Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 774
Filter
1.
BMC Microbiol ; 24(1): 265, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026143

ABSTRACT

BACKGROUND: The emergence of fluoroquinolone resistance in clinical isolates of Klebsiella pneumoniae is a growing concern. To investigate the mechanisms behind this resistance, we studied a total of 215 K. pneumoniae isolates from hospitals in Bushehr province, Iran, collected between 2017 and 2019. Antimicrobial susceptibility test for fluoroquinolones was determined. The presence of plasmid mediated quinolone resistance (PMQR) and mutations in quinolone resistance-determining region (QRDR) of gyrA and parC genes in ciprofloxacin-resistant K. pneumoniae isolates were identified by PCR and sequencing. RESULTS: Out of 215 K. pneumoniae isolates, 40 were resistant to ciprofloxacin as determined by E-test method. PCR analysis revealed that among these ciprofloxacin-resistant isolates, 13 (32.5%), 7 (17.5%), 40 (100%), and 25 (62.5%) isolates harbored qnrB, qnrS, oqxA and aac(6')-Ib-cr genes, respectively. Mutation analysis of gyrA and parC genes showed that 35 (87.5%) and 34 (85%) of the ciprofloxacin-resistant isolates had mutations in these genes, respectively. The most frequent mutations were observed in codon 83 of gyrA and codon 80 of parC gene. Single gyrA substitution, Ser83→ Ile and Asp87→Gly, and double substitutions, Ser83→Phe plus Asp87→Ala, Ser83→Tyr plus Asp87→Ala, Ser83→Ile plus Asp87→Tyr, Ser83→Phe plus Asp87→Asn and Ser83→Ile plus Asp87→Gly were detected. In addition, Ser80→Ile and Glu84→Lys single substitution were found in parC gene. CONCLUSIONS: Our results indicated that 90% of isolates have at least one mutation in QRDR of gyrA orparC genes, thus the frequency of mutations was very significant and alarming in our region.


Subject(s)
Anti-Bacterial Agents , DNA Gyrase , DNA Topoisomerase IV , Drug Resistance, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Mutation , Plasmids , Quinolones , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , DNA Gyrase/genetics , Plasmids/genetics , DNA Topoisomerase IV/genetics , Humans , Anti-Bacterial Agents/pharmacology , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Drug Resistance, Bacterial/genetics , Quinolones/pharmacology , Ciprofloxacin/pharmacology , Iran , Bacterial Proteins/genetics , Prevalence , Fluoroquinolones/pharmacology
2.
BMC Microbiol ; 24(1): 248, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971718

ABSTRACT

BACKGROUND: The usage of fluoroquinolones in Norwegian livestock production is very low, including in broiler production. Historically, quinolone-resistant Escherichia coli (QREC) isolated from Norwegian production animals rarely occur. However, with the introduction of a selective screening method for QREC in the Norwegian monitoring programme for antimicrobial resistance in the veterinary sector in 2014; 89.5% of broiler caecal samples and 70.7% of broiler meat samples were positive. This triggered the concern if there could be possible links between broiler and human reservoirs of QREC. We are addressing this by characterizing genomes of QREC from humans (healthy carriers and patients) and broiler isolates (meat and caecum). RESULTS: The most frequent mechanism for quinolone resistance in both broiler and human E. coli isolates were mutations in the chromosomally located gyrA and parC genes, although plasmid mediated quinolone resistance (PMQR) was also identified. There was some relatedness of the isolates within human and broiler groups, but little between these two groups. Further, some overlap was seen for isolates with the same sequence type isolated from broiler and humans, but overall, the SNP distance was high. CONCLUSION: Based on data from this study, QREC from broiler makes a limited contribution to the incidence of QREC in humans in Norway.


Subject(s)
Anti-Bacterial Agents , Chickens , Drug Resistance, Bacterial , Escherichia coli Infections , Escherichia coli , Quinolones , Animals , Chickens/microbiology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Humans , Norway , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Drug Resistance, Bacterial/genetics , Quinolones/pharmacology , Anti-Bacterial Agents/pharmacology , Genomics , Plasmids/genetics , Poultry Diseases/microbiology , Microbial Sensitivity Tests , Genome, Bacterial/genetics , DNA Gyrase/genetics , DNA Topoisomerase IV/genetics , Meat/microbiology , Mutation , Escherichia coli Proteins/genetics , Cecum/microbiology
3.
ACS Infect Dis ; 10(8): 3071-3082, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39082980

ABSTRACT

Gyrase and topoisomerase IV are the cellular targets for fluoroquinolones, a critically important class of antibacterial agents used to treat a broad spectrum of human infections. Unfortunately, the clinical efficacy of the fluoroquinolones has been curtailed by the emergence of target-mediated resistance. This is especially true for Neisseria gonorrhoeae, the causative pathogen of the sexually transmitted infection gonorrhea. Spiropyrimidinetriones (SPTs), a new class of antibacterials, were developed to combat the growing antibacterial resistance crisis. Zoliflodacin is the most clinically advanced SPT and displays efficacy against uncomplicated urogenital gonorrhea in human trials. Like fluoroquinolones, the primary target of zoliflodacin in N. gonorrhoeae is gyrase, and topoisomerase IV is a secondary target. Because unbalanced gyrase/topoisomerase IV targeting has facilitated the evolution of fluoroquinolone-resistant bacteria, it is important to understand the underlying basis for the differential targeting of zoliflodacin in N. gonorrhoeae. Therefore, we assessed the effects of this SPT on the catalytic and DNA cleavage activities of N. gonorrhoeae gyrase and topoisomerase IV. In all reactions examined, zoliflodacin displayed higher potency against gyrase than topoisomerase IV. Moreover, zoliflodacin generated more DNA cleavage and formed more stable enzyme-cleaved DNA-SPT complexes with gyrase. The SPT also maintained higher activity against fluoroquinolone-resistant gyrase than topoisomerase IV. Finally, when compared to zoliflodacin, the novel SPT H3D-005722 induced more balanced double-stranded DNA cleavage with gyrase and topoisomerase IV from N. gonorrhoeae, Escherichia coli, and Bacillus anthracis. This finding suggests that further development of the SPT class could yield compounds with a more balanced targeting against clinically important bacterial infections.


Subject(s)
Anti-Bacterial Agents , DNA Gyrase , DNA Topoisomerase IV , Neisseria gonorrhoeae , Topoisomerase II Inhibitors , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/enzymology , DNA Topoisomerase IV/metabolism , DNA Topoisomerase IV/antagonists & inhibitors , DNA Topoisomerase IV/genetics , DNA Gyrase/metabolism , DNA Gyrase/genetics , DNA Gyrase/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/chemistry , Humans , Oxazolidinones/pharmacology , Oxazolidinones/chemistry , Barbiturates/pharmacology , Barbiturates/chemistry , Microbial Sensitivity Tests , Drug Resistance, Bacterial , Isoxazoles , Morpholines , Spiro Compounds
4.
ACS Infect Dis ; 10(4): 1137-1151, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38606465

ABSTRACT

Antimicrobial resistance is a global threat to human health. Therefore, efforts have been made to develop new antibacterial agents that address this critical medical issue. Gepotidacin is a novel, bactericidal, first-in-class triazaacenaphthylene antibacterial in clinical development. Recently, phase III clinical trials for gepotidacin treatment of uncomplicated urinary tract infections caused by uropathogens, including Escherichia coli, were stopped for demonstrated efficacy. Because of the clinical promise of gepotidacin, it is important to understand how the compound interacts with its cellular targets, gyrase and topoisomerase IV, from E. coli. Consequently, we determined how gyrase and topoisomerase IV mutations in amino acid residues that are involved in gepotidacin interactions affect the susceptibility of E. coli cells to the compound and characterized the effects of gepotidacin on the activities of purified wild-type and mutant gyrase and topoisomerase IV. Gepotidacin displayed well-balanced dual-targeting of gyrase and topoisomerase IV in E. coli cells, which was reflected in a similar inhibition of the catalytic activities of these enzymes by the compound. Gepotidacin induced gyrase/topoisomerase IV-mediated single-stranded, but not double-stranded, DNA breaks. Mutations in GyrA and ParC amino acid residues that interact with gepotidacin altered the activity of the compound against the enzymes and, when present in both gyrase and topoisomerase IV, reduced the antibacterial activity of gepotidacin against this mutant strain. Our studies provide insights regarding the well-balanced dual-targeting of gyrase and topoisomerase IV by gepotidacin in E. coli.


Subject(s)
Acenaphthenes , DNA Topoisomerase IV , Escherichia coli , Heterocyclic Compounds, 3-Ring , Amino Acids/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , DNA Gyrase/metabolism , DNA Topoisomerase IV/genetics
5.
ACS Infect Dis ; 10(4): 1097-1115, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38564341

ABSTRACT

Beyond their requisite functions in many critical DNA processes, the bacterial type II topoisomerases, gyrase and topoisomerase IV, are the targets of fluoroquinolone antibacterials. These drugs act by stabilizing gyrase/topoisomerase IV-generated DNA strand breaks and by robbing the cell of the catalytic activities of these essential enzymes. Since their clinical approval in the mid-1980s, fluoroquinolones have been used to treat a broad spectrum of infectious diseases and are listed among the five "highest priority" critically important antimicrobial classes by the World Health Organization. Unfortunately, the widespread use of fluoroquinolones has been accompanied by a rise in target-mediated resistance caused by specific mutations in gyrase and topoisomerase IV, which has curtailed the medical efficacy of this drug class. As a result, efforts are underway to identify novel antibacterials that target the bacterial type II topoisomerases. Several new classes of gyrase/topoisomerase IV-targeted antibacterials have emerged, including novel bacterial topoisomerase inhibitors, Mycobacterium tuberculosis gyrase inhibitors, triazaacenaphthylenes, spiropyrimidinetriones, and thiophenes. Phase III clinical trials that utilized two members of these classes, gepotidacin (triazaacenaphthylene) and zoliflodacin (spiropyrimidinetrione), have been completed with positive outcomes, underscoring the potential of these compounds to become the first new classes of antibacterials introduced into the clinic in decades. Because gyrase and topoisomerase IV are validated targets for established and emerging antibacterials, this review will describe the catalytic mechanism and cellular activities of the bacterial type II topoisomerases, their interactions with fluoroquinolones, the mechanism of target-mediated fluoroquinolone resistance, and the actions of novel antibacterials against wild-type and fluoroquinolone-resistant gyrase and topoisomerase IV.


Subject(s)
DNA Topoisomerase IV , Mycobacterium tuberculosis , DNA Topoisomerase IV/genetics , Fluoroquinolones/pharmacology , DNA Gyrase/genetics , DNA Gyrase/metabolism , Topoisomerase II Inhibitors/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , DNA/metabolism , Mycobacterium tuberculosis/genetics
6.
ACS Infect Dis ; 10(4): 1351-1360, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38606464

ABSTRACT

Fluoroquinolones make up a critically important class of antibacterials administered worldwide to treat human infections. However, their clinical utility has been curtailed by target-mediated resistance, which is caused by mutations in the fluoroquinolone targets, gyrase and topoisomerase IV. An important pathogen that has been affected by this resistance is Neisseria gonorrhoeae, the causative agent of gonorrhea. Over 82 million new cases of this sexually transmitted infection were reported globally in 2020. Despite the impact of fluoroquinolone resistance on gonorrhea treatment, little is known about the interactions of this drug class with its targets in this bacterium. Therefore, we investigated the effects of the fluoroquinolone ciprofloxacin on the catalytic and DNA cleavage activities of wild-type gyrase and topoisomerase IV and the corresponding enzymes that harbor mutations associated with cellular and clinical resistance to fluoroquinolones. Results indicate that ciprofloxacin interacts with both gyrase (its primary target) and topoisomerase IV (its secondary target) through a water-metal ion bridge that has been described in other species. Moreover, mutations in amino acid residues that anchor this bridge diminish the susceptibility of the enzymes for the drug, leading to fluoroquinolone resistance. Results further suggest that ciprofloxacin primarily induces its cytotoxic effects by enhancing gyrase-mediated DNA cleavage as opposed to inhibiting the DNA supercoiling activity of the enzyme. In conclusion, this work links the effects of ciprofloxacin on wild-type and resistant gyrase to results reported for cellular and clinical studies and provides a mechanistic explanation for the targeting and resistance of fluoroquinolones in N. gonorrhoeae.


Subject(s)
Ciprofloxacin , Gonorrhea , Humans , Ciprofloxacin/pharmacology , Fluoroquinolones/pharmacology , DNA Topoisomerase IV/genetics , DNA Topoisomerase IV/metabolism , Neisseria gonorrhoeae , Gonorrhea/drug therapy , Gonorrhea/microbiology , DNA Gyrase/genetics , DNA Gyrase/metabolism , Microbial Sensitivity Tests
7.
Rev Esp Quimioter ; 37(3): 270-273, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38591493

ABSTRACT

OBJECTIVE: Mycoplasma genitalium (MG) is a microorganism related to sexually transmitted infections. Antibiotic resistance of MG leads to an increase in treatment failure rates and the persistence of the infection. The aim of this study was to describe the most frequent mutations associated with azithromycin and moxifloxacin resistance in our geographical area. METHODS: A prospective study from May 2019 to May 2023 was performed. MG-positive samples were collected. Real-time PCRs (AllplexTM MG-AziR Assay and AllplexTM MG-MoxiR Assay, Seegene) were performed in MG positive samples to detect mutations in 23S rRNA V domain and parC gene. RESULTS: A 37.1% of samples presented resistance determinants to azithromycin and the most common mutation detected was A2059G (57.9%). Resistance to moxifloxacin was studied in 72 azithromycin-resistant samples and 36.1% showed mutations, being G248T the most prevalent (73.1%). CONCLUSIONS: The resistance to different lines of treat ment suggests the need for a targeted therapy and the performing of a test of cure afterwards.


Subject(s)
Anti-Bacterial Agents , Azithromycin , Drug Resistance, Bacterial , Moxifloxacin , Mutation , Mycoplasma Infections , Mycoplasma genitalium , Mycoplasma genitalium/drug effects , Mycoplasma genitalium/genetics , Moxifloxacin/pharmacology , Moxifloxacin/therapeutic use , Azithromycin/pharmacology , Azithromycin/therapeutic use , Spain , Humans , Prospective Studies , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial/genetics , Mycoplasma Infections/drug therapy , Mycoplasma Infections/microbiology , Female , Male , Microbial Sensitivity Tests , RNA, Ribosomal, 23S/genetics , Adult , DNA Topoisomerase IV/genetics
8.
J Antimicrob Chemother ; 78(8): 2052-2060, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37390375

ABSTRACT

BACKGROUND: Fluoroquinolones (FQs) are potent and broad-spectrum antibiotics commonly used to treat MDR bacterial infections, but bacterial resistance to FQs has emerged and spread rapidly around the world. The mechanisms for FQ resistance have been revealed, including one or more mutations in FQ target genes such as DNA gyrase (gyrA) and topoisomerase IV (parC). Because therapeutic treatments for FQ-resistant bacterial infections are limited, it is necessary to develop novel antibiotic alternatives to minimize or inhibit FQ-resistant bacteria. OBJECTIVES: To examine the bactericidal effect of antisense peptide-peptide nucleic acids (P-PNAs) that can block the expression of DNA gyrase or topoisomerase IV in FQ-resistant Escherichia coli (FRE). METHODS: A set of antisense P-PNA conjugates with a bacterial penetration peptide were designed to inhibit the expression of gyrA and parC and were evaluated for their antibacterial activities. RESULTS: Antisense P-PNAs, ASP-gyrA1 and ASP-parC1, targeting the translational initiation sites of their respective target genes significantly inhibited the growth of the FRE isolates. In addition, ASP-gyrA3 and ASP-parC2, which bind to the FRE-specific coding sequence within the gyrA and parC structural genes, respectively, showed selective bactericidal effects against FRE isolates. CONCLUSIONS: Our results demonstrate the potential of targeted antisense P-PNAs as antibiotic alternatives against FQ-resistance bacteria.


Subject(s)
Fluoroquinolones , Peptide Nucleic Acids , Fluoroquinolones/pharmacology , Escherichia coli , Peptide Nucleic Acids/pharmacology , DNA Gyrase/genetics , DNA Topoisomerase IV/genetics , Anti-Bacterial Agents/pharmacology , Bacteria , Mutation , Microbial Sensitivity Tests , Drug Resistance, Bacterial
9.
J Antimicrob Chemother ; 78(8): 2070-2079, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37376970

ABSTRACT

BACKGROUND: Mycoplasma genitalium has a tendency to develop macrolide and quinolone resistance. OBJECTIVES: We investigated the microbiological cure rate of a 7 day course of sitafloxacin for the treatment of rectal and urogenital infections in MSM. PATIENTS AND METHODS: This open-label, prospective cohort study was conducted at the National Center for Global Health and Medicine, Tokyo, Japan from January 2019 to August 2022. Patients with M. genitalium urogenital or rectal infections were included. The patients were treated with sitafloxacin 200 mg daily for 7 days. M. genitalium isolates were tested for parC, gyrA and 23S rRNA resistance-associated mutations. RESULTS: In total, 180 patients (median age, 35 years) were included in this study, of whom 77.0% (97/126) harboured parC mutations, including 71.4% (90/126) with G248T(S83I) in parC, and 22.5% (27/120) harboured gyrA mutations. The median time to test of cure was 21 days. The overall microbiological cure rate was 87.8%. The cure rate was 100% for microbes harbouring parC and gyrA WTs, 92.9% for microbes harbouring parC G248T(S83I) and gyrA WT, and 41.7% for microbes harbouring parC G248T(S83I) and gyrA with mutations. The cure rate did not differ significantly between urogenital and rectal infection (P = 0.359). CONCLUSIONS: Sitafloxacin monotherapy was highly effective against infection caused by M. genitalium, except strains with combined parC and gyrA mutations. Sitafloxacin monotherapy can be used as a first-line treatment for M. genitalium infections in settings with a high prevalence of parC mutations and a low prevalence of gyrA mutations.


Subject(s)
Mycoplasma Infections , Mycoplasma genitalium , Quinolones , Humans , Adult , Mycoplasma Infections/microbiology , Prospective Studies , DNA Topoisomerase IV/genetics , Drug Resistance, Bacterial/genetics , Fluoroquinolones/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Mutation , Macrolides , Prevalence
10.
EMBO Rep ; 24(7): e55338, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37166011

ABSTRACT

The bacterial toxin CcdB (Controller of Cell death or division B) targets DNA Gyrase, an essential bacterial topoisomerase, which is also the molecular target for fluoroquinolones. Here, we present a short cell-penetrating 24-mer peptide, CP1-WT, derived from the Gyrase-binding region of CcdB and examine its effect on growth of Escherichia coli, Salmonella Typhimurium, Staphylococcus aureus and a carbapenem- and tigecycline-resistant strain of Acinetobacter baumannii in both axenic cultures and mouse models of infection. The CP1-WT peptide shows significant improvement over ciprofloxacin in terms of its in vivo therapeutic efficacy in treating established infections of S. Typhimurium, S. aureus and A. baumannii. The molecular mechanism likely involves inhibition of Gyrase or Topoisomerase IV, depending on the strain used. The study validates the CcdB binding site on bacterial DNA Gyrase as a viable and alternative target to the fluoroquinolone binding site.


Subject(s)
Anti-Bacterial Agents , Staphylococcus aureus , Animals , Mice , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Anti-Bacterial Agents/pharmacology , DNA Gyrase/chemistry , DNA Gyrase/genetics , DNA Gyrase/metabolism , DNA Topoisomerase IV/genetics , DNA Topoisomerase IV/metabolism , DNA Topoisomerase IV/pharmacology , Peptides/pharmacology
11.
Cell Mol Biol (Noisy-le-grand) ; 69(1): 75-80, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-37213152

ABSTRACT

This study was to explore whether Streptococcus pneumoniae would form biofilms and the formative factors of biofilms, as well as the drug resistance mechanism of S. pneumoniae. In this study, a total of 150 strains of S. pneumoniae were collected from 5 local hospitals in the past two years, and the minimum inhibitory concentrations (MIC) of levofloxacin, moxifloxacin and penicillin were determined by agar double dilution method to select the drug-resistant strains. The polymerase chain reaction (PCR) amplification and sequencing were performed on specific genes of drug-resistant strains. In addition, 5 strains of S. pneumoniae with penicillin MIC ≤ 0.065 µg/mL, 0.5 µg/mL, 2 µg/mL, ≥ 4µg/mL were randomly selected, and the biofilms were cultured on two kinds of well plates for 24 hours. Finally, whether the biofilms were formed was observed. Experimental results revealed that the resistance rate of S. pneumoniae to erythromycin in this area was as high as 90.3%, and the strains that were resistant to penicillin account for only 1.5%. The amplification and sequencing experiment revealed that one (strain 1) of the strains, which was resistant to both drugs, had a GyrA mutation and ParE mutation, and strain 2 had a parC mutation. All strains generated biofilms, and the optical density (OD) value of penicillin MIC ≤ 0.065 µg/mL group (0.235 ± 0.053) was higher than that of 0.5 µg/mL group (0.192 ± 0.073) (P< 0.05) and higher than the OD value of the 4 µg/mL group (0.200 ± 0.041) (P< 0.05), showing statistically great differences. It was confirmed that the resistance rate of S. pneumoniae to erythromycin remained high, the rate of sensitivity to penicillin was relatively high, and the moxifloxacin and levofloxacin-resistant strains had appeared; S. pneumoniae mainly showed QRDR mutations in gyrA, parE, and parC; and it was confirmed that S. pneumoniae can generate biofilms in vitro.


Subject(s)
Levofloxacin , Pneumococcal Infections , Humans , Levofloxacin/pharmacology , Levofloxacin/therapeutic use , Moxifloxacin/pharmacology , Moxifloxacin/therapeutic use , DNA Topoisomerase IV/genetics , Pneumococcal Infections/drug therapy , Streptococcus pneumoniae/genetics , Microbial Sensitivity Tests , Drug Resistance , Penicillins , Erythromycin/pharmacology , Erythromycin/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial/genetics , Mutation/genetics
12.
J Antimicrob Chemother ; 78(5): 1225-1230, 2023 05 03.
Article in English | MEDLINE | ID: mdl-36949027

ABSTRACT

BACKGROUND: In 2019, a high-level quinolone-resistant Haemophilus haemolyticus strain (levofloxacin MIC = 16 mg/L) was isolated from a paediatric patient. In this study, we aimed to determine whether the quinolone resistance of H. haemolyticus could be transferred to Haemophilus influenzae and to identify the mechanism underlying the high-level quinolone resistance of H. haemolyticus. METHODS: A horizontal gene transfer assay to H. influenzae was performed using genomic DNA or PCR-amplified quinolone-targeting genes from the high-level quinolone-resistant H. haemolyticus 2019-19 strain. The amino acids responsible for conferring quinolone resistance were identified through site-directed mutagenesis. RESULTS: By adding the genomic DNA of H. haemolyticus 2019-19, resistant colonies were obtained on agar plates containing quinolones. Notably, H. influenzae grown on levofloxacin agar showed the same level of resistance as H. haemolyticus. Sequencing analysis showed that gyrA, parC and parE of H. influenzae were replaced by those of H. haemolyticus, suggesting that horizontal transfer occurred between the two strains. When the quinolone-targeting gene fragments were added sequentially, the addition of parE, as well as gyrA and parC, contributed to high-level resistance. In particular, amino acid substitutions at both the 439th and 502nd residues of ParE were associated with high-level resistance. CONCLUSIONS: These findings indicate that quinolone resistance can be transferred between species and that amino acid substitutions at the 439th and 502nd residues of ParE, in addition to amino acid substitutions in both GyrA and ParC, contribute to high-level quinolone resistance.


Subject(s)
Quinolones , Humans , Child , Quinolones/pharmacology , Anti-Bacterial Agents/pharmacology , Levofloxacin , Haemophilus influenzae , Amino Acid Substitution , Agar , DNA Topoisomerase IV/genetics , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics , DNA Gyrase/genetics
13.
Nucleic Acids Res ; 51(8): 3888-3902, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36999602

ABSTRACT

To perform double-stranded DNA passage, type II topoisomerases generate a covalent enzyme-cleaved DNA complex (i.e. cleavage complex). Although this complex is a requisite enzyme intermediate, it is also intrinsically dangerous to genomic stability. Consequently, cleavage complexes are the targets for several clinically relevant anticancer and antibacterial drugs. Human topoisomerase IIα and IIß and bacterial gyrase maintain higher levels of cleavage complexes with negatively supercoiled over positively supercoiled DNA substrates. Conversely, bacterial topoisomerase IV is less able to distinguish DNA supercoil handedness. Despite the importance of supercoil geometry to the activities of type II topoisomerases, the basis for supercoil handedness recognition during DNA cleavage has not been characterized. Based on the results of benchtop and rapid-quench flow kinetics experiments, the forward rate of cleavage is the determining factor of how topoisomerase IIα/IIß, gyrase and topoisomerase IV distinguish supercoil handedness in the absence or presence of anticancer/antibacterial drugs. In the presence of drugs, this ability can be enhanced by the formation of more stable cleavage complexes with negatively supercoiled DNA. Finally, rates of enzyme-mediated DNA ligation do not contribute to the recognition of DNA supercoil geometry during cleavage. Our results provide greater insight into how type II topoisomerases recognize their DNA substrates.


Subject(s)
Antineoplastic Agents , DNA Topoisomerase IV , Humans , DNA Topoisomerase IV/genetics , DNA, Superhelical , DNA Cleavage , Functional Laterality , DNA Topoisomerases, Type II/genetics , DNA
14.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675148

ABSTRACT

Since 2000, some thirteen quinolones and fluoroquinolones have been developed and have come to market. The quinolones, one of the most successful classes of antibacterial drugs, stabilize DNA cleavage complexes with DNA gyrase and topoisomerase IV (topo IV), the two bacterial type IIA topoisomerases. The dual targeting of gyrase and topo IV helps decrease the likelihood of resistance developing. Here, we report on a 2.8 Å X-ray crystal structure, which shows that zoliflodacin, a spiropyrimidinetrione antibiotic, binds in the same DNA cleavage site(s) as quinolones, sterically blocking DNA religation. The structure shows that zoliflodacin interacts with highly conserved residues on GyrB (and does not use the quinolone water-metal ion bridge to GyrA), suggesting it may be more difficult for bacteria to develop target mediated resistance. We show that zoliflodacin has an MIC of 4 µg/mL against Acinetobacter baumannii (A. baumannii), an improvement of four-fold over its progenitor QPT-1. The current phase III clinical trial of zoliflodacin for gonorrhea is due to be read out in 2023. Zoliflodacin, together with the unrelated novel bacterial topoisomerase inhibitor gepotidacin, is likely to become the first entirely novel chemical entities approved against Gram-negative bacteria in the 21st century. Zoliflodacin may also become the progenitor of a new safer class of antibacterial drugs against other problematic Gram-negative bacteria.


Subject(s)
Quinolones , Staphylococcal Infections , Humans , DNA Gyrase/metabolism , Staphylococcus aureus/metabolism , DNA Topoisomerase IV/genetics , DNA Cleavage , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Quinolones/pharmacology , Fluoroquinolones , Topoisomerase II Inhibitors/pharmacology , Bacteria/metabolism , Microbial Sensitivity Tests , DNA Topoisomerases, Type II/metabolism
15.
Mol Microbiol ; 119(1): 19-28, 2023 01.
Article in English | MEDLINE | ID: mdl-36565252

ABSTRACT

Transcription is a noisy and stochastic process that produces sibling-to-sibling variations in physiology across a population of genetically identical cells. This pattern of diversity reflects, in part, the burst-like nature of transcription. Transcription bursting has many causes and a failure to remove the supercoils that accumulate in DNA during transcription elongation is an important contributor. Positive supercoiling of the DNA ahead of the transcription elongation complex can result in RNA polymerase stalling if this DNA topological roadblock is not removed. The relaxation of these positive supercoils is performed by the ATP-dependent type II topoisomerases DNA gyrase and topoisomerase IV. Interference with the action of these topoisomerases involving, inter alia, topoisomerase poisons, fluctuations in the [ATP]/[ADP] ratio, and/or the intervention of nucleoid-associated proteins with GapR-like or YejK-like activities, may have consequences for the smooth operation of the transcriptional machinery. Antibiotic-tolerant (but not resistant) persister cells are among the phenotypic outliers that may emerge. However, interference with type II topoisomerase activity can have much broader consequences, making it an important epigenetic driver of physiological diversity in the bacterial population.


Subject(s)
DNA Gyrase , DNA , DNA Gyrase/genetics , DNA Gyrase/metabolism , DNA Topoisomerase IV/genetics , Bacteria/genetics , Bacteria/metabolism , DNA Topoisomerases, Type I/genetics , DNA Topoisomerases, Type I/metabolism , Adenosine Triphosphate/metabolism , Epigenesis, Genetic , DNA, Superhelical , DNA, Bacterial/genetics , DNA, Bacterial/metabolism
16.
Antimicrob Agents Chemother ; 66(12): e0092122, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36448795

ABSTRACT

CUO246, a novel DNA gyrase/topoisomerase IV inhibitor, is active in vitro against a broad range of Gram-positive, fastidious Gram-negative, and atypical bacterial pathogens and retains activity against quinolone-resistant strains in circulation. The frequency of selection for single step mutants of wild-type S. aureus with reduced susceptibility to CUO246 was <4.64 × 10-9 at 4× and 8× MIC and remained low when using an isogenic QRDR mutant (<5.24 × 10-9 at 4× and 8× MIC). Biochemical assays indicated that CUO246 had potent inhibitory activity against both DNA gyrase (GyrAB) and topoisomerase IV (ParCE). Furthermore, CUO246 showed rapid bactericidal activity in time-kill assays and potent in vivo efficacy against S. aureus in a neutropenic murine thigh infection model. These results suggest that CUO246 may be useful in treating infections by various causative agents of acute skin and skin structure infections, respiratory tract infections, and sexually transmitted infections.


Subject(s)
DNA Gyrase , DNA Topoisomerase IV , Animals , Mice , DNA Gyrase/genetics , DNA Topoisomerase IV/genetics , Topoisomerase II Inhibitors/pharmacology , DNA, Bacterial , Staphylococcus aureus , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
17.
BMC Microbiol ; 22(1): 250, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36253712

ABSTRACT

BACKGROUND: Infection of Salmonella enterica subsp. enterica serovar Typhi is the primary etiology of typhoid fever globally and is common in many developing countries, especially those with dense populations and poor environmental sanitation. Antibiotic fluoroquinolones were used for the treatment in the 1980s due to the resistance to the first-line antibiotics. However, many cases of treatment failure of fluoroquinolones in typhoidal patients have been reported from numerous countries in Asia, Europe, Africa, and America. Mutations in quinolone resistance determining regions (QRDR) genes, gyrA, gyrB, parC, and parE, are found in fluoroquinolone-resistant Salmonella Typhi. Contrast reports came from the S. Typhi isolates in Indonesia, mainly Jakarta and the surroundings, obtained from patients with typhoid fever, with good sensitivity to the fluoroquinolones, i.e., nalidixic acid, ciprofloxacin, moxifloxacin, and levofloxacin. The present study, therefore, aimed to identify the hotspot sequences of gyrA, gyrB, parC, and parE genes of the local S. Typhi strains based on their susceptibility to fluoroquinolones from patients with typhoid fever in Jakarta and its satellite cities. RESULTS: A total of 28 isolates were identified as S. Typhi. All isolates were susceptible to nalidixic acid, levofloxacin, and moxifloxacin. Twenty-seven isolates (96.4%) were susceptible to ciprofloxacin, with one isolate (3.6%) being intermediate. The hotspot sequences of gyrA, gyrB, parC, and parE genes from all isolates were identical to the fluoroquinolone-sensitive reference sequence Salmonella enterica subsp. enterica serovar Typhi Ty2 (NCBI GenBank AE014613.1), including the isolate with intermediate susceptibility. The mutation was not found, and amino acid deduced from all hotspots in susceptible and intermediate isolates showed no replacement in all reported codons. CONCLUSIONS: This study showed that the local S. Typhi strains from Jakarta and surroundings were susceptible to fluoroquinolones (nalidixic acid, ciprofloxacin, levofloxacin, and moxifloxacin), and the hotspot sequences of the gyrA, gyrB, parC, and parE genes were all identical to the reference sequence. Thus, the hotspot sequences of the gyrA, gyrB, parC, and parE genes seemingly were conserved in Jakarta's local S. Typhi strains and could be considered wild type. The phenotypic susceptibility was consistent with the genotypic characteristic without non-synonymous mutations associated with drug resistance.


Subject(s)
Quinolones , Salmonella enterica , Typhoid Fever , Amino Acids , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Ciprofloxacin/pharmacology , DNA Gyrase/genetics , DNA Topoisomerase IV/genetics , Drug Resistance, Bacterial/genetics , Fluoroquinolones/pharmacology , Humans , Levofloxacin , Microbial Sensitivity Tests , Moxifloxacin , Nalidixic Acid , Salmonella , Salmonella typhi
18.
J Antimicrob Chemother ; 78(1): 150-154, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36308328

ABSTRACT

OBJECTIVES: Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a global threat and novel treatment alternatives are imperative. Herein, susceptibility to the novel antimicrobial zoliflodacin, currently in a global Phase 3 randomized controlled clinical trial for gonorrhoea treatment, was investigated by screening for zoliflodacin GyrB target mutations in publicly available gonococcal genomes and, where feasible, determination of the associated zoliflodacin MIC. METHODS: The European Nucleotide Archive was queried using the search term 'Taxon: 485'. DNA sequences from 27 151 gonococcal isolates were analysed and gyrB, gyrA, parC and parE alleles characterized. RESULTS: GyrB amino acid alterations were rare (97.0% of isolates had a wild-type GyrB sequence). GyrB V470L (2.7% of isolates) was the most prevalent alteration, followed by S467N (0.12%), N. meningitidis GyrB (0.092%), V470I (0.059%), Q468R/P (0.015%), A466T (0.0074%), L425I + L465I (0.0037%), L465I (0.0037%), G482S (0.0037%) and D429V (0.0037%). Only one isolate (0.0037%) carried a substitution in a resistance-associated GyrB codon (D429V), resulting in a zoliflodacin MIC of 8 mg/L. None of the other detected gyrB, gyrA, parC or parE mutations caused a zoliflodacin MIC outside the wild-type MIC distribution. CONCLUSIONS: The zoliflodacin target GyrB was highly conserved among 27 151 global gonococcal isolates cultured in 1928-2021. The single zoliflodacin-resistant clinical isolate (0.0037%) was cultured from a male patient in Japan in 2000. Evidently, this strain has not clonally expanded nor has the gyrB zoliflodacin-resistance mutation disseminated through horizontal gene transfer to other strains. Phenotypic and genomic surveillance, including gyrB mutations, of zoliflodacin susceptibility are imperative.


Subject(s)
Anti-Infective Agents , Gonorrhea , Male , Humans , Anti-Bacterial Agents/pharmacology , DNA Gyrase/genetics , DNA Topoisomerase IV/genetics , Anti-Infective Agents/pharmacology , Neisseria gonorrhoeae/genetics , Mutation , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics
19.
J Antimicrob Chemother ; 77(12): 3270-3274, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36124853

ABSTRACT

BACKGROUND: Quinolone-resistant bacteria are known to emerge via the accumulation of mutations in a stepwise manner. Recent studies reported the emergence of quinolone low-susceptible Haemophilus influenzae ST422 isolates harbouring two relevant mutations, although ST422 isolates harbouring one mutation were never identified. OBJECTIVES: To investigate if GyrA and ParC from quinolone low-susceptible isolates can be transferred horizontally and simultaneously to susceptible isolates. METHODS: Genomic DNA was extracted from an H. influenzae isolate harbouring amino acid substitutions in both gyrA and parC and mixed with clinical isolates. The emergence of resistant isolates was compared, and WGS analysis was performed. RESULTS: By adding the genomic DNA harbouring both mutated gyrA and parC, resistant bacteria exhibiting recombination at gyrA only or both gyrA and parC loci were obtained on nalidixic acid and pipemidic acid plates, and the frequency was found to increase with the amount of DNA. Recombination events in gyrA only and in both gyrA and parC occurred with at least 1 and 1-100 ng of DNA, respectively. The genome sequence of a representative strain showed recombination events throughout the genome. The MIC of quinolone for the resulting strains was found to be similar to that of the donor. Although the recombination efficacy was different among the various strains, all strains used in this study obtained multiple genes simultaneously. CONCLUSIONS: These findings indicate that H. influenzae can simultaneously obtain more than two mutated genes. This mechanism of horizontal transfer could be an alternative pathway for attaining quinolone resistance.


Subject(s)
Haemophilus influenzae , Quinolones , Haemophilus influenzae/genetics , Quinolones/pharmacology , DNA Topoisomerase IV/genetics , DNA Gyrase/genetics , Gene Transfer, Horizontal , Microbial Sensitivity Tests , Mutation , Fluoroquinolones , Drug Resistance, Bacterial/genetics
20.
Antimicrob Agents Chemother ; 66(7): e0030122, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35708332

ABSTRACT

Fluoroquinolones are potentially effective against Elizabethkingia anophelis. We investigated the MIC, mutant prevention concentration (MPC), and target gene mutations of fluoroquinolones in E. anophelis. Eighty-five E. anophelis isolates were collected from five hospitals in Taiwan. The MIC and MPC of ciprofloxacin and levofloxacin were examined for all E. anophelis except 17 isolates, in which ciprofloxacin MPC could not be determined due to drug precipitation caused by overly high drug concentration. Mutations in the quinolone resistance-determining regions of DNA gyrase (GyrA and GyrB) and topoisomerase IV (ParC and ParE) in the clinical isolates and fluoroquinolone-selected mutants were examined. Overall, 23.5% and 71.8% of the isolates tested were susceptible to ciprofloxacin and levofloxacin, respectively. The MPC50 of ciprofloxacin was 128 mg/L, and the MPC50 of levofloxacin was 51.2 mg/L. The MPC50/MIC50 ratio for ciprofloxacin was 64, whereas that for levofloxacin was 25.6. The coefficient of determination between the MPC and MIC for ciprofloxacin and levofloxacin was 0.72 and 0.56, respectively, in the linear regression analysis. Preexisting mutations in GyrA (S83I, S83R, and D87Y) were identified in 18 clinical isolates, all of which were resistant to both ciprofloxacin and levofloxacin. Additional amino acid substitutions in GyrA were identified in all ciprofloxacin- and levofloxacin-selected mutants. Furthermore, GyrB alterations (D431N or D431H) were found in nine levofloxacin-treated isolates. Given that maintaining the serum concentrations of fluoroquinolones above MPCs is impossible under presently recommended doses, the selection of mutant E. anophelis strains seems inevitable.


Subject(s)
Fluoroquinolones , Levofloxacin , Anti-Bacterial Agents/pharmacology , Ciprofloxacin/pharmacology , DNA Gyrase/genetics , DNA Topoisomerase IV/genetics , Drug Resistance, Bacterial/genetics , Flavobacteriaceae , Fluoroquinolones/pharmacology , Levofloxacin/pharmacology , Microbial Sensitivity Tests , Mutation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL