Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78.101
Filter
1.
J Environ Sci (China) ; 147: 382-391, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003056

ABSTRACT

Arsenic-related oxidative stress and resultant diseases have attracted global concern, while longitudinal studies are scarce. To assess the relationship between arsenic exposure and systemic oxidative damage, we performed two repeated measures among 5236 observations (4067 participants) in the Wuhan-Zhuhai cohort at the baseline and follow-up after 3 years. Urinary total arsenic, biomarkers of DNA oxidative damage (8-hydroxy-2'-deoxyguanosine (8-OHdG)), lipid peroxidation (8-isoprostaglandin F2alpha (8-isoPGF2α)), and protein oxidative damage (protein carbonyls (PCO)) were detected for all observations. Here we used linear mixed models to estimate the cross-sectional and longitudinal associations between arsenic exposure and oxidative damage. Exposure-response curves were constructed by utilizing the generalized additive mixed models with thin plate regressions. After adjusting for potential confounders, arsenic level was significantly and positively related to the levels of global oxidative damage and their annual increased rates in dose-response manners. In cross-sectional analyses, each 1% increase in arsenic level was associated with a 0.406% (95% confidence interval (CI): 0.379% to 0.433%), 0.360% (0.301% to 0.420%), and 0.079% (0.055% to 0.103%) increase in 8-isoPGF2α, 8-OHdG, and PCO, respectively. More importantly, arsenic was further found to be associated with increased annual change rates of 8-isoPGF2α (ß: 0.147; 95% CI: 0.130 to 0.164), 8-OHdG (0.155; 0.118 to 0.192), and PCO (0.050; 0.035 to 0.064) in the longitudinal analyses. Our study suggested that arsenic exposure was not only positively related with global oxidative damage to lipid, DNA, and protein in cross-sectional analyses, but also associated with annual increased rates of these biomarkers in dose-dependent manners.


Subject(s)
Arsenic , Environmental Exposure , Oxidative Stress , Adult , Female , Humans , Male , Middle Aged , 8-Hydroxy-2'-Deoxyguanosine , Arsenic/toxicity , Biomarkers/urine , China , Cross-Sectional Studies , DNA Damage , East Asian People , Environmental Exposure/adverse effects , Environmental Pollutants/toxicity , Lipid Peroxidation/drug effects , Longitudinal Studies , Oxidative Stress/drug effects
2.
BMC Biol ; 22(1): 188, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39218869

ABSTRACT

BACKGROUND: The histone variant macroH2A (mH2A), the most deviant variant, is about threefold larger than the conventional histone H2A and consists of a histone H2A-like domain fused to a large Non-Histone Region responsible for recruiting PARP-1 to chromatin. The available data suggest that the histone variant mH2A participates in the regulation of transcription, maintenance of heterochromatin, NAD+ metabolism, and double-strand DNA repair. RESULTS: Here, we describe a novel function of mH2A, namely its implication in DNA oxidative damage repair through PARP-1. The depletion of mH2A affected both repair and cell survival after the induction of oxidative lesions in DNA. PARP-1 formed a specific complex with mH2A nucleosomes in vivo. The mH2A nucleosome-associated PARP-1 is inactive. Upon oxidative damage, mH2A is ubiquitinated, PARP-1 is released from the mH2A nucleosomal complex, and is activated. The in vivo-induced ubiquitination of mH2A, in the absence of any oxidative damage, was sufficient for the release of PARP-1. However, no release of PARP-1 was observed upon treatment of the cells with either the DNA alkylating agent MMS or doxorubicin. CONCLUSIONS: Our data identify a novel pathway for the repair of DNA oxidative lesions, requiring the ubiquitination of mH2A for the release of PARP-1 from chromatin and its activation.


Subject(s)
DNA Damage , DNA Repair , Histones , Poly (ADP-Ribose) Polymerase-1 , Ubiquitination , Histones/metabolism , Histones/genetics , Humans , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Oxidative Stress , Nucleosomes/metabolism
3.
Mol Biol Rep ; 51(1): 953, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230767

ABSTRACT

BACKGROUND: Atherosclerosis, serving as the primary pathological mechanism at the core of cardiovascular disease, is now widely acknowledged to be associated with DNA damage and repair, contributing to atherosclerotic plaque formation. Therefore, molecules involved in the DNA repair process may play an important role in the progression of atherosclerosis. Our research endeavors to explore the contributions of specific and interrelated molecules involved in DNA repair (APE1, BRCA1, ERCC2, miR-221-3p, miR-145-5p, and miR-155-5p) to the development of atherosclerotic plaque and their interactions with each other. METHODS & RESULTS: Gene expression study was conducted using the real-time polymerase chain reaction (qRT-PCR) method on samples from carotid artery atherosclerotic plaques and nonatherosclerotic internal mammary arteries obtained from 50 patients diagnosed with coronary artery disease and carotid artery disease. Additionally, 50 healthy controls were included for the determination of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Although no difference was observed in mRNA gene expressions, we noted a decrease in miR-155-5p gene expression (p = 0.003) and an increase in miR-221-3p gene expression (p = 0.015) in plaque samples, while miR-145-5p gene expression remained unchanged (p = 0.57). Regarding serum 8-OHdG levels, patients exhibited significantly higher levels (1111.82 ± 28.64) compared to controls (636.23 ± 24.23) (p < 0.0001). CONCLUSIONS: In our study demonstrating the role of miR-155-5p and miR-221-3p in atherosclerosis, we propose that these molecules are potential biomarkers and therapeutic targets for coronary artery diseases and carotid artery disease.


Subject(s)
DNA Repair , MicroRNAs , Plaque, Atherosclerotic , Humans , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/metabolism , Female , Male , Middle Aged , DNA Repair/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Aged , Cross-Sectional Studies , Atherosclerosis/genetics , Atherosclerosis/metabolism , Coronary Artery Disease/genetics , Coronary Artery Disease/metabolism , DNA Damage/genetics , Gene Expression Regulation/genetics , Carotid Artery Diseases/genetics , Carotid Artery Diseases/metabolism , Carotid Arteries/metabolism , Carotid Arteries/pathology , 8-Hydroxy-2'-Deoxyguanosine/metabolism
4.
Biochemistry (Mosc) ; 89(7): 1183-1191, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39218017

ABSTRACT

Proteins of nucleotide excision repair system (NER) are responsible for detecting and removing a wide range of bulky DNA damages, thereby contributing significantly to the genome stability maintenance within mammalian cells. Evaluation of NER functional status in the cells is important for identifying pathological changes in the body and assessing effectiveness of chemotherapy. The following method, described herein, has been developed for better assessment of bulky DNA damages removal in vitro, based on qPCR. Using the developed method, NER activity was compared for the extracts of the cells from two mammals with different lifespans: a long-lived naked mole-rat (Heterocephalus glaber) and a short-lived mouse (Mus musculus). Proteins of the H. glaber cell extract have been shown to be 1.5 times more effective at removing bulky damage from the model DNA substrate than the proteins of the M. musculus cell extract. These results are consistent with the experimental data previously obtained. The presented method could be applied not only in fundamental studies of DNA repair in mammalian cells, but also in clinical practice.


Subject(s)
DNA Damage , DNA Repair , Animals , Mice , Mole Rats/genetics , Polymerase Chain Reaction
5.
Cell Death Dis ; 15(9): 649, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39231972

ABSTRACT

Osimertinib is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (EGFR-TKI) approved for patients with EGFR T790M resistance mutations as first- or second-line treatment of EGFR-positive patients. Resistance to Osimertinib will inevitably develop, and the underlying mechanisms are largely unknown. In this study, we discovered that acquired resistance to Osimertinib is associated with abnormal DNA damage response (DDR) in lung adenocarcinoma cells. We discovered that the polycomb protein Lethal(3) Malignant Brain Tumor-Like Protein 1 (L3MBTL1) regulates chromatin structure, thereby contributing to DDR and Osimertinib resistance. EGFR oncogene inhibition reduced L3MBTL1 ubiquitination while stabilizing its expression in Osimertinib-resistant cells. L3MBTL1 reduction and treatment with Osimertinib significantly inhibited DDR and proliferation of Osimertinib-resistant lung cancer cells in vitro and in vivo. L3MBTL1 binds throughout the genome and plays an important role in EGFR-TKI resistance. It also competes with 53BP1 for H4K20Me2 and inhibits the development of drug resistance in Osimertinib-resistant lung cancer cells in vitro and in vivo. Our findings suggest that L3MBTL1 inhibition is a novel approach to overcoming EGFR-TKI-acquired resistance.


Subject(s)
Acrylamides , Adenocarcinoma of Lung , Aniline Compounds , DNA Damage , Drug Resistance, Neoplasm , Epigenesis, Genetic , ErbB Receptors , Lung Neoplasms , Humans , Acrylamides/pharmacology , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , DNA Damage/drug effects , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Epigenesis, Genetic/drug effects , Animals , Cell Line, Tumor , ErbB Receptors/metabolism , ErbB Receptors/genetics , Mice , Polycomb-Group Proteins/metabolism , Polycomb-Group Proteins/genetics , Mice, Nude , Tumor Suppressor p53-Binding Protein 1/metabolism , Tumor Suppressor p53-Binding Protein 1/genetics , Protein Kinase Inhibitors/pharmacology , Cell Proliferation/drug effects , Ubiquitination/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Indoles , Pyrimidines
6.
J Extracell Vesicles ; 13(9): e12505, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39235072

ABSTRACT

Reactive oxygen species (ROS)-induced oxidative DNA damages have been considered the main cause of mutations in genes, which are highly related to carcinogenesis and tumour progression. Extracellular vesicles play an important role in cancer metastasis. However, the precise role of DNA oxidative damage in extracellular vesicles (EVs)-mediated cancer cell migration and invasion remains unclear. Here, we reveal that ROS-mediated DNA oxidative damage signalling promotes tumour metastasis through increasing EVs release. Mechanistically, 8-oxoguanine DNA glycosylase (OGG1) recognises and binds to its substrate 8-oxo-7,8-dihydroguanine (8-oxoG), recruiting NF-κB to the synaptotagmin 7 (SYT7) promoter and thereby triggering SYT7 transcription. The upregulation of SYT7 expression leads to increased release of E-cadherin-loaded EVs, which depletes intracellular E-cadherin, thereby inducing epithelial-mesenchymal transition (EMT). Notably, Th5487, the inhibitor of DNA binding activity of OGG1, blocks the recognition and transmission of oxidative signals, alleviates SYT7 expression and suppresses EVs release, thereby preventing tumour progression in vitro and in vivo. Collectively, our study illuminates the significance of 8-oxoG/OGG1/SYT7 axis-driven EVs release in oxidative stress-induced tumour metastasis. These findings provide a deeper understanding of the molecular basis of cancer progression and offer potential avenues for therapeutic intervention.


Subject(s)
DNA Glycosylases , Extracellular Vesicles , Neoplasm Metastasis , Oxidative Stress , Humans , Extracellular Vesicles/metabolism , DNA Glycosylases/metabolism , Animals , Mice , Epithelial-Mesenchymal Transition , Cell Line, Tumor , Guanine/analogs & derivatives , Guanine/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , DNA Damage , NF-kappa B/metabolism , Cell Movement , Female
7.
Gut Microbes ; 16(1): 2397874, 2024.
Article in English | MEDLINE | ID: mdl-39229962

ABSTRACT

Recently, the mounting integration of probiotics into human health strategies has gathered considerable attention. Although the benefits of probiotics have been widely recognized in patients with gastrointestinal disorders, immune system modulation, and chronic-degenerative diseases, there is a growing need to evaluate their potential risks. In this context, new concerns have arisen regarding the safety of probiotics as some strains may have adverse effects in humans. Among these strains, Escherichia coli Nissle 1917 (EcN) exhibited traits of concern due to a pathogenic locus in its genome that produces potentially genotoxic metabolites. As the use of probiotics for therapeutic purposes is increasing, the effects of potentially harmful probiotics must be carefully evaluated. To this end, in this narrative review article, we reported the findings of the most relevant in vitro and in vivo studies investigating the expanding applications of probiotics and their impact on human well-being addressing concerns arising from the presence of antibiotic resistance and pathogenic elements, with a focus on the polyketide synthase (pks) pathogenic island of EcN. In this context, the literature data here discussed encourages a thorough profiling of probiotics to identify potential harmful elements as done for EcN where potential genotoxic effects of colibactin, a secondary metabolite, were observed. Specifically, while some studies suggest EcN is safe for gastrointestinal health, conflicting findings highlight the need for further research to clarify its safety and optimize its use in therapy. Overall, the data here presented suggest that a comprehensive assessment of the evolving landscape of probiotics is essential to make evidence-based decisions and ensure their correct use in humans.


Subject(s)
Escherichia coli , Peptides , Polyketides , Probiotics , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Polyketides/metabolism , Peptides/metabolism , Peptides/genetics , Animals , Mutagens/metabolism , Mutagens/toxicity , DNA Damage , Polyketide Synthases/genetics , Polyketide Synthases/metabolism
8.
Proc Natl Acad Sci U S A ; 121(37): e2403038121, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39226359

ABSTRACT

Proteostasis and genomic integrity are respectively regulated by the endoplasmic reticulum-associated protein degradation (ERAD) and DNA damage repair signaling pathways, with both pathways essential for carcinogenesis and drug resistance. How these signaling pathways coordinate with each other remains unexplored. We found that ER stress specifically induces the DNA-PKcs-regulated nonhomologous end joining (NHEJ) pathway to amend DNA damage and impede cell death. Intriguingly, sustained ER stress rapidly decreased the activity of DNA-PKcs and DNA damage accumulated, facilitating a switch from adaptation to cell death. This DNA-PKcs inactivation was caused by increased KU70/KU80 protein degradation. Unexpectedly, the ERAD ligase HRD1 was found to efficiently destabilize the classic nuclear protein HDAC1 in the cytoplasm, by catalyzing HDAC1's polyubiquitination at lysine 74, at a late stage of ER stress. By abolishing HDAC1-mediated KU70/KU80 deacetylation, HRD1 transmits ER signals to the nucleus. The resulting enhanced KU70/KU80 acetylation provides binding sites for the nuclear E3 ligase TRIM25, resulting in the promotion of polyubiquitination and the degradation of KU70/KU80 proteins. Both in vitro and in vivo cancer models showed that genetic or pharmacological inhibition of HADC1 or DNA-PKcs sensitizes colon cancer cells to ER stress inducers, including the Food and Drug Administration-approved drug celecoxib. The antitumor effects of the combined approach were also observed in patient-derived xenograft models. These findings identify a mechanistic link between ER stress (ERAD) in the cytoplasm and DNA damage (NHEJ) pathways in the nucleus, indicating that combined anticancer strategies may be developed that induce severe ER stress while simultaneously inhibiting KU70/KU80/DNA-PKcs-mediated NHEJ signaling.


Subject(s)
DNA Damage , Endoplasmic Reticulum Stress , Ku Autoantigen , Ubiquitin-Protein Ligases , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ku Autoantigen/metabolism , Ku Autoantigen/genetics , Animals , DNA-Activated Protein Kinase/metabolism , DNA-Activated Protein Kinase/genetics , Mice , DNA End-Joining Repair , Histone Deacetylase 1/metabolism , Histone Deacetylase 1/genetics , Ubiquitination , DNA Repair , Signal Transduction , Cell Line, Tumor , Endoplasmic Reticulum/metabolism , Proteolysis
9.
Acta Neuropathol Commun ; 12(1): 144, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39227882

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease leading to motor neuron loss. Currently mutations in > 40 genes have been linked to ALS, but the contribution of many genes and genetic mutations to the ALS pathogenic process remains poorly understood. Therefore, we first performed comparative interactome analyses of five recently discovered ALS-associated proteins (C21ORF2, KIF5A, NEK1, TBK1, and TUBA4A) which highlighted many novel binding partners, and both unique and shared interactors. The analysis further identified C21ORF2 as a strongly connected protein. The role of C21ORF2 in neurons and in the nervous system, and of ALS-associated C21ORF2 variants is largely unknown. Therefore, we combined human iPSC-derived motor neurons with other models and different molecular cell biological approaches to characterize the potential pathogenic effects of C21ORF2 mutations in ALS. First, our data show C21ORF2 expression in ALS-relevant mouse and human neurons, such as spinal and cortical motor neurons. Further, the prominent ALS-associated variant C21ORF2-V58L caused increased apoptosis in mouse neurons and movement defects in zebrafish embryos. iPSC-derived motor neurons from C21ORF2-V58L-ALS patients, but not isogenic controls, show increased apoptosis, and changes in DNA damage response, mitochondria and neuronal excitability. In addition, C21ORF2-V58L induced post-transcriptional downregulation of NEK1, an ALS-associated protein implicated in apoptosis and DDR. In all, our study defines the pathogenic molecular and cellular effects of ALS-associated C21ORF2 mutations and implicates impaired post-transcriptional regulation of NEK1 downstream of mutant C21ORF72 in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Induced Pluripotent Stem Cells , Mitochondria , Motor Neurons , NIMA-Related Kinase 1 , Zebrafish , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , NIMA-Related Kinase 1/genetics , NIMA-Related Kinase 1/metabolism , Animals , Motor Neurons/metabolism , Motor Neurons/pathology , Induced Pluripotent Stem Cells/metabolism , Mice , Mitochondria/metabolism , Mitochondria/pathology , DNA Repair/genetics , DNA Damage , Mutation
10.
PLoS One ; 19(9): e0304939, 2024.
Article in English | MEDLINE | ID: mdl-39226291

ABSTRACT

Cellular oxidative stress mediated by intrinsic and/or extrinsic reactive oxygen species (ROS) is associated with disease pathogenesis. Oxidative DNA damage can naturally be substituted by mitochondrial DNA (mtDNA), leading to base lesion/strand break formation, copy number changes, and mutations. In this study, we devised a single test for the sensitive quantification of acute mtDNA damage, repair, and copy number changes using supercoiling-sensitive quantitative PCR (ss-qPCR) and examined how oxidative stress-related mtDNA damage responses occur in oral cancer cells. We observed that exogenous hydrogen peroxide (H2O2) induced dynamic mtDNA damage responses, as reflected by early structural DNA damage, followed by DNA repair if damage did not exceed a particular threshold. However, high oxidative stress levels induced persistent mtDNA damage and caused a 5-30-fold depletion in mtDNA copy numbers over late responses. This dramatic depletion was associated with significant growth arrest and apoptosis, suggesting persistent functional consequences. Moreover, oral cancer cells responded differentially to oxidative injury when compared with normal cells, and different ROS species triggered different biological consequences under stress conditions. In conclusion, we developed a new method for the sensitive detection of mtDNA damage and copy number changes, with exogenous H2O2 inducing dynamic mtDNA damage responses associated with functional changes in stressed cancer cells. Finally, our method can help characterize oxidative DNA damage in cancer and other human diseases.


Subject(s)
DNA Damage , DNA, Mitochondrial , Hydrogen Peroxide , Mouth Neoplasms , Oxidative Stress , Reactive Oxygen Species , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Oxidative Stress/drug effects , Humans , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Hydrogen Peroxide/pharmacology , Cell Line, Tumor , Reactive Oxygen Species/metabolism , DNA Repair , Apoptosis/drug effects , DNA Copy Number Variations
11.
J Vis Exp ; (210)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39158282

ABSTRACT

The DNA damage response is a genetic information safeguard that protects cells from perpetuating damaged DNA. The characterization of the proteins that cooperate in this process allows the identification of alternative targets for therapeutic intervention in several diseases, such as cancer, aging-related diseases, and chronic inflammation. The Proximity Ligand Assay (PLA) emerged as a tool for estimating interaction between proteins as well as spatial proximity among organelles or cellular structures and allows the temporal localization and co-localization analysis under stress conditions, for instance. The method is simple because it is similar to conventional immunofluorescence and allows the staining of an organelle, cellular structure, or a specific marker such as mitochondria, endoplasmic reticulum, PML bodies, or DNA double-strand marker, yH2AX simultaneously. The phosphorylation of the S139 at Histone 2A variant, H2AX, then referred to as yH2AX, is widely used as a very sensitive and specific marker of DNA double-strand breaks. Each focus of yH2AX staining corresponds to one break in DNA that occurs a few minutes after the damage. The analysis of changes in yH2AX foci is the most common assay for studying if the protein of interest is implicated in DNA damage response (DDR). Whether a direct role in the DNA damage site is expected, fluorescence microscopy is used to verify the colocalization of the protein of interest with yH2AX foci. However, except for the new super-resolution fluorescence methods, to conclude, the local interaction with DNA damage sites can be a little subjective. Here, we show an assay to evaluate the localization of proteins in the DDR pathway using yH2AX as a marker of the damage site. This assay can be used to characterize the temporal localization under different insults that cause DNA damage.


Subject(s)
DNA Damage , Histones , Humans , Histones/metabolism , Histones/analysis , Ligands , DNA Breaks, Double-Stranded
12.
Chemosphere ; 363: 142993, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39097108

ABSTRACT

Due to their extensive use, the release of zinc oxide nanoparticles (ZnO NP) into the environment is increasing and may lead to unintended risk to both human health and ecosystems. Access of ZnO NP to the brain has been demonstrated, so their potential toxicity on the nervous system is a matter of particular concern. Although evaluation of ZnO NP toxicity has been reported in several previous studies, the specific effects on the nervous system are not completely understood and, particularly, effects on genetic material and on organism behaviour are poorly addressed. We evaluated the potential toxic effects of ZnO NP in vitro and in vivo, and the role of zinc ions (Zn2+) in these effects. In vitro, the ability of ZnO NP to be internalized by A172 glial cells was verified, and the cytotoxic and genotoxic effects of ZnO NP or the released Zn2+ ions were addressed by means of vital dye exclusion and comet assay, respectively. In vivo, behavioural alterations were evaluated in zebrafish embryos using a total locomotion assay. ZnO NP induced decreases in viability of A172 cells after 24 h of exposure and genetic damage after 3 and 24 h. The involvement of the Zn2+ ions released from the NP in genotoxicity was confirmed. ZnO NP exposure also resulted in decreased locomotor activity of zebrafish embryos, with a clear role of released Zn2+ ions in this effect. These findings support the toxic potential of ZnO NP showing, for the first time, genetic effects on glial cells and proving the intervention of Zn2+ ions.


Subject(s)
Zebrafish , Zinc Oxide , Zinc Oxide/toxicity , Animals , Humans , Metal Nanoparticles/toxicity , DNA Damage , Cell Survival/drug effects , Behavior, Animal/drug effects , Comet Assay , Neuroglia/drug effects , Nanoparticles/toxicity
13.
Environ Monit Assess ; 196(8): 773, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39090345

ABSTRACT

Rodents are considered good models for investigating genotoxic damage and mutagenic alterations caused by xenobiotic agents, due to their occupation of a wide variety of habitats. However, relatively few in situ studies have focused on DNA damage in wild rodents associated with environmental exposure. In this review, we investigate trends in the application of the micronucleus test and comet assay in in situ studies of wild rodents. A total of 33 papers were identified, distributed across 14 different countries. Brazil and Spain had the most published studies (six each), followed by Bulgaria (n = 5), Mexico (n = 4) and Italy (n = 3). Only 24 of the 2,652 recognized rodent species have been the subject of in situ studies, which have most frequently focus on species of the genus Mus. The protocols used for the micronucleus test and comet assay varied widely, although blood and bone marrow were the primary types of tissue used. Given the paucity of studies on wild rodents, we recommend further research, particularly focusing on the use of this group as bioindicators of environmental quality and the standardization of protocols.


Subject(s)
Comet Assay , DNA Damage , Environmental Monitoring , Micronucleus Tests , Rodentia , Comet Assay/methods , Micronucleus Tests/methods , Animals , Environmental Monitoring/methods , Animals, Wild , Environmental Pollutants/toxicity
14.
Article in English | MEDLINE | ID: mdl-39147446

ABSTRACT

Papillary thyroid carcinoma (PTC) is a common endocrine cancer with a good prognosis. Radioactive iodine is thought to be useful for individuals who have had a total or almost total thyroidectomy, but its effects are still controversial. The effects of radioactive iodine-131 (I-131) treatment on oxidative and chromosomal damage in PTC patients were examined in this study, which was carried out with 16 patients newly diagnosed with PTC and 20 healthy control subjects with similar age and gender. Blood samples were taken from patients with PTC at five sampling times (before total thyroidectomy, after total thyroidectomy, and seven days, six months, and one year after treatment) and from control subjects. The cytokinesis block micronucleus cytome (CBMN-cyt) assay parameters in peripheral blood lymphocytes of patients with PTC and controls were evaluated and plasma 8-hydroxydeoxyguanosine (8-OHdG) levels were measured. Furthermore, genome instability and oxidative DNA damage in peripheral blood lymphocytes and plasma of patients with PTC were evaluated before total thyroidectomy (n=16), after total thyroidectomy (before I-131 treatment) (n=16), seven days (n=10), six months (n=5), and one year after treatment (n=5). The numbers of CBMN-cyt assay parameters (micronucleus; MN and nucleoplasmic bridges; NPB) and 8-OHdG levels in patients with PTC were determined to be significantly higher than in those of the control subjects and these values significantly decreased after total thyroidectomy (before I-131 treatment). While the number of MN, apoptotic, and necrotic cells increased after I-131 treatment, it significantly decreased after six months and one year after treatment. The results achieved in this study suggest that I-131 treatment may pose a threat to cells and that radioactive iodine therapy should be avoided (if possible) for patients with PTC after total thyroidectomy.


Subject(s)
DNA Damage , Iodine Radioisotopes , Oxidative Stress , Thyroid Cancer, Papillary , Thyroid Neoplasms , Thyroidectomy , Humans , Iodine Radioisotopes/therapeutic use , Iodine Radioisotopes/adverse effects , Thyroid Neoplasms/blood , Thyroid Neoplasms/radiotherapy , Thyroid Neoplasms/pathology , Thyroid Neoplasms/genetics , Female , Male , Adult , Middle Aged , Thyroid Cancer, Papillary/blood , Thyroid Cancer, Papillary/radiotherapy , Oxidative Stress/drug effects , Micronucleus Tests , Carcinoma, Papillary/blood , Carcinoma, Papillary/pathology , Carcinoma, Papillary/radiotherapy , Carcinoma/radiotherapy , Carcinoma/blood , Carcinoma/genetics , Lymphocytes/radiation effects , Lymphocytes/drug effects , 8-Hydroxy-2'-Deoxyguanosine/blood , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/blood , Case-Control Studies , Genomic Instability
15.
Article in English | MEDLINE | ID: mdl-39147447

ABSTRACT

Obesity is a well-known risk factor for testicular function; however, dulaglutide's effect on the testis in obesity has received little attention. Currently, clinicians prescribe the antidiabetic drug dulaglutide only off-label for weight management in non-diabetics. Investigating the impact of this novel compound on obesity is critical for determining whether it has any disruptive effects on testicular cells. We used a well-known animal model of high-fat diet-induced obesity in this investigation, and testicular dysfunction was determined by sperm DNA damage, spermatocyte chromosomal abnormalities, and spermiogram analysis. Following a 12-week high-fat diet challenge, mice were randomly assigned to dulaglutide (0.6 mg/kg/day) or saline treatments for five weeks. Testes and sperm cells were collected 24 h after the last dulaglutide injection. Untreated obese mice had a lower testes/body weight ratio, more sperm DNA damage, diakinesis-metaphase I chromosomal abnormalities, a lower sperm count/motility, more cell morphological defects, and an altered testicular redox balance. In obese mice, dulaglutide injection efficiently restored all disturbed parameters to their control levels. Dulaglutide injection into healthy mice exhibited no significant harmful effects at the applied regimen. As a result, we infer that dulaglutide therapy might bring obese men additional benefits by recovering testicular dysfunction induced by obesity.


Subject(s)
Diet, High-Fat , Disease Models, Animal , Glucagon-Like Peptides , Immunoglobulin Fc Fragments , Obesity , Recombinant Fusion Proteins , Testis , Animals , Male , Immunoglobulin Fc Fragments/pharmacology , Obesity/drug therapy , Glucagon-Like Peptides/analogs & derivatives , Glucagon-Like Peptides/pharmacology , Glucagon-Like Peptides/therapeutic use , Diet, High-Fat/adverse effects , Mice , Recombinant Fusion Proteins/pharmacology , Testis/drug effects , Testis/pathology , Testis/metabolism , DNA Damage/drug effects , Spermatozoa/drug effects , Hypoglycemic Agents/pharmacology , Sperm Motility/drug effects , Mice, Inbred C57BL , Chromosome Aberrations/drug effects , Testicular Diseases/drug therapy
16.
Article in English | MEDLINE | ID: mdl-39147442

ABSTRACT

The prolonged exposure of agricultural soils to heavy metals from wastewater, particularly in areas near industrial facilities, poses a significant threat to the well-being of living organisms. The World Health Organization (WHO) has established standard permissible limits for heavy metals in agricultural soils to mitigate potential health hazards. Nevertheless, some agricultural fields continue to be irrigated with wastewater containing industrial effluents. This study aimed to assess the concentration of lead in soil samples collected from agricultural fields near industrial areas. Subsequently, we determined the lethal concentration (LC50) of lead (Pb) and other heavy metals for two Collembola species, namely Folsomia candida, a standard organism for soil ecotoxicity tests, and comparing it with Proisotoma minuta. The research further examined the toxic effects of lead exposure on these two species, revealing depletion in the energy reservoirs and alterations in the tissue histology of both organisms. The study revealed that lead can induce genotoxic damage as it evidently has moderate binding affinity with the ct-DNA and hence can cause DNA fragmentation and the formation of micronuclei. Elevated lipid peroxidation (LPO) levels and protein carbonylation levels were observed, alongside a reduction in antioxidant enzymes (CAT, SOD & GPx). These findings suggest that lead disrupts the balance between oxidants and the antioxidant enzyme system, impairing defense mechanisms and consequential derogatory damage within microarthropods. The investigation elucidates a complex network of various signaling pathways compromised as a result of lead toxicity. Hence, it presents a novel perspective that underscores the pressing necessity for implementing an integrated risk assessment framework at the investigated site.


Subject(s)
Arthropods , Lead , Lipid Peroxidation , Oxidative Stress , Soil Pollutants , Zea mays , Oxidative Stress/drug effects , Arthropods/drug effects , Zea mays/drug effects , Zea mays/genetics , Lead/toxicity , Animals , Soil Pollutants/toxicity , Lipid Peroxidation/drug effects , DNA Damage/drug effects , DNA Fragmentation/drug effects , Metals, Heavy/toxicity , Soil/chemistry
17.
Article in English | MEDLINE | ID: mdl-39147445

ABSTRACT

Coal is a mixture of several chemicals, many of which have mutagenic and carcinogenic effects and are a key contributor to the global burden of mortality and disease. Previous studies suggest that coal is related to telomeric shortening in individuals occupationally exposed, however little is known about the effects of mining and burning coal on the telomeres of individuals living nearby. Therefore, the primary objective of this investigation was to assess the impact of proximity to coal power plants and coal mines on the genomic instability of individuals environmentally exposed, while also exploring potential associations with individual characteristics, oxidative stress, inflammatory responses, and the presence of inorganic elements. This study involved 80 men participants from three cities around a thermoelectric power plant and one city unexposed to coal and byproducts. DNA was extracted from peripheral blood samples obtained from each participant, and the telomeres length (TL) was assessed using quantitative real-time polymerase chain reaction (qPCR) methodology. No significant difference was observed between exposed individuals (6227 ± 2884 bp) when compared to the unexposed group (5638 ± 2452 bp). Nevertheless, TL decrease was associated with age and risk for cardiovascular disease; and longer TL was found to be linked with increased concentrations of silicon and phosphorus in blood samples. No correlations were observed between TL with comet assay (visual score), micronucleus test, oxidative stress, and inflammatory results. Additional research is required to ascertain the potential correlation between these changes and the onset of diseases and premature mortality.


Subject(s)
Coal , DNA Damage , Environmental Exposure , Oxidative Stress , Power Plants , Telomere , Humans , Male , Coal/adverse effects , Middle Aged , Adult , Environmental Exposure/adverse effects , Telomere/drug effects , Telomere/genetics , Oxidative Stress/drug effects , Telomere Shortening/drug effects , Comet Assay , Micronucleus Tests , Coal Mining , Occupational Exposure/adverse effects , Aged , Telomere Homeostasis/drug effects
18.
Article in English | MEDLINE | ID: mdl-39147449

ABSTRACT

Brazil is one of the world's largest consumers of pesticides. This intense use impacts the environment and exposes a wide range of individuals to pesticides, including rural workers who are occupationally exposed and rural residents who are environmentally exposed. We aimed to evaluate the effects of occupational exposure to pesticides on the health of rural workers and rural residents. We conducted an epidemiological study with 104 farmers and 23 rural residents of Casimiro de Abreu (Rio de Janeiro, Brazil). A comparison group (urban residents) comprised 103 residents of the urban area of the same city. We determined the activity of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) using a modified version of Ellman's method to evaluate exposure. In addition, we performed genotoxic and mutagenic analyses with the comet assay and the cytokinesis-block micronucleus (CBMN) assay. There was a reduction in cholinesterase activity, mainly BChE, in rural workers and rural residents compared with urban residents (p = 0.002). There was an increase in genotoxic effects in rural workers compared with urban residents (comet assay, p < 0.001; CBMN assay, p < 0.001). In addition, there was a greater chance of genotoxic changes in rural workers exposed to pesticides based on the comet assay (odds ratio [OR] 7.6, 95 % confidence interval [CI] 6.6-15.9) and the CBMN assay (OR 22.7, 95 % CI 10.3-49.9). We found that individuals occupationally exposed to pesticides are more likely to have genotoxic effects. These findings are useful for the development of programs to monitor populations exposed to genotoxic substances and allow the development of strategies for the prevention, control, and surveillance of effects that result from occupational and environmental exposures to pesticides.


Subject(s)
Butyrylcholinesterase , Comet Assay , DNA Damage , Micronucleus Tests , Occupational Exposure , Pesticides , Rural Population , Humans , Pesticides/toxicity , Brazil , Occupational Exposure/adverse effects , Adult , Male , Middle Aged , Butyrylcholinesterase/genetics , Female , DNA Damage/drug effects , Farmers , Acetylcholinesterase , Urban Population
19.
Cell Death Dis ; 15(8): 570, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112459

ABSTRACT

Bromodomain Adjacent to Zinc Finger Domain 1A (BAZ1A) is a critical regulator of chromatin remodeling. We sought to clarify the roles of BAZ1A in the etiology of colorectal cancer, including the mechanisms of its alternatively spliced variants. Public databases were examined and revealed high BAZ1A expression in the majority of colorectal cancer patients, which was corroborated in a panel of human colon cancer cell lines. BAZ1A silencing reduced cell viability and increased markers of DNA damage, apoptosis, and senescence, along with the downregulation of Wnt/ß-catenin signaling. The corresponding molecular changes resulted in tumor growth inhibition when BAZ1A-knockout cells were implanted into nude mice. In rescue experiments, a short isoform of BAZ1A that was associated with alternative splicing by the DBIRD complex failed to restore DNA repair activity in colon cancer cells and maintained chemosensitivity to phleomycin treatment, unlike the full-length BAZ1A. A working model proposes that a buried domain in the N-terminus of the BAZ1A short isoform lacks the ability to access linker DNA, thereby disrupting the activity of the associated chromatin remodeling complexes. Given the current interest in RNA splicing deregulation and cancer etiology, additional mechanistic studies are warranted with new lead compounds targeting BAZ1A, and other members of the BAZ family, with a view to improved therapeutic interventions.


Subject(s)
Alternative Splicing , Colorectal Neoplasms , DNA Damage , Mice, Nude , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Alternative Splicing/genetics , Alternative Splicing/drug effects , Animals , Mice , Cell Line, Tumor , Apoptosis/drug effects , Apoptosis/genetics , Gene Expression Regulation, Neoplastic/drug effects , Wnt Signaling Pathway/drug effects , DNA Repair/drug effects , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , HCT116 Cells
20.
Clin Transl Med ; 14(8): e1791, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39113233

ABSTRACT

BACKGROUND: Mutations in several translation initiation factors are closely associated with premature ovarian insufficiency (POI), but the underlying pathogenesis remains largely unknown. METHODS AND RESULTS: We generated eukaryotic translation initiation factor 5 (Eif5) conditional knockout mice aiming to investigate the function of eIF5 during oocyte growth and follicle development. Here, we demonstrated that Eif5 deletion in mouse primordial and growing oocytes both resulted in the apoptosis of oocytes within the early-growing follicles. Further studies revealed that Eif5 deletion in oocytes downregulated the levels of mitochondrial fission-related proteins (p-DRP1, FIS1, MFF and MTFR) and upregulated the levels of the integrated stress response-related proteins (AARS1, SHMT2 and SLC7A1) and genes (Atf4, Ddit3 and Fgf21). Consistent with this, Eif5 deletion in oocytes resulted in mitochondrial dysfunction characterized by elongated form, aggregated distribution beneath the oocyte membrane, decreased adenosine triphosphate content and mtDNA copy numbers, and excessive accumulation of reactive oxygen species (ROS) and mitochondrial superoxide. Meanwhile, Eif5 deletion in oocytes led to a significant increase in the levels of DNA damage response proteins (γH2AX, p-CHK2 and p-p53) and proapoptotic proteins (PUMA and BAX), as well as a significant decrease in the levels of anti-apoptotic protein BCL-xL. CONCLUSION: These findings indicate that Eif5 deletion in mouse oocytes results in the apoptosis of oocytes within the early-growing follicles via mitochondrial fission defects, excessive ROS accumulation and DNA damage. This study provides new insights into pathogenesis, genetic diagnosis and potential therapeutic targets for POI. KEY POINTS: Eif5 deletion in oocytes leads to arrest in oocyte growth and follicle development. Eif5 deletion in oocytes impairs the translation of mitochondrial fission-related proteins, followed by mitochondrial dysfunction. Depletion of Eif5 causes oocyte apoptosis via ROS accumulation and DNA damage response pathway.


Subject(s)
Apoptosis , DNA Damage , Mice, Knockout , Oocytes , Reactive Oxygen Species , Animals , Reactive Oxygen Species/metabolism , Mice , Oocytes/metabolism , DNA Damage/genetics , Female , Apoptosis/genetics , Mitochondrial Dynamics/genetics , Peptide Initiation Factors/genetics , Peptide Initiation Factors/metabolism , Eukaryotic Translation Initiation Factor 5A , Ovarian Follicle/metabolism , Ovarian Follicle/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL