G is still detectable in the virion. The impact of encapsidated A3G in the HIV-1 replication is unclear. Using a highly sensitive next-generation sequencing (NGS)-based G-to-A hypermutation detecting assay, we found that wild-type HIV-1 produced from A3G-expressing T-cells induced higher G-to-A hypermutation frequency in viral cDNA than HIV-1 from non-A3G-expressing T-cells. Interestingly, although the virus produced from A3G-expressing T-cells induced higher hypermutation frequency, there was no significant difference in viral infectivity, revealing a disassociation of cDNA G-to-A hypermutation to viral infectivity. We also measured G-to-A hypermutation in the viral RNA genome. Surprisingly, our data showed that hypermutation frequency in the viral RNA genome was significantly lower than in the integrated DNA, suggesting a mechanism exists to preferentially select intact genomic RNA for viral packing. This study revealed a new insight into the mechanism of HIV-1 counteracting A3G antiviral function and might lay a foundation for new antiviral strategies.


Subject(s)
APOBEC-3G Deaminase , DNA, Complementary , HIV-1 , Mutation , Humans , APOBEC-3G Deaminase/genetics , APOBEC-3G Deaminase/metabolism , DNA, Complementary/genetics , DNA, Viral/genetics , HEK293 Cells , High-Throughput Nucleotide Sequencing , HIV Infections/virology , HIV-1/genetics , HIV-1/pathogenicity , T-Lymphocytes/virology , vif Gene Products, Human Immunodeficiency Virus/genetics , vif Gene Products, Human Immunodeficiency Virus/metabolism , Virus Replication/genetics
18.
Fish Shellfish Immunol ; 149: 109599, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701990

ABSTRACT

Copper/zinc superoxide dismutase (Cu/Zn-SOD) can effectively eliminate reactive oxygen species (ROS),avoid damage from O2 to the body, and maintain O2 balance. In this study, multi-step high-performance liquid chromatography (HPLC), combined with Mass Spectrometry (MS), was used to isolate and identify Cu/Zn-SOD from the serum of Pinctada fucata martensii (P. f. martensii) and was designated as PmECSOD. With a length of 1864 bp and an open reading frame (ORF) of 1422 bp, the cDNA encodes a 473 amino acid protein. The PmECSOD transcript was detected in multiple tissues by quantitative real-time PCR (qRT-PCR), with its highest expression level being in the gills. Additionally, the temporal expression of PmECSOD mRNA in the hemolymph was highest at 48 h after in vivo stimulation with Escherichia coli and Micrococcus luteus. The results from this study provide a valuable base for further exploration of molluscan innate immunity and immune response.


Subject(s)
Amino Acid Sequence , Immunity, Innate , Phylogeny , Pinctada , Superoxide Dismutase , Animals , Pinctada/immunology , Pinctada/genetics , Pinctada/enzymology , Superoxide Dismutase/genetics , Superoxide Dismutase/chemistry , Superoxide Dismutase/metabolism , Superoxide Dismutase/immunology , Immunity, Innate/genetics , Gene Expression Profiling/veterinary , Base Sequence , Sequence Alignment/veterinary , Escherichia coli , DNA, Complementary/genetics , Micrococcus luteus/physiology , Gene Expression Regulation/immunology , RNA, Messenger/genetics , RNA, Messenger/metabolism
19.
Eur J Hum Genet ; 32(7): 876-878, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38755314

ABSTRACT

Loss-of-function variants in CCM1/KRIT1, CCM2/MGC4607, and CCM3/PDCD10 genes are identified in the vast majority of familial cases with multiple cerebral cavernous malformations. However, genomic DNA sequencing combined with large rearrangement screening fails to detect a pathogenic variant in 5% of the patients. We report a family with two affected members harboring multiple CCM lesions, one with severe hemorrhages and one asymptomatic. No causative variant was detected using DNA sequencing of the three CCM genes, CNV detection analysis, and RNA sequencing. However, a loss of heterozygosity in CCM2 was observed on cDNA sequences in one of the two affected members, which strongly suggested that this locus might be involved. Whole genome sequencing (WGS) identified a balanced structural variant on chromosome 7 with a breakpoint interrupting the CCM2 gene, preventing normal mRNA synthesis. These data underline the importance of WGS in undiagnosed patients with typical multiple CCM.


Subject(s)
Hemangioma, Cavernous, Central Nervous System , Loss of Heterozygosity , Pedigree , Humans , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/diagnosis , Hemangioma, Cavernous, Central Nervous System/pathology , Female , Male , Adult , Carrier Proteins/genetics , Chromosomes, Human, Pair 7/genetics , DNA, Complementary/genetics , Middle Aged
20.
RNA ; 30(7): 938-953, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38697668

ABSTRACT

The functional analysis of epitranscriptomic modifications in RNA is constrained by a lack of methods that accurately capture their locations and levels. We previously demonstrated that the RNA modification N4-acetylcytidine (ac4C) can be mapped at base resolution through sodium borohydride reduction to tetrahydroacetylcytidine (tetrahydro-ac4C), followed by cDNA synthesis to misincorporate adenosine opposite reduced ac4C sites, culminating in C:T mismatches at acetylated cytidines (RedaC:T). However, this process is relatively inefficient, resulting in <20% C:T mismatches at a fully modified ac4C site in 18S rRNA. Considering that ac4C locations in other substrates including mRNA are unlikely to reach full penetrance, this method is not ideal for comprehensive mapping. Here, we introduce "RetraC:T" (reduction to tetrahydro-ac4C and reverse transcription with amino-dATP to induce C:T mismatches) as a method with enhanced ability to detect ac4C in cellular RNA. In brief, RNA is reduced through NaBH4 or the closely related reagent sodium cyanoborohydride (NaCNBH3) followed by cDNA synthesis in the presence of a modified DNA nucleotide, 2-amino-dATP, that preferentially binds to tetrahydro-ac4C. Incorporation of the modified dNTP substantially improved C:T mismatch rates, reaching stoichiometric detection of ac4C in 18S rRNA. Importantly, 2-amino-dATP did not result in truncated cDNA products nor increase mismatches at other locations. Thus, modified dNTPs are introduced as a new addition to the toolbox for detecting ac4C at base resolution.


Subject(s)
Cytidine , DNA, Complementary , Cytidine/analogs & derivatives , Cytidine/chemistry , Cytidine/metabolism , Cytidine/genetics , DNA, Complementary/genetics , RNA/genetics , RNA/chemistry , RNA/metabolism , Humans , Borohydrides/chemistry , Oxidation-Reduction , Reverse Transcription , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 18S/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL