Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.947
Filter
1.
Radiographics ; 44(8): e240015, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39088359

ABSTRACT

Malignant rhabdoid tumors (MRTs) are rare but lethal solid neoplasms that overwhelmingly affect infants and young children. While the central nervous system is the most common site of occurrence, tumors can develop at other sites, including the kidneys and soft tissues throughout the body. The anatomic site of involvement dictates tumor nomenclature and nosology. While the clinical and imaging manifestations of MRTs and other more common entities may overlap, there are some site-specific distinctive imaging characteristics. Irrespective of the site of occurrence, somatic and germline mutations in SMARCB1, and rarely in SMARCA4, underlie the entire spectrum of rhabdoid tumors. MRTs have a simple and remarkably stable genome but can demonstrate considerable molecular and biologic heterogeneity. Related neoplasms encompass an expanding category of phenotypically dissimilar (nonrhabdoid tumors driven by SMARC-related alterations) entities. US, CT, MRI, and fluorodeoxyglucose PET/CT or PET/MRI facilitate diagnosis, initial staging, and follow-up, thus informing therapeutic decision making. Multifocal synchronous or metachronous rhabdoid tumors occur predominantly in the context of underlying rhabdoid tumor predisposition syndromes (RTPSs). These autosomal dominant disorders are driven in most cases by pathogenic variants in SMARCB1 (RTPS type 1) and rarely by pathogenic variants in SMARCA4 (RTPS type 2). Genetic testing and counseling are imperative in RTPS. Guidelines for imaging surveillance in cases of RTPS are based on age at diagnosis. ©RSNA, 2024 Supplemental material is available for this article.


Subject(s)
Multimodal Imaging , Rhabdoid Tumor , Humans , Rhabdoid Tumor/diagnostic imaging , Rhabdoid Tumor/genetics , Multimodal Imaging/methods , Child , Infant , SMARCB1 Protein/genetics , Child, Preschool , Diagnosis, Differential , DNA Helicases , Nuclear Proteins , Transcription Factors
2.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 559-565, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38948269

ABSTRACT

Objective: Infertility affects approximately one-sixth of the people of childbearing age worldwide, causing not only economic burdens of treatment for families with fertility problems but also psychological stress for patients and presenting challenges to societal and economic development. Premature ovarian insufficiency (POI) refers to the loss of ovarian function in women before the age of 40 due to the depletion of follicles or decreased quality of remaining follicles, constituting a significant cause of female infertility. In recent years, with the help of the rapid development in genetic sequencing technology, it has been demonstrated that genetic factors play a crucial role in the onset of POI. Among the population suffering from POI, genetic studies have revealed that genes involved in processes such as meiosis, DNA damage repair, and mitosis account for approximately 37.4% of all pathogenic and potentially pathogenic genes identified. FA complementation group M (FANCM) is a group of genes involved in the damage repair of DNA interstrand crosslinks (ICLs), including FANCA-FANCW. Abnormalities in the FANCM genes are associated with female infertility and FANCM gene knockout mice also exhibit phenotypes similar to those of POI. During the genetic screening of POI patients, this study identified a suspicious variant in FANCM. This study aims to explore the pathogenic mechanisms of the FANCM genes of the FA pathway and their variants in the development of POI. We hope to help shed light on potential diagnostic and therapeutic strategies for the affected individuals. Methods: One POI patient was included in the study. The inclusion criteria for POI patients were as follows: women under 40 years old exhibiting two or more instances of basal serum follicle-stimulating hormone levels>25 IU/L (with a minimum interval of 4 weeks inbetween tests), alongside clinical symptoms of menstrual disorders, normal chromosomal karyotype analysis results, and exclusion of other known diseases that can lead to ovarian dysfunction. We conducted whole-exome sequencing for the POI patient and identified pathogenic genes by classifying variants according to the standards and guidelines established by the American College of Medical Genetics and Genomics (ACMG). Subsequently, the identified variants were validated through Sanger sequencing and subjected to bioinformatics analysis. Plasmids containing wild-type and mutant FANCM genes were constructed and introduced into 293T cells. The 293T cells transfected with wild-type and mutant human FANCM plasmids and pEGFP-C1 empty vector plasmids were designated as the EGFP FANCM-WT group, the EGFP FANCM-MUT group, and the EGFP group, respectively. To validate the production of truncated proteins, cell proteins were extracted 48 hours post-transfection from the three groups and confirmed using GFP antibody. In order to investigate the impact on DNA damage repair, immunofluorescence experiments were conducted 48 hours post-transfection in the EGFP FANCM-WT group and the EGFP FANCM-MUT group to examine whether the variant affected FANCM's ability to localize on chromatin. Mitomycin C was used to induce ICLs damage in vitro in both the EGFP FANCM-WT group and the EGFP FANCM-MUT group, which was followed by verification of its effect on ICLs damage repair using γ-H2AX antibody. Results: In a POI patient from a consanguineous family, we identified a homozygous variant in the FANCM gene, c.1152-1155del:p.Leu386Valfs*10. The patient presented with primary infertility, experiencing irregular menstruation since menarche at the age of 16. Hormonal evaluation revealed an FSH level of 26.79 IU/L and an anti-Müllerian hormone (AMH) level of 0.07 ng/mL. Vaginal ultrasound indicated unsatisfactory visualization of the ovaries on both sides and uterine dysplasia. The patient's parents were a consanguineous couple, with the mother having regular menstrual cycles. The patient had two sisters, one of whom passed away due to osteosarcoma, while the other exhibited irregular menstruation, had been diagnosed with ovarian insufficiency, and remained childless. Bioinformatics analysis revealed a deletion of four nucleotides (c.1152-1155del) in the exon 6 of the patient's FANCM gene. This variant resulted in a frameshift at codon 386, introducing a premature stop codon at codon 396, which ultimately led to the production of a truncated protein consisting of 395 amino acids. In vitro experiments demonstrated that this variant led to the production of a truncated FANCM protein of approximately 43 kDa and caused a defect in its nuclear localization, with the protein being present only in the cytoplasm. Following treatment with mitomycin C, there was a significant increase in γ-H2AX levels in 293T cells transfected with the mutant plasmid (P<0.01), indicating a statistically significant impairment of DNA damage repair capability caused by this variant. Conclusions: The homozygous variant in the FANCM gene, c.1152-1155del:p.Leu386Valfs*10, results in the production of a truncated FANCM protein. This truncation leads to the loss of its interaction site with the MHF1-MHF2 complex, preventing its entry into the nucleus and the subsequent recognition of DNA damage. Consequently, the localization of the FA core complex on chromatin is disrupted, impeding the normal activation of the FA pathway and reducing the cell's ability to repair damaged ICLs. By disrupting the rapid proliferation and meiotic division processes of primordial germ cells, the reserve of oocytes is depleted, thereby triggering premature ovarian insufficiency in females.


Subject(s)
Primary Ovarian Insufficiency , Female , Primary Ovarian Insufficiency/genetics , Humans , Mutation , Fanconi Anemia/genetics , Adult , Infertility, Female/genetics , Infertility, Female/etiology , DNA Helicases
4.
Int J Mol Sci ; 25(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39063172

ABSTRACT

The SARS-CoV-2 helicase, non-structural protein 13 (Nsp13), plays an essential role in viral replication, translocating in the 5' → 3' direction as it unwinds double-stranded RNA/DNA. We investigated the impact of structurally distinct DNA lesions on DNA unwinding catalyzed by Nsp13. The selected lesions include two benzo[a]pyrene (B[a]P)-derived dG adducts, the UV-induced cyclobutane pyrimidine dimer (CPD), and the pyrimidine (6-4) pyrimidone (6-4PP) photolesion. The experimentally observed unwinding rate constants (kobs) and processivities (P) were examined. Relative to undamaged DNA, the kobs values were diminished by factors of up to ~15 for B[a]P adducts but only by factors of ~2-5 for photolesions. A minor-groove-oriented B[a]P adduct showed the smallest impact on P, which decreased by ~11% compared to unmodified DNA, while an intercalated one reduced P by ~67%. However, the photolesions showed a greater impact on the processivities; notably, the CPD, with the highest kobs value, exhibited the lowest P, which was reduced by ~90%. Our findings thus show that DNA unwinding efficiencies are lesion-dependent and most strongly inhibited by the CPD, leading to the conclusion that processivity is a better measure of DNA lesions' inhibitory effects than unwinding rate constants.


Subject(s)
DNA Helicases , SARS-CoV-2 , Viral Nonstructural Proteins , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/chemistry , DNA Helicases/metabolism , DNA Helicases/chemistry , DNA/metabolism , DNA/chemistry , Humans , DNA Damage , COVID-19/virology , Kinetics , Methyltransferases , RNA Helicases
5.
Nat Commun ; 15(1): 6200, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39043686

ABSTRACT

Cell fate is likely regulated by a common machinery, while components of this machine remain to be identified. Here we report the design and testing of engineered cell fate controller NanogBiD, fusing BiD or BRG1 interacting domain of SS18 with Nanog. NanogBiD promotes mouse somatic cell reprogramming efficiently in contrast to the ineffective native protein under multiple testing conditions. Mechanistic studies further reveal that it facilitates cell fate transition by recruiting the intended Brg/Brahma-associated factor (BAF) complex to modulate chromatin accessibility and reorganize cell state specific enhancers known to be occupied by canonical Nanog, resulting in precocious activation of multiple genes including Sall4, miR-302, Dppa5a and Sox15 towards pluripotency. Although we have yet to test our approach in other species, our findings suggest that engineered chromatin regulators may provide much needed tools to engineer cell fate in the cells as drugs era.


Subject(s)
Nanog Homeobox Protein , Transcription Factors , Animals , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Nanog Homeobox Protein/metabolism , Nanog Homeobox Protein/genetics , Cellular Reprogramming/genetics , Chromatin/metabolism , Chromatin/genetics , DNA Helicases/metabolism , DNA Helicases/genetics , Cell Differentiation , Cell Engineering/methods , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
6.
Cancer Biol Ther ; 25(1): 2375440, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38978225

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most lethal malignant tumors worldwide. Brahma-related gene 1 (BRG1), as a catalytic ATPase, is a major regulator of gene expression and is known to mutate and overexpress in HCC. The purpose of this study was to investigate the mechanism of action of BRG1 in HCC cells. In our study, BRG1 was silenced or overexpressed in human HCC cell lines. Transwell and wound healing assays were used to analyze cell invasiveness and migration. Mitochondrial membrane potential (MMP) and mitochondrial permeability transition pore (mPTP) detection were used to evaluate mitochondrial function in HCC cells. Colony formation and cell apoptosis assays were used to evaluate the effect of BRG1/TOMM40/ATP5A1 on HCC cell proliferation and apoptosis/death. Immunocytochemistry (ICC), immunofluorescence (IF) staining and western blot analysis were used to determine the effect of BRG1 on TOMM40, ATP5A1 pathway in HCC cells. As a result, knockdown of BRG1 significantly inhibited cell proliferation and invasion, promoted apoptosis in HCC cells, whereas BRG1 overexpression reversed the above effects. Overexpression of BRG1 can up-regulate MMP level, inhibit mPTP opening and activate TOMM40, ATP5A1 expression. Our results suggest that BRG1, as an oncogene, promotes HCC progression by regulating TOMM40 affecting mitochondrial function and ATP5A1 synthesis. Targeting BRG1 may represent a new and effective way to prevent HCC development.


Subject(s)
Apoptosis , Carcinoma, Hepatocellular , Cell Proliferation , DNA Helicases , Liver Neoplasms , Mitochondria , Mitochondrial Precursor Protein Import Complex Proteins , Nuclear Proteins , Transcription Factors , Humans , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Movement , DNA Helicases/metabolism , DNA Helicases/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Membrane Potential, Mitochondrial , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , Mitochondrial Proton-Translocating ATPases/genetics , Neoplasm Metastasis , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics
7.
Nat Commun ; 15(1): 6031, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019869

ABSTRACT

Mutations in the Cockayne Syndrome group B (CSB) gene cause cancer in mice, but premature aging and severe neurodevelopmental defects in humans. CSB, a member of the SWI/SNF family of chromatin remodelers, plays diverse roles in regulating gene expression and transcription-coupled nucleotide excision repair (TC-NER); however, these functions do not explain the distinct phenotypic differences observed between CSB-deficient mice and humans. During investigating Cockayne Syndrome-associated genome instability, we uncover an intrinsic mechanism that involves elongating RNA polymerase II (RNAPII) undergoing transient pauses at internal T-runs where CSB is required to propel RNAPII forward. Consequently, CSB deficiency retards RNAPII elongation in these regions, and when coupled with G-rich sequences upstream, exacerbates genome instability by promoting R-loop formation. These R-loop prone motifs are notably abundant in relatively long genes related to neuronal functions in the human genome, but less prevalent in the mouse genome. These findings provide mechanistic insights into differential impacts of CSB deficiency on mice versus humans and suggest that the manifestation of the Cockayne Syndrome phenotype in humans results from the progressive evolution of mammalian genomes.


Subject(s)
Cockayne Syndrome , DNA Helicases , DNA Repair Enzymes , Genomic Instability , Poly-ADP-Ribose Binding Proteins , R-Loop Structures , RNA Polymerase II , Cockayne Syndrome/genetics , Cockayne Syndrome/pathology , Cockayne Syndrome/metabolism , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Animals , Humans , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , Mice , DNA Helicases/metabolism , DNA Helicases/genetics , R-Loop Structures/genetics , DNA Repair , Transcription Elongation, Genetic , Mice, Knockout
8.
ACS Chem Biol ; 19(7): 1433-1439, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38959478

ABSTRACT

Most of the human cancers are dependent on telomerase to extend the telomeres. But ∼10% of all cancers use a telomerase-independent, homologous recombination mediated pathway called alternative lengthening of telomeres (ALT). Due to the poor prognosis, ALT status is not being considered yet in the diagnosis of cancer. No such specific treatment is available to date for ALT positive cancers. ALT positive cancers are dependent on replication stress to deploy DNA repair pathways to the telomeres to execute homologous recombination mediated telomere extension. SMARCAL1 (SWI/SNF related, matrix-associated, actin-dependent regulator of chromatin, subfamily A-like 1) is associated with the ALT telomeres to resolve replication stress thus providing telomere stability. Thus, the dependency on replication stress regulatory factors like SMARCAL1 made it a suitable therapeutic target for the treatment of ALT positive cancers. In this study, we found a significant downregulation of SMARCAL1 expression by stabilizing the G-quadruplex (G4) motif found in the promoter of SMARCAL1 by potent G4 stabilizers, like TMPyP4 and BRACO-19. SMARCAL1 downregulation led toward the increased localization of PML (promyelocytic leukemia) bodies in ALT telomeres and triggered the formation of APBs (ALT-associated promyelocytic leukemia bodies) in ALT positive cell lines, increasing telomere replication stress and DNA damage at a genomic level. Induction of replication stress and hyper-recombinogenic phenotype in ALT positive cells mediated by G4 stabilizing molecules already highlighted their possible application as a new therapeutic window to target ALT positive tumors. In accordance with this, our study will also provide a valuable insight toward the development of G4-based ALT therapeutics targeting SMARCAL1.


Subject(s)
DNA Helicases , G-Quadruplexes , Neoplasms , Promoter Regions, Genetic , Telomere , Humans , Telomere/genetics , Telomere/metabolism , DNA Helicases/metabolism , DNA Helicases/genetics , Neoplasms/genetics , Cell Line, Tumor , DNA Replication , Telomere Homeostasis
9.
Microb Biotechnol ; 17(7): e14524, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38980956

ABSTRACT

The coral reef microbiome plays a vital role in the health and resilience of reefs. Previous studies have examined phage therapy for coral pathogens and for modifying the coral reef microbiome, but defence systems against coral-associated bacteria have received limited attention. Phage defence systems play a crucial role in helping bacteria fight phage infections. In this study, we characterized a new defence system, Hma (HmaA-HmaB-HmaC), in the coral-associated Halomonas meridiana derived from the scleractinian coral Galaxea fascicularis. The Swi2/Snf2 helicase HmaA with a C-terminal nuclease domain exhibits antiviral activity against Escherichia phage T4. Mutation analysis revealed the nickase activity of the nuclease domain (belonging to PDD/EXK superfamily) of HmaA is essential in phage defence. Additionally, HmaA homologues are present in ~1000 bacterial and archaeal genomes. The high frequency of HmaA helicase in Halomonas strains indicates the widespread presence of these phage defence systems, while the insertion of defence genes in the hma region confirms the existence of a defence gene insertion hotspot. These findings offer insights into the diversity of phage defence systems in coral-associated bacteria and these diverse defence systems can be further applied into designing probiotics with high-phage resistance.


Subject(s)
Anthozoa , DNA Helicases , Halomonas , Halomonas/genetics , Halomonas/enzymology , Animals , Anthozoa/microbiology , Anthozoa/virology , DNA Helicases/genetics , DNA Helicases/metabolism , Bacteriophages/genetics , Bacteriophages/enzymology , Bacteriophages/physiology , Deoxyribonucleases/genetics , Deoxyribonucleases/metabolism
10.
Nat Commun ; 15(1): 6419, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39079955

ABSTRACT

Multiple Sclerosis (MS) is a heterogeneous inflammatory and neurodegenerative disease with an unpredictable course towards progressive disability. Treating progressive MS is challenging due to limited insights into the underlying mechanisms. We examined the molecular changes associated with primary progressive MS (PPMS) using a cross-tissue (blood and post-mortem brain) and multilayered data (genetic, epigenetic, transcriptomic) from independent cohorts. In PPMS, we found hypermethylation of the 1q21.1 locus, controlled by PPMS-specific genetic variations and influencing the expression of proximal genes (CHD1L, PRKAB2) in the brain. Evidence from reporter assay and CRISPR/dCas9 experiments supports a causal link between methylation and expression and correlation network analysis further implicates these genes in PPMS brain processes. Knock-down of CHD1L in human iPSC-derived neurons and knock-out of chd1l in zebrafish led to developmental and functional deficits of neurons. Thus, several lines of evidence suggest a distinct genetic-epigenetic-transcriptional interplay in the 1q21.1 locus potentially contributing to PPMS pathogenesis.


Subject(s)
Brain , Chromosomes, Human, Pair 1 , DNA Methylation , DNA-Binding Proteins , Epigenesis, Genetic , Zebrafish , Humans , Zebrafish/genetics , Animals , DNA Methylation/genetics , Chromosomes, Human, Pair 1/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Brain/metabolism , Brain/pathology , DNA Helicases/genetics , DNA Helicases/metabolism , Neurons/metabolism , Multiple Sclerosis, Chronic Progressive/genetics , Induced Pluripotent Stem Cells/metabolism , Male , Female , Middle Aged , Genetic Predisposition to Disease , Adult
11.
J Hematol Oncol ; 17(1): 58, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080761

ABSTRACT

INTRODUCTION: Small Cell Lung Cancer (SCLC) can be classified into transcriptional subtypes with distinct degrees of neuroendocrine (NE) differentiation. Recent evidence supports plasticity among subtypes with a bias toward adoption of low-NE states during disease progression or upon acquired chemotherapy resistance. Here, we identify a role for SMARCA4, the catalytic subunit of the SWI/SNF complex, as a regulator of subtype shift in SCLC. METHODS: ATACseq and RNAseq experiments were performed in SCLC cells after pharmacological inhibition of SMARCA4. DNA binding of SMARCA4 was characterized by ChIPseq in high-NE SCLC patient derived xenografts (PDXs). Enrichment analyses were applied to transcriptomic data. Combination of FHD-286 and afatinib was tested in vitro and in a set of chemo-resistant SCLC PDXs in vivo. RESULTS: SMARCA4 expression positively correlates with that of NE genes in both SCLC cell lines and patient tumors. Pharmacological inhibition of SMARCA4 with FHD-286 induces the loss of NE features and downregulates neuroendocrine and neuronal signaling pathways while activating non-NE factors. SMARCA4 binds to gene loci encoding NE-lineage transcription factors ASCL1 and NEUROD1 and alters chromatin accessibility, enhancing NE programs. Enrichment analysis applied to high-confidence SMARCA4 targets confirmed neuron related pathways as the top GO Biological processes regulated by SMARCA4 in SCLC. In parallel, SMARCA4 also controls REST, a known suppressor of the NE phenotype, by regulating SRRM4-dependent REST transcript splicing. Furthermore, SMARCA4 inhibition drives ERBB pathway activation in SCLC, rendering SCLC tumors sensitive to afatinib. CONCLUSIONS: This study nominates SMARCA4 as a key regulator of the NE state plasticity and defines a novel therapeutic strategy for SCLC.


Subject(s)
DNA Helicases , Lung Neoplasms , Nuclear Proteins , Small Cell Lung Carcinoma , Transcription Factors , Humans , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/metabolism , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , DNA Helicases/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Cell Line, Tumor , Animals , Mice , Gene Expression Regulation, Neoplastic , Repressor Proteins
12.
Sci Rep ; 14(1): 15740, 2024 07 08.
Article in English | MEDLINE | ID: mdl-38977862

ABSTRACT

Genome replication is frequently impeded by highly stable DNA secondary structures, including G-quadruplex (G4) DNA, that can hinder the progression of the replication fork. Human WRNIP1 (Werner helicase Interacting Protein 1) associates with various components of the replication machinery and plays a crucial role in genome maintenance processes. However, its detailed function is still not fully understood. Here we show that human WRNIP1 interacts with G4 structures and provide evidence for its contribution to G4 processing. The absence of WRNIP1 results in elevated levels of G4 structures, DNA damage and chromosome aberrations following treatment with PhenDC3, a G4-stabilizing ligand. Additionally, we establish a functional and physical relationship between WRNIP1 and the PIF1 helicase in G4 processing. In summary, our results suggest that WRNIP1 aids genome replication and maintenance by regulating G4 processing and this activity relies on Pif1 DNA helicase.


Subject(s)
DNA Helicases , DNA Replication , G-Quadruplexes , Humans , DNA Helicases/metabolism , DNA Damage , Chromosome Aberrations , Carrier Proteins/metabolism , Carrier Proteins/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , ATPases Associated with Diverse Cellular Activities/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics
13.
BMC Pediatr ; 24(1): 444, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987716

ABSTRACT

Trichohepatoenteric syndrome (THES), also known as phenotypic diarrhea or syndromic diarrhea, is a rare autosomal recessive genetic disorder caused by mutations in SKIC2 (THES-type 2) or SKIC3 (THES-type 1) and is characterized by early onset diarrhea, woolly brittle hair, facial dysmorphic features and liver disease. We report the case of a 24-month-old girl who presented with chronic diarrhea since the neonatal period along with intrauterine growth restriction (IUGR), developmental delay, dysmorphic features, congenital heart defects, liver disease, and recurrent infections. The diagnosis was made through whole-exome sequencing analysis, which detected a homozygous variant (c.4070del, p.Pro1357Leufs*10) in the SKIC3 gene. The patient required parenteral nutrition and was hospitalized for the first 10 months of life and then discharged on PN after showing improvement. She remained stable on PN after discharge despite a few admissions for central line infections. Recent follow-up at the age of 2 years revealed that she was stable on long-term parenteral nutrition and that she had advanced chronic liver disease.


Subject(s)
Diarrhea , Hair Diseases , Homozygote , Humans , Female , Diarrhea/genetics , Hair Diseases/genetics , Hair Diseases/diagnosis , Child, Preschool , Diarrhea, Infantile/genetics , Mutation , Parenteral Nutrition , Liver Diseases/genetics , Liver Diseases/diagnosis , Exome Sequencing , Fetal Growth Retardation/genetics , DNA Helicases , Facies
14.
Nat Commun ; 15(1): 6374, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075067

ABSTRACT

Transcription-blocking DNA lesions are specifically targeted by transcription-coupled nucleotide excision repair (TC-NER), which removes a broad spectrum of DNA lesions to preserve transcriptional output and thereby cellular homeostasis to counteract aging. TC-NER is initiated by the stalling of RNA polymerase II at DNA lesions, which triggers the assembly of the TC-NER-specific proteins CSA, CSB and UVSSA. CSA, a WD40-repeat containing protein, is the substrate receptor subunit of a cullin-RING ubiquitin ligase complex composed of DDB1, CUL4A/B and RBX1 (CRL4CSA). Although ubiquitination of several TC-NER proteins by CRL4CSA has been reported, it is still unknown how this complex is regulated. To unravel the dynamic molecular interactions and the regulation of this complex, we apply a single-step protein-complex isolation coupled to mass spectrometry analysis and identified DDA1 as a CSA interacting protein. Cryo-EM analysis shows that DDA1 is an integral component of the CRL4CSA complex. Functional analysis reveals that DDA1 coordinates ubiquitination dynamics during TC-NER and is required for efficient turnover and progression of this process.


Subject(s)
DNA Repair , DNA-Binding Proteins , Transcription, Genetic , Ubiquitination , Humans , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cullin Proteins/metabolism , Cullin Proteins/genetics , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , Cryoelectron Microscopy , HEK293 Cells , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , DNA Damage , RNA Polymerase II/metabolism , Protein Binding , Excision Repair , Carrier Proteins , DNA Helicases , Transcription Factors , Receptors, Interleukin-17
15.
Cell Rep ; 43(7): 114464, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38985669

ABSTRACT

Poly(ADP-ribose) polymerase inhibitors (PARPis) exhibit remarkable anticancer activity in tumors with homologous recombination (HR) gene mutations. However, the role of other DNA repair proteins in PARPi-induced lethality remains elusive. Here, we reveal that FANCM promotes PARPi resistance independent of the core Fanconi anemia (FA) complex. FANCM-depleted cells retain HR proficiency, acting independently of BRCA1 in response to PARPis. FANCM depletion leads to increased DNA damage in the second S phase after PARPi exposure, driven by elevated single-strand DNA (ssDNA) gap formation behind replication forks in the first S phase. These gaps arise from both 53BP1- and primase and DNA directed polymerase (PRIMPOL)-dependent mechanisms. Notably, FANCM-depleted cells also exhibit reduced resection of collapsed forks, while 53BP1 deletion restores resection and mitigates PARPi sensitivity. Our results suggest that FANCM counteracts 53BP1 to repair PARPi-induced DNA damage. Furthermore, FANCM depletion leads to increased chromatin bridges and micronuclei formation after PARPi treatment, elucidating the mechanism underlying extensive cell death in FANCM-depleted cells.


Subject(s)
DNA, Single-Stranded , Poly(ADP-ribose) Polymerase Inhibitors , Tumor Suppressor p53-Binding Protein 1 , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Humans , DNA, Single-Stranded/metabolism , Tumor Suppressor p53-Binding Protein 1/metabolism , Tumor Suppressor p53-Binding Protein 1/genetics , DNA Helicases/metabolism , DNA Helicases/genetics , DNA Damage , DNA Repair/drug effects , Homologous Recombination/drug effects , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor
16.
Front Biosci (Landmark Ed) ; 29(7): 262, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39082357

ABSTRACT

BACKGROUND: The switching/sucrose non-fermentable (SWI/SNF) Related, Matrix Associated, Actin Dependent Regulator Of Chromatin, Subfamily A (SMARCA) member 2 and member 4 (SMARCA2/4) are paralogs and act as the key enzymatic subunits in the SWI/SNF complex for chromatin remodeling. However, the role of SMARCA2/4 in DNA damage response remains unclear. METHODS: Laser microirradiation assays were performed to examine the key domains of SMARCA2/4 for the relocation of the SWI/SNF complex to DNA lesions. To examine the key factors that mediate the recruitment of SMARCA2/4, the relocation of SMARCA2/4 to DNA lesions was examined in HeLa cells treated with inhibitors of Ataxia-telangiectasia-mutated (ATM), Ataxia telangiectasia and Rad3-related protein (ATR), CREB-binding protein (CBP) and its homologue p300 (p300/CBP), or Poly (ADP-ribose) polymerase (PARP) 1/2 as well as in H2AX-deficient HeLa cells. Moreover, by concomitantly suppressing SMARCA2/4 with the small molecule inhibitor FHD286 or Compound 14, the function of SMARCA2/4 in Radiation sensitive 51 (RAD51) foci formation and homologous recombination repair was examined. Finally, using a colony formation assay, the synergistic effect of PARP inhibitors and SMARCA2/4 inhibitors on the suppression of tumor cell growth was examined. RESULTS: We show that SMARCA2/4 relocate to DNA lesions in response to DNA damage, which requires their ATPase activities. Moreover, these ATPase activities are also required for the relocation of other subunits in the SWI/SNF complex to DNA lesions. Interestingly, the relocation of SMARCA2/4 is independent of γH2AX, ATM, ATR, p300/CBP, or PARP1/2, indicating that it may directly recognize DNA lesions as a DNA damage sensor. Lacking SMARCA2/4 prolongs the retention of γH2AX, Ring Finger Protein 8 (RNF8) and Breast cancer susceptibility gene 1 (BRCA1) at DNA lesions and impairs RAD51-dependent homologous recombination repair. Furthermore, the treatment of an SMARCA2/4 inhibitor sensitizes tumor cells to PARP inhibitor treatment. CONCLUSIONS: This study reveals SMARCA2/4 as a DNA damage repair factor for double-strand break repair.


Subject(s)
DNA Damage , DNA Helicases , DNA Repair , Nuclear Proteins , Transcription Factors , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , DNA Helicases/metabolism , DNA Helicases/genetics , HeLa Cells , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Histones/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , BRCA1 Protein/metabolism , BRCA1 Protein/genetics
17.
Nat Commun ; 15(1): 6343, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068174

ABSTRACT

Clinical success with poly (ADP-ribose) polymerase inhibitors (PARPi) is impeded by inevitable resistance and associated cytotoxicity. Depletion of Amplified in Liver Cancer 1 (ALC1), a chromatin-remodeling enzyme, can overcome these limitations by hypersensitizing BReast CAncer genes 1/2 (BRCA1/2) mutant cells to PARPi. Here, we demonstrate that PARPi hypersensitivity upon ALC1 loss is reliant on its role in promoting the repair of chromatin buried abasic sites. We show that ALC1 enhances the ability of the abasic site processing enzyme, Apurinic/Apyrimidinic endonuclease 1 (APE1) to cleave nucleosome-occluded abasic sites. However, unrepaired abasic sites in ALC1-deficient cells are readily accessed by APE1 at the nucleosome-free replication forks. APE1 cleavage leads to fork breakage and trapping of PARP1/2 upon PARPi treatment, resulting in hypersensitivity. Collectively, our studies reveal how cells overcome the chromatin barrier to repair abasic lesions and uncover cleavage of abasic sites as a mechanism to overcome limitations of PARPi.


Subject(s)
BRCA1 Protein , BRCA2 Protein , DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Humans , Cell Line, Tumor , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , BRCA1 Protein/deficiency , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , BRCA2 Protein/metabolism , BRCA2 Protein/genetics , BRCA2 Protein/deficiency , DNA Repair/drug effects , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Female , Chromatin/metabolism , Mutation , DNA Damage/drug effects , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , DNA Replication/drug effects , Nucleosomes/metabolism , DNA Helicases , DNA-Binding Proteins
18.
Nat Commun ; 15(1): 6104, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030241

ABSTRACT

G-quadruplexes (G4s) formed by guanine-rich nucleic acids induce genome instability through impeding DNA replication fork progression. G4s are stable DNA structures, the unfolding of which require the functions of DNA helicases. Pif1 helicase binds preferentially to G4 DNA and plays multiple roles in maintaining genome stability, but the mechanism by which Pif1 unfolds G4s is poorly understood. Here we report the co-crystal structure of Saccharomyces cerevisiae Pif1 (ScPif1) bound to a G4 DNA with a 5' single-stranded DNA (ssDNA) segment. Unlike the Thermus oshimai Pif1-G4 structure, in which the 1B and 2B domains confer G4 recognition, ScPif1 recognizes G4 mainly through the wedge region in the 1A domain that contacts the 5' most G-tetrad directly. A conserved Arg residue in the wedge is required for Okazaki fragment processing but not for mitochondrial function or for suppression of gross chromosomal rearrangements. Multiple substitutions at this position have similar effects on resolution of DNA duplexes and G4s, suggesting that ScPif1 may use the same wedge to unwind G4 and dsDNA. Our results reveal the mechanism governing dsDNA unwinding and G4 unfolding by ScPif1 helicase that can potentially be generalized to other eukaryotic Pif1 helicases and beyond.


Subject(s)
DNA Helicases , G-Quadruplexes , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , DNA Helicases/metabolism , DNA Helicases/chemistry , DNA Helicases/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , DNA/metabolism , DNA/chemistry , DNA/genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/chemistry , Crystallography, X-Ray , Models, Molecular , Protein Binding , DNA Replication , Genomic Instability
19.
Pathologica ; 116(3): 163-169, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38979590

ABSTRACT

The 5th WHO classification of thoracic tumours includes thoracic SMARCA4-deficient undifferentiated tumour (SMARCA4-UT) among the "other epithelial tumours of the lung" chapter. Herein, we present a case of undifferentiated thoracic neoplasm with retention of SMARCA4 expression, lack of NUT fusion protein and loss of SMARCB1/INI1 expression. After presenting the clinical and pathological features of the tumour, we carried out a review of the literature on the same topic. Albeit very rare, we believe this entity should be included in the heterogeneous group of undifferentiated neoplasms of the thorax.


Subject(s)
DNA Helicases , SMARCB1 Protein , Thoracic Neoplasms , Transcription Factors , Humans , SMARCB1 Protein/deficiency , SMARCB1 Protein/genetics , Transcription Factors/genetics , Transcription Factors/deficiency , Thoracic Neoplasms/pathology , Thoracic Neoplasms/genetics , DNA Helicases/deficiency , DNA Helicases/genetics , Nuclear Proteins/genetics , Nuclear Proteins/deficiency , Male , Female , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Middle Aged , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/diagnosis
20.
J Cell Biol ; 223(10)2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39007803

ABSTRACT

Stress triggers the formation of two distinct cytoplasmic biomolecular condensates: stress granules (SGs) and processing bodies (PBs), both of which may contribute to stress-responsive translation regulation. Though PBs can be present constitutively, stress can increase their number and size and lead to their interaction with stress-induced SGs. The mechanism of such interaction, however, is largely unknown. Formation of canonical SGs requires the RNA binding protein Ubiquitin-Associated Protein 2-Like (UBAP2L), which is a central SG node protein in the RNA-protein interaction network of SGs and PBs. UBAP2L binds to the essential SG and PB proteins G3BP and DDX6, respectively. Research on UBAP2L has mostly focused on its role in SGs, but not its connection to PBs. We find that UBAP2L is not solely an SG protein but also localizes to PBs in certain conditions, contributes to PB biogenesis and SG-PB interactions, and can nucleate hybrid granules containing SG and PB components in cells. These findings inform a new model for SG and PB formation in the context of UBAP2L's role.


Subject(s)
RNA Helicases , RNA Recognition Motif Proteins , Stress Granules , Humans , Stress Granules/metabolism , Stress Granules/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , RNA Recognition Motif Proteins/metabolism , RNA Recognition Motif Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Processing Bodies/metabolism , Processing Bodies/genetics , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Cytoplasmic Granules/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , HeLa Cells , DNA Helicases/metabolism , DNA Helicases/genetics , HEK293 Cells , Protein Binding , Carrier Proteins/metabolism , Carrier Proteins/genetics , Proto-Oncogene Proteins
SELECTION OF CITATIONS
SEARCH DETAIL