Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 898
Filter
1.
Arch Virol ; 169(7): 136, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847927

ABSTRACT

Here, we report the first detection of lymphocystis disease virus (LCDV) in Indian glass fish in the Andaman Islands, India. Microscopic examination revealed the presence of whitish clusters of nodules on the fish's skin, fins, and eyes. The histopathology of the nodules revealed typical hypertrophied fibroblasts. Molecular characterization of the major capsid protein (MCP) gene of the virus showed a significant resemblance to known LCDV sequences from Korea and Iran, with 98.92% and 97.85% sequence identity, respectively. Phylogenetic analysis confirmed that the MCP gene sequence of the virus belonged to genotype V. This study represents the first documented case of LCDV in finfish from the Andaman Islands, emphasizing the necessity for continued monitoring and research on the health of aquatic species in this fragile ecosystem.


Subject(s)
Capsid Proteins , DNA Virus Infections , Fish Diseases , Iridoviridae , Phylogeny , Animals , Fish Diseases/virology , India , Iridoviridae/genetics , Iridoviridae/isolation & purification , Iridoviridae/classification , DNA Virus Infections/virology , DNA Virus Infections/veterinary , Capsid Proteins/genetics , Fishes/virology , Genotype , Islands
2.
Arch Virol ; 169(7): 148, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888759

ABSTRACT

The inflammasome is a multimeric protein complex that plays a vital role in the defence against pathogens and is therefore considered an essential component of the innate immune system. In this study, the expression patterns of inflammasome genes (NLRC3, ASC, and CAS-1), antiviral genes (IFNγ and MX), and immune genes (IL-1ß and IL-18) were analysed in Oreochromis niloticus liver (ONIL) cells following stimulation with the bacterial ligands peptidoglycan (PGN) and lipopolysaccharide (LPS) and infection with TiLV. The cells were stimulated with PGN and LPS at concentrations of 10, 25, and 50 µg/ml. For viral infection, 106 TCID50 of TiLV per ml was used. After LPS stimulation, all seven genes were found to be expressed at specific time points at each of the three doses tested. However, at even higher doses of LPS, NLRC3 levels decreased. Following TiLV infection, all of the genes showed significant upregulation, especially at early time points. However, the gene expression pattern was found to be unique in PGN-treated cells. For instance, NLRC3 and ASC did not show any response to PGN stimulation, and the expression of IFNγ was downregulated at 25 and 50 µg of PGN per ml. CAS-1 and IL-18 expression was downregulated at 25 µg of PGN per ml. At a higher dose (50 µg/ml), IL-1ß showed downregulation. Overall, our results indicate that these genes are involved in the immune response to viral and bacterial infection and that the degree of response is ligand- and dose-dependent.


Subject(s)
Cichlids , Fish Diseases , Inflammasomes , Animals , Cichlids/immunology , Cichlids/genetics , Inflammasomes/genetics , Inflammasomes/immunology , Inflammasomes/metabolism , Fish Diseases/immunology , Fish Diseases/virology , Fish Diseases/microbiology , Fish Diseases/genetics , Cell Line , Peptidoglycan/pharmacology , Liver/virology , Liver/immunology , Lipopolysaccharides/pharmacology , Immunity, Innate , Fish Proteins/genetics , Interleukin-18/genetics , Interleukin-18/metabolism , Ligands , DNA Virus Infections/immunology , DNA Virus Infections/veterinary , DNA Virus Infections/virology , DNA Virus Infections/genetics , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/immunology
3.
BMC Vet Res ; 20(1): 267, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902724

ABSTRACT

BACKGROUND: Scale drop disease virus (SDDV) threatens Asian seabass (Lates calcarifer) aquaculture production by causing scale drop disease (SDD) in Asian seabass. Research on the development of SDDV vaccines is missing an in-depth examination of long-term immunity and the immune reactions it provokes. This study investigated the long-term immune protection and responses elicited by an SDDV vaccine. The research evaluated the effectiveness of a formalin-inactivated SDDV vaccine (SDDV-FIV) using both prime and prime-booster vaccination strategies in Asian seabass. Three groups were used: control (unvaccinated), single-vaccination (prime only), and booster (prime and booster). SDDV-FIV was administered via intraperitoneal route, with a booster dose given 28 days post-initial vaccination. RESULTS: The immune responses in vaccinated fish (single and booster groups) showed that SDDV-FIV triggered both SDDV-specific IgM and total IgM production. SDDV-specific IgM levels were evident until 28 days post-vaccination (dpv) in the single vaccination group, while an elevated antibody response was maintained in the booster group until 70 dpv. The expression of immune-related genes (dcst, mhc2a1, cd4, ighm, cd8, il8, ifng, and mx) in the head kidney and peripheral blood lymphocytes (PBLs) of vaccinated and challenged fish were significantly upregulated within 1-3 dpv and post-SDDV challenge. Fish were challenged with SDDV at 42 dpv (challenge 1) and 70 dpv (challenge 2). In the first challenge, the group that received booster vaccinations demonstrated notably higher survival rates than the control group (60% versus 20%, P < 0.05). However, in the second challenge, while there was an observable trend towards improved survival rates for the booster group compared to controls (42% versus 25%), these differences did not reach statistical significance (P > 0.05). These findings suggest that the SDDV-FIV vaccine effectively stimulates both humoral and cellular immune responses against SDDV. Booster vaccination enhances this response and improves survival rates up to 42 dpv. CONCLUSIONS: This research provides valuable insights into the development of efficient SDDV vaccines and aids in advancing strategies for immune modulation to enhance disease management in the aquaculture of Asian seabass.


Subject(s)
Fish Diseases , Immunization, Secondary , Vaccines, Inactivated , Viral Vaccines , Animals , Fish Diseases/prevention & control , Fish Diseases/immunology , Fish Diseases/virology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage , Immunization, Secondary/veterinary , Iridoviridae/immunology , DNA Virus Infections/veterinary , DNA Virus Infections/prevention & control , DNA Virus Infections/immunology , Formaldehyde , Antibodies, Viral/blood , Vaccination/veterinary , Immunoglobulin M/blood , Perciformes/immunology , Bass/immunology
4.
J Wildl Dis ; 60(3): 683-690, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38741369

ABSTRACT

Ranaviruses are pathogens of ectothermic vertebrates (fish, amphibians, and reptiles). Turtles are the most common group of reptiles reported with ranaviral infections. However, there have been no surveys for wild ranaviral infection in any turtles from the suborder Pleurodira, despite ranaviral distributions and experimentally susceptible pleurodiran turtle populations overlapping in several areas, including Australia. We assayed 397 pooled blood samples from six Australian freshwater turtle species collected from five different sites in northern Australia between 2014 and 2019. Historical serologic surveys in the area had found antiranaviral antibodies; however, we did not detect any ranaviral DNA in our samples. Discrepancies between historical serologic and our molecular results may be explained by low viral prevalence during the years that these samples were collected, survivorship bias, or possibly an age class bias in sampling.


Subject(s)
DNA Virus Infections , Ranavirus , Turtles , Animals , Turtles/virology , Turtles/blood , DNA Virus Infections/veterinary , DNA Virus Infections/epidemiology , DNA Virus Infections/virology , DNA Virus Infections/blood , Australia/epidemiology , DNA, Viral/blood
5.
Fish Shellfish Immunol ; 150: 109611, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734119

ABSTRACT

During virus-host co-evolution, viruses have developed multiple strategies to dampen IFN response and prevent its antiviral activity in host cells. To date, the interactions between host IFN response and the immune evasion strategies exploited by fish iridoviruses still remain largely uncertain. Here, a potential immune evasion protein candidate of Singapore grouper iridovirus (SGIV), VP82 (encoded by SGIV ORF82) was screened and its roles during viral replication were investigated in detail. Firstly, VP82 overexpression dramatically decreased IFN or ISRE promoter activity and the transcription levels of IFN stimulated genes (ISGs) stimulated by grouper cyclic GMP-AMP synthase (EccGAS)/stimulator of interferon genes (EcSTING), TANK-binding kinase 1 (EcTBK1), IFN regulatory factor 3 (EcIRF3)and EcIRF7. Secondly, Co-IP assays indicated that VP82 interacted with EcIRF3 and EcIRF7, but not EcSTING and EcTBK1, which was consistent with the co-localization between VP82 and EcIRF3 or EcIRF7. Furthermore, VP82 promoted the degradation of EcIRF3 and EcIRF7 in a dose-dependent manner via the autophagy pathway. Finally, VP82 overexpression accelerated SGIV replication, evidenced by the increased transcriptions of viral core genes and viral production. Moreover, the antiviral action of EcIRF3 or EcIRF7 was significantly depressed in VP82 overexpressed cells. Together, VP82 was speculated to exert crucial roles for SGIV replication by inhibiting the IFN response via the degradation of IRF3 and IRF7. Our findings provided new insights into understanding the immune evasion strategies utilized by fish iridovirus through IFN regulation.


Subject(s)
DNA Virus Infections , Fish Diseases , Fish Proteins , Interferon Regulatory Factor-3 , Interferon Regulatory Factor-7 , Ranavirus , Viral Proteins , Animals , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/immunology , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/metabolism , Fish Diseases/immunology , Fish Diseases/virology , DNA Virus Infections/immunology , DNA Virus Infections/veterinary , Ranavirus/physiology , Viral Proteins/genetics , Viral Proteins/metabolism , Immunity, Innate/genetics , Interferons/genetics , Interferons/immunology , Interferons/metabolism , Immune Evasion , Bass/immunology , Bass/genetics , Virus Replication , Zebrafish Proteins , Interferon Regulatory Factors
6.
Fish Shellfish Immunol ; 150: 109643, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763177

ABSTRACT

The lymphocystis disease (LCD), caused by Lymphocystis disease virus (LCDV), is a benign and self-limiting disease described in a many freshwater and marine fish species. Hypertrophic fibroblasts and extensive aggregation of inflammatory cells are characteristics of LCD. In the present study, small animal imaging and ultrastructural investigations were carried out on the lymphocystis nodules of black rockfish (Sebastes schlegelii) naturally infected with lymphocystis iridovirus, to assess pathology, and the exudate with particular attention to the formation of extracellular traps (ETs) in vivo. Ex vivo were examined by nodules sections and primary cells stimulation. By histopathological analysis, the nodules contained infiltrated inflammatory cells and extensive basophilic fibrillar filaments at the periphery of the hypertrophied fibroblasts. ETs were assessed in nodules samples using indirect immunofluorescence to detect DNA and myeloperoxidase. Moreover, LCDV was able to infect peritoneal cells of black rockfish in vitro and induce the formation of ETs within 4 h. In summary, this study proved that ETs are involved in the response to LCDV infection and may be involved in formation of lymphoid nodules. Taken together, the findings provide a new perspective to determine the impact factors on the growth of nodules.


Subject(s)
DNA Virus Infections , Extracellular Traps , Fish Diseases , Iridoviridae , Perciformes , Animals , Fish Diseases/virology , Fish Diseases/immunology , DNA Virus Infections/veterinary , DNA Virus Infections/immunology , DNA Virus Infections/virology , Extracellular Traps/immunology , Iridoviridae/physiology , Perciformes/immunology , Skin/virology , Skin/pathology , Fishes/immunology , Fishes/virology
7.
Fish Shellfish Immunol ; 150: 109598, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697375

ABSTRACT

In mammals, IL-22 is considered as a critical cytokine regulating of immunity and homeostasis at barrier surfaces. Although IL-22 have been functional characterization in different species of fish, the studies about distinct responses of IL-22 in different organs/tissues/cell types is rather limited. Here, we identified and cloned IL-22 gene (named as Ec-IL-22) from grouper (Epinephelus coioides). Ec-IL-22 gene was detected in all orangs/tissues examined, and was induced in intestine, gill, spleen, head kidney, and primary head kidney/intestine leukocytes following the stimulation of LPS and poly (I:C), as well as Vibrio harveyi and Singapore grouper iridovirus infection (SGIV). In addition, the stimulation of DSS could induce the expression of Ec-IL-22 in intestine and primary leukocytes from intestine. Importantly, the treatment of recombinant Ec-IL-22 induced the mRNA level of proinflammatory cytokines in primary intestine/head kidney leukocytes. The present results improve the understanding of expression patterns and functional characteristics of fish IL-22 in different organs/tissues/cell types.


Subject(s)
Bass , DNA Virus Infections , Fish Diseases , Fish Proteins , Gene Expression Regulation , Interleukin-22 , Interleukins , Vibrio Infections , Vibrio , Animals , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/chemistry , Fish Diseases/immunology , Interleukins/genetics , Interleukins/immunology , Bass/immunology , Bass/genetics , Vibrio/physiology , DNA Virus Infections/immunology , DNA Virus Infections/veterinary , Gene Expression Regulation/immunology , Gene Expression Regulation/drug effects , Vibrio Infections/immunology , Vibrio Infections/veterinary , Amino Acid Sequence , Gene Expression Profiling/veterinary , Phylogeny , Sequence Alignment/veterinary , Immunity, Innate/genetics , Poly I-C/pharmacology , Lipopolysaccharides/pharmacology , Ranavirus/physiology
8.
Viruses ; 16(5)2024 04 25.
Article in English | MEDLINE | ID: mdl-38793557

ABSTRACT

Frog virus 3 (FV3) in the genus Ranavirus of the family Iridoviridae causes mass mortality in both anurans and urodeles worldwide; however, the phylogenetic origin of FV3-like ranaviruses is not well established. In Asia, three FV3-like ranaviruses have been reported in farmed populations of amphibians and reptiles. Here, we report the first case of endemic FV3-like ranavirus infections in the Korean clawed salamander Onychodactylus koreanus, caught in wild mountain streams in the Republic of Korea (ROK), through whole-genome sequencing and phylogenetic analysis. Two isolated FV3-like ranaviruses (Onychodactylus koreanus ranavirus, OKRV1 and 2) showed high similarity with the Rana grylio virus (RGV, 91.5%) and Rana nigromaculata ranavirus (RNRV, 92.2%) but relatively low similarity with the soft-shelled turtle iridovirus (STIV, 84.2%) in open reading frame (ORF) comparisons. OKRV1 and 2 formed a monophyletic clade with previously known Asian FV3-like ranaviruses, a sister group of the New World FV3-like ranavirus clade. Our results suggest that OKRV1 and 2 are FV3-like ranaviruses endemic to the ROK, and RGV and RNRV might also be endemic strains in China, unlike previous speculation. Our data have great implications for the study of the phylogeny and spreading routes of FV3-like ranaviruses and suggest the need for additional detection and analysis of FV3-like ranaviruses in wild populations in Asian countries.


Subject(s)
DNA Virus Infections , Genome, Viral , Phylogeny , Ranavirus , Urodela , Animals , Ranavirus/genetics , Ranavirus/isolation & purification , Ranavirus/classification , Urodela/virology , Republic of Korea/epidemiology , DNA Virus Infections/veterinary , DNA Virus Infections/virology , DNA Virus Infections/epidemiology , Open Reading Frames , Whole Genome Sequencing
9.
Viruses ; 16(5)2024 04 30.
Article in English | MEDLINE | ID: mdl-38793597

ABSTRACT

In September 2021, 14 smallmouth bass (SMB; Micropterus dolomieu) with skin lesions were collected from Green Bay waters of Lake Michigan and submitted for diagnostic evaluation. All the skin samples tested positive for largemouth bass virus (LMBV) by conventional PCR. The complete genome of the LMBV (99,328 bp) isolated from a homogenized skin sample was determined using an Illumina MiSeq sequencer. A maximum likelihood (ML) phylogenetic analysis based on the 21 core iridovirus genes supported the LMBV isolated from SMB (LMBV-WVL21117) as a member of the species Santee-Cooper ranavirus. Pairwise nucleotide comparison of the major capsid protein (MCP) gene showed that LMBV-WVL21117 is identical to other LMBV reported from the United States and nearly identical to doctor fish virus and guppy virus 6 (99.2%) from Southeast Asia, as well as LMBV isolates from China and Thailand (99.1%). In addition, ML phylogenetic analysis based on the MCP gene suggests three genotypes of LMBV separated by region: genotype one from the United States, genotype two from Southeast Asia, and genotype three from China and Thailand. Additional research is needed to understand the prevalence and genetic diversity of LMBV strains circulating in wild and managed fish populations from different regions.


Subject(s)
Bass , DNA Virus Infections , Fish Diseases , Genome, Viral , Phylogeny , Ranavirus , Animals , Ranavirus/genetics , Ranavirus/isolation & purification , Ranavirus/classification , Bass/virology , DNA Virus Infections/virology , DNA Virus Infections/veterinary , Fish Diseases/virology , Capsid Proteins/genetics , Genotype , Lakes/virology
10.
Fish Shellfish Immunol ; 149: 109614, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710342

ABSTRACT

Chemokines are critical molecules involved in immune reaction and immune system homeostasis, and some chemokines play a role in antiviral immunity. It is not known if the C-C motif chemokine ligand 3 (CCL3), a member of the CC chemokine family, possesses antiviral properties in fish. In this study, a ccl3 was cloned from the mandarin fish (Siniperca chuatsi), and it has an open reading frame (ORF) of 276 base pairs, which are predicted to encode a 91-amino acid peptide. Mandarin fish CCL3 revealed conserved sequence features with four cysteine residues and closely relationships with the CCL3s from other vertebrates based on the sequence alignment and phylogenetic analysis. The transcripts of ccl3 were notably enriched in immune-related organs, such as spleen and gills in healthy mandarin fish, and the ccl3 was induced in the isolated mandarin fish brain (MFB) cells following infection with infectious spleen and kidney necrosis virus (ISKNV). Moreover, in MFB cells, overexpression of CCL3 induced immune factors, such as IL1ß, TNFα, MX, IRF1 and IFNh, and exhibited antiviral activity against ISKNV. This study sheds light on the immune role of CCL3 in immune response of mandarin fish, and its antiviral defense mechanism is of interest for further investigation.


Subject(s)
Amino Acid Sequence , DNA Virus Infections , Fish Diseases , Fish Proteins , Immunity, Innate , Iridoviridae , Perciformes , Phylogeny , Sequence Alignment , Animals , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/chemistry , Fish Diseases/immunology , Fish Diseases/virology , Perciformes/immunology , Perciformes/genetics , DNA Virus Infections/immunology , DNA Virus Infections/veterinary , Iridoviridae/physiology , Sequence Alignment/veterinary , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Chemokine CCL3/genetics , Chemokine CCL3/immunology , Cloning, Molecular , Gene Expression Profiling/veterinary , Base Sequence
11.
Braz J Microbiol ; 55(2): 1961-1966, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38589741

ABSTRACT

The FTA card has emerged as a promising alternative for nucleic acid extraction. The FTA card is a filter paper impregnated with chemicals that preserve and stabilize the genetic material present in the sample, allowing for its storage and transport at room temperature. The aim of this study was to test the card for the detection of RNA and DNA nucleic acids. Two RNA viruses (Senecavirus A and classical swine fever virus) and two DNA viruses (African swine fever virus and suid alphaherpesvirus 1) were tested, and in all cases, there was a decrease in sensitivity. The methods exhibited good repeatability and demonstrated a rapid and practical use for sample transport and nucleic acid extraction.


Subject(s)
African Swine Fever Virus , Animals , Swine , African Swine Fever Virus/isolation & purification , African Swine Fever Virus/genetics , Classical Swine Fever Virus/genetics , Classical Swine Fever Virus/isolation & purification , Herpesvirus 1, Suid/isolation & purification , Herpesvirus 1, Suid/genetics , RNA, Viral/genetics , RNA, Viral/isolation & purification , Veterinary Medicine/methods , Swine Diseases/virology , Swine Diseases/diagnosis , DNA Viruses/genetics , DNA Viruses/isolation & purification , Picornaviridae/genetics , Picornaviridae/isolation & purification , Picornaviridae/classification , Sensitivity and Specificity , DNA, Viral/genetics , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA Viruses/classification , DNA Virus Infections/veterinary , DNA Virus Infections/diagnosis , DNA Virus Infections/virology , Specimen Handling/methods , Specimen Handling/instrumentation
12.
Zool Res ; 45(3): 520-534, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38682434

ABSTRACT

Iridovirus poses a substantial threat to global aquaculture due to its high mortality rate; however, the molecular mechanisms underpinning its pathogenesis are not well elucidated. Here, a multi-omics approach was applied to groupers infected with Singapore grouper iridovirus (SGIV), focusing on the roles of key metabolites. Results showed that SGIV induced obvious histopathological damage and changes in metabolic enzymes within the liver. Furthermore, SGIV significantly reduced the contents of lipid droplets, triglycerides, cholesterol, and lipoproteins. Metabolomic analysis indicated that the altered metabolites were enriched in 19 pathways, with a notable down-regulation of lipid metabolites such as glycerophosphates and alpha-linolenic acid (ALA), consistent with disturbed lipid homeostasis in the liver. Integration of transcriptomic and metabolomic data revealed that the top enriched pathways were related to cell growth and death and nucleotide, carbohydrate, amino acid, and lipid metabolism, supporting the conclusion that SGIV infection induced liver metabolic reprogramming. Further integrative transcriptomic and proteomic analysis indicated that SGIV infection activated crucial molecular events in a phagosome-immune depression-metabolism dysregulation-necrosis signaling cascade. Of note, integrative multi-omics analysis demonstrated the consumption of ALA and linoleic acid (LA) metabolites, and the accumulation of L-glutamic acid (GA), accompanied by alterations in immune, inflammation, and cell death-related genes. Further experimental data showed that ALA, but not GA, suppressed SGIV replication by activating antioxidant and anti-inflammatory responses in the host. Collectively, these findings provide a comprehensive resource for understanding host response dynamics during fish iridovirus infection and highlight the antiviral potential of ALA in the prevention and treatment of iridoviral diseases.


Subject(s)
Fish Diseases , Iridovirus , Liver , alpha-Linolenic Acid , Animals , alpha-Linolenic Acid/metabolism , Fish Diseases/virology , Fish Diseases/metabolism , Liver/metabolism , Liver/virology , Iridovirus/physiology , DNA Virus Infections/veterinary , DNA Virus Infections/virology , Metabolomics , Antiviral Agents/pharmacology , Transcriptome , Metabolic Reprogramming , Multiomics
13.
Fish Shellfish Immunol ; 149: 109530, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570120

ABSTRACT

The elongation of very long chain fatty acids (ELOVL) proteins are key rate-limiting enzymes that catalyze fatty acid synthesis to form long chain fatty acids. ELOVLs also play regulatory roles in the lipid metabolic reprogramming induced by mammalian viruses. However, little is known about the roles of fish ELOVLs during virus infection. Here, a homolog of ELOVL7 was cloned from Epinephelus coioides (EcELOVL7a), and its roles in red-spotted grouper nervous necrosis virus (RGNNV) and Singapore grouper iridovirus (SGIV) infection were investigated. The transcription level of EcELOVL7a was significantly increased upon RGNNV and SGIV infection or other pathogen-associated molecular patterns stimulation in grouper spleen (GS) cells. Subcellular localization analysis showed that EcELOVL7a encoded an endoplasmic reticulum (ER) related protein. Overexpression of EcELOVL7a promoted the viral production and virus release during SGIV and RGNNV infection. Furthermore, the lipidome profiling showed that EcELOVL7a overexpression reprogrammed cellular lipid components in vitro, evidenced by the increase of glycerophospholipids, sphingolipids and glycerides components. In addition, VLCFAs including FFA (20:2), FFA (20:4), FFA (22:4), FFA (22:5) and FFA (24:0), were enriched in EcELOVL7a overexpressed cells. Consistently, EcELOVL7a overexpression upregulated the transcription level of the key lipid metabolic enzymes, including fatty acid synthase (FASN), phospholipase A 2α (PLA 2α), and cyclooxygenases -2 (COX-2), LPIN1, and diacylglycerol acyltransferase 1α (DGAT1α). Together, our results firstly provided the evidence that fish ELOVL7a played an essential role in SGIV and RGNNV replication by reprogramming lipid metabolism.


Subject(s)
Bass , DNA Virus Infections , Fatty Acid Elongases , Fish Diseases , Fish Proteins , Lipid Metabolism , Virus Replication , Animals , Fish Diseases/immunology , Fish Diseases/virology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/metabolism , DNA Virus Infections/veterinary , DNA Virus Infections/immunology , Bass/immunology , Bass/genetics , Fatty Acid Elongases/genetics , Nodaviridae/physiology , Gene Expression Regulation , Acetyltransferases/genetics , Acetyltransferases/metabolism , Birnaviridae Infections/veterinary , Birnaviridae Infections/immunology , Birnaviridae Infections/virology , Gene Expression Profiling/veterinary , Iridoviridae/physiology , Iridovirus/physiology , Phylogeny , Sequence Alignment/veterinary , Amino Acid Sequence , Metabolic Reprogramming
14.
Dis Aquat Organ ; 158: 65-74, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38661138

ABSTRACT

Red sea bream iridovirus (RSIV) causes substantial economic damage to aquaculture. In the present study, RSIV in wild fish near aquaculture installations was surveyed to evaluate the risk of wild fish being an infection source for RSIV outbreaks in cultured fish. In total, 1102 wild fish, consisting of 44 species, were captured from 2 aquaculture areas in western Japan using fishing, gill nets, and fishing baskets between 2019 and 2022. Eleven fish from 7 species were confirmed to harbor the RSIV genome using a probe-based real-time PCR assay. The mean viral load of the RSIV-positive wild fish was 101.1 ± 0.4 copies mg-1 DNA, which was significantly lower than that of seemingly healthy red sea bream Pagrus major in a net pen during an RSIV outbreak (103.3 ± 1.5 copies mg-1 DNA) that occurred in 2021. Sequencing analysis of a partial region of the major capsid protein gene demonstrated that the RSIV genome detected in the wild fish was identical to that of the diseased fish in a fish farm located in the same area in which the wild fish were captured. Based on the diagnostic records of RSIV in the sampled area, the RSIV-infected wild fish appeared during or after the RSIV outbreak in cultured fish, suggesting that RSIV detected in wild fish was derived from the RSIV outbreak in cultured fish. Therefore, wild fish populations near aquaculture installations may not be a significant risk factor for RSIV outbreaks in cultured fish.


Subject(s)
Aquaculture , DNA Virus Infections , Disease Outbreaks , Fish Diseases , Iridovirus , Animals , Fish Diseases/virology , Fish Diseases/epidemiology , DNA Virus Infections/veterinary , DNA Virus Infections/epidemiology , DNA Virus Infections/virology , Disease Outbreaks/veterinary , Iridovirus/genetics , Sea Bream/virology , Fishes , Risk Assessment , Japan/epidemiology , Animals, Wild
15.
Fish Shellfish Immunol ; 149: 109528, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570119

ABSTRACT

Stimulator of interferon genes (STING) has been demonstrated as a critical mediator in the innate immune response to cytosolic DNA and RNA derived from different pathogens. While the role of Micropterus salmoides STING (MsSTING) in largemouth bass virus is still unknown. In this study, RT-qPCR assay and Western-blot assay showed that the expression levels of MsSTING and its downstream genes were up-regulated after LMBV infection. Pull down experiment proved that a small peptide called Fusion peptide (FP) that previously reported to target to marine and human STING as a selective inhibitor also interacted with MsSTING in vitro. Comparing with the RNA-seq of Largemouth bass infected with LMBV singly, 326 genes were significantly up-regulated and 379 genes were significantly down-regulated in the FP plus LMBV group in which Largemouth bass was treatment with FP before LMBV-challenged. KEGG analysis indicated that the differentially expressed genes (DEGs) were mainly related to signaling transduction, infectious disease viral, immune system and endocrine system. Besides, the survival rate of LMBV-infected largemouth bass was highly decreased following FP treatment. Taken together, our study showed that MsSTING played an important role in immune response against LMBV infection.


Subject(s)
Bass , Fish Diseases , Fish Proteins , Immunity, Innate , Animals , Fish Diseases/immunology , Fish Diseases/virology , Bass/immunology , Bass/genetics , Fish Proteins/genetics , Fish Proteins/immunology , Immunity, Innate/genetics , DNA Virus Infections/immunology , DNA Virus Infections/veterinary , Gene Expression Regulation/immunology , Gene Expression Regulation/drug effects , Ranavirus/physiology , Membrane Proteins/genetics , Membrane Proteins/immunology
16.
Fish Shellfish Immunol ; 149: 109522, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38548190

ABSTRACT

Singapore grouper iridovirus (SGIV) is one of the major infectious diseases responsible for high mortality and huge economic losses in the grouper aquaculture industry. Berberine (BBR), a naturally occurring plant alkaloid, is a phytochemical having a variety of biological properties, such as antiviral, antioxidant, and anti-inflammatory effects. In this work, we used an in vitro model based on Western blot, ROS fluorescence probe, and real-time quantitative PCR (qRT-PCR) to examine the antiviral qualities of BBR against SGIV. The outcomes demonstrated that varying BBR concentrations could significantly inhibit the replication of SGIV. In addition, BBR greatly inhibited the production of genes associated with pro-inflammatory cytokines in SGIV-infected or SGIV-uninfected GS cells based on qRT-PCR data. Subsequent investigations demonstrated that BBR suppressed the expression of the promoter activity of NF-κB and NF-κB-p65 protein. Additionally, BBR reduced the phosphorylation of ERK 1/2, JNK, and p38. Furthermore, BBR also inhibits SGIV-induced ROS production by upregulating the expression of antioxidant-related genes. In conclusion, BBR is a viable therapy option for SGIV infection due to its antiviral properties.


Subject(s)
Berberine , Fish Diseases , Oxidative Stress , Virus Replication , Berberine/pharmacology , Animals , Oxidative Stress/drug effects , Fish Diseases/immunology , Fish Diseases/virology , Virus Replication/drug effects , Inflammation/immunology , Inflammation/veterinary , Antiviral Agents/pharmacology , DNA Virus Infections/veterinary , DNA Virus Infections/immunology , Ranavirus/physiology , Cell Line
17.
Fish Shellfish Immunol ; 146: 109424, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38311091

ABSTRACT

The suppressor of cytokine signaling (SOCS) proteins family have twelve members including eight known mammalian SOCS members (CISH, SOCS1-7) and four new discovery members (SOCS3b, SOCS5b, SOCS8 and SOCS9) that is regarded as a classic feedback inhibitor of cytokine signaling. Although the function of the mammalian SOCS proteins have been well studied, little is known about the roles of SOCS in fish during viral infection. In this study, the molecular characteristics of SOCS9 from orange-spotted grouper (Epinephelus coioides, EcSOCS9) is investigated. The EcSOCS9 protein encoded 543 amino acids with typical SH2 (389-475aa) and SOCS_box (491-527aa), sharing high identities with reported fish SOCS9. EcSOCS9 was expressed in all detected tissues and highly expressed in kidney. After red-spotted grouper nervous necrosis virus (RGNNV) infection, the expression of EcSOCS9 was significantly induced in vitro. Furthermore, EcSOCS9 overexpression enhanced RGNNV replication, promoted virus-induced mitophagy that evidenced by the increased level of LC3-Ⅱ, BCL2, PGAM5 and decreased level of BNIP3 and FUNDC1. Besides, EcSOCS9 overexpression suppressed the expression levels of ATP6, CYB, ND4, ATP level and induced ROS level. The expression levels of interferon (IFN) related factors (IRF1, IRF3, IRF7, P53), inflammatory factors (IL1-ß, IL8, TLR2, TNF-α) and IFN-3, ISRE, NF-κB, AP1 activities were also reduced by overexpressing EcSOCS9. These date suggests that EcSOCS9 impacts RGNNV infection through modulating mitophagy, regulating the expression levels of IFN- related and inflammatory factors, which will expand our understanding of fish immune responses during viral infection.


Subject(s)
Bass , DNA Virus Infections , Fish Diseases , Nodaviridae , RNA Virus Infections , Virus Diseases , Animals , Immunity, Innate/genetics , Gene Expression Regulation , Amino Acid Sequence , Sequence Alignment , Interferons/metabolism , Fish Proteins/chemistry , Nodaviridae/physiology , DNA Virus Infections/veterinary , Mammals/metabolism
19.
J Fish Dis ; 47(6): e13930, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38349841

ABSTRACT

Large yellow croaker (Larimichthys crocea) is a vital marine-cultured species in China. Large yellow croaker iridovirus (LYCIV) can cause a high mortality rate in L. crocea. Rapid and convenient detection of LYCIV is an urgent demand for diagnosis. In this study, rapid and simple recombinase polymerase amplification (RPA), real-time RPA and RPA combined with lateral flow dipstick (RPA-LFD) methods were developed for the detection of LYCIV based on the conserved sequence of the LYCIV major capsid protein (MCP) gene. With these optimized RPA analyses, LYCIV detection could be completed within 20 min at 40°C. Both RPA and real-time RPA could detect viral DNA as low as 102 copies/µL, while the detection limit of RPA-LFD was 101 copies/µL, and there was no cross-reaction with other aquatic pathogens (KHV, CyHV-2, GCRV-JX01, SVCV, LCDV and LMBV). In practical evaluation of RPA, real-time RPA and RPA-LFD methods, the results showed consistency with the general PCR detection. In short, the developed RPA, real-time RPA and RPA-LFD analyses could be simple, rapid, sensitive and reliable methods for field diagnosis of LYCIV infection and have significant potential in the protection of LYCIV infection.


Subject(s)
DNA Virus Infections , Fish Diseases , Iridovirus , Nucleic Acid Amplification Techniques , Perciformes , Sensitivity and Specificity , Animals , Perciformes/virology , Fish Diseases/virology , Fish Diseases/diagnosis , DNA Virus Infections/veterinary , DNA Virus Infections/diagnosis , DNA Virus Infections/virology , Iridovirus/isolation & purification , Iridovirus/genetics , Nucleic Acid Amplification Techniques/veterinary , Nucleic Acid Amplification Techniques/methods , DNA, Viral/genetics , Capsid Proteins/genetics
20.
Commun Biol ; 7(1): 237, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38413759

ABSTRACT

Iridoviruses are nucleocytoplasmic large dsDNA viruses that infect invertebrates and ectothermic vertebrates. The hypermethylated genome of vertebrate iridoviruses is unique among animal viruses. However, the map and function of iridovirus genomic methylation remain unknown. Herein, the methylated genome of Infectious spleen and kidney necrosis virus (ISKNV, a fish iridovirus), and its role in viral infection, are investigated. The methylation level of ISKNV is 23.44%. The hypermethylated genome is essential for ISKNV amplification, but there is no correlation between hypermethylation and viral gene expression. The hypomethylated ISKNV (obtained via 5-Azacytidine) activates a strong immunoreaction in vitro and reduces its pathogenicity in vivo. The unmethylated viral DNA can induce a stronger immunoreaction in vitro, whereas inactivated hypomethylated ISKNV can induce a stronger immunoreaction in vivo, suggesting ISKNV may evade from immune system by increasing its genome methylation level. Our work provides new insights into the role of genome methylation in viral infection.


Subject(s)
DNA Virus Infections , Fish Diseases , Iridoviridae , Iridovirus , Virus Diseases , Animals , Iridovirus/genetics , Iridoviridae/genetics , DNA Virus Infections/veterinary , Fishes
SELECTION OF CITATIONS
SEARCH DETAIL
...