Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.256
Filter
1.
Cancer Med ; 13(1): e6945, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39102671

ABSTRACT

INTRODUCTION: Adaptive mutagenesis observed in colorectal cancer (CRC) cells upon exposure to EGFR inhibitors contributes to the development of resistance and recurrence. Multiple investigations have indicated a parallel between cancer cells and bacteria in terms of exhibiting adaptive mutagenesis. This phenomenon entails a transient and coordinated escalation of error-prone translesion synthesis polymerases (TLS polymerases), resulting in mutagenesis of a magnitude sufficient to drive the selection of resistant phenotypes. METHODS: In this study, we conducted a comprehensive pan-transcriptome analysis of the regulatory framework within CRC cells, with the objective of identifying potential transcriptome modules encompassing certain translesion polymerases and the associated transcription factors (TFs) that govern them. Our sampling strategy involved the collection of transcriptomic data from tumors treated with cetuximab, an EGFR inhibitor, untreated CRC tumors, and colorectal-derived cell lines, resulting in a diverse dataset. Subsequently, we identified co-regulated modules using weighted correlation network analysis with a minKMEtostay threshold set at 0.5 to minimize false-positive module identifications and mapped the modules to STRING annotations. Furthermore, we explored the putative TFs influencing these modules using KBoost, a kernel PCA regression model. RESULTS: Our analysis did not reveal a distinct transcriptional profile specific to cetuximab treatment. Moreover, we elucidated co-expression modules housing genes, for example, POLK, POLI, POLQ, REV1, POLN, and POLM. Specifically, POLK, POLI, and POLQ were assigned to the "blue" module, which also encompassed critical DNA damage response enzymes, for example. BRCA1, BRCA2, MSH6, and MSH2. To delineate the transcriptional control of this module, we investigated associated TFs, highlighting the roles of prominent cancer-associated TFs, such as CENPA, HNF1A, and E2F7. CONCLUSION: We found that translesion polymerases are co-regulated with DNA mismatch repair and cell cycle-associated factors. We did not, however, identified any networks specific to cetuximab treatment indicating that the response to EGFR inhibitors relates to a general stress response mechanism.


Subject(s)
Cetuximab , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Cetuximab/pharmacology , Cetuximab/therapeutic use , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic/drug effects , Cell Line, Tumor , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Gene Regulatory Networks , Gene Expression Profiling , ErbB Receptors/metabolism , ErbB Receptors/genetics , Mad2 Proteins/genetics , Mad2 Proteins/metabolism , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use
2.
Genes (Basel) ; 15(7)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39062611

ABSTRACT

Translesion synthesis (TLS) is a mechanism of DNA damage tolerance utilized by eukaryotic cells to replicate DNA across lesions that impede the high-fidelity replication machinery. In TLS, a series of specialized DNA polymerases are employed, which recognize specific DNA lesions, insert nucleotides across the damage, and extend the distorted primer-template. This allows cells to preserve genetic integrity at the cost of mutations. In humans, TLS enzymes include the Y-family, inserter polymerases, Polη, Polι, Polκ, Rev1, and the B-family extender polymerase Polζ, while in S. cerevisiae only Polη, Rev1, and Polζ are present. To bypass DNA lesions, TLS polymerases cooperate, assembling into a complex on the eukaryotic sliding clamp, PCNA, termed the TLS mutasome. The mutasome assembly is contingent on protein-protein interactions (PPIs) between the modular domains and subunits of TLS enzymes, and their interactions with PCNA and DNA. While the structural mechanisms of DNA lesion bypass by the TLS polymerases and PPIs of their individual modules are well understood, the mechanisms by which they cooperate in the context of TLS complexes have remained elusive. This review focuses on structural studies of TLS polymerases and describes the case of TLS holoenzyme assemblies in action emerging from recent high-resolution Cryo-EM studies.


Subject(s)
DNA Damage , DNA Repair , DNA Replication , DNA-Directed DNA Polymerase , Proliferating Cell Nuclear Antigen , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Humans , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , DNA Replication/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , DNA/genetics , DNA/metabolism , Translesion DNA Synthesis
3.
Proc Natl Acad Sci U S A ; 121(28): e2405473121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38950361

ABSTRACT

Cycling cells replicate their DNA during the S phase through a defined temporal program known as replication timing. Mutation frequencies, epigenetic chromatin states, and transcriptional activities are different for genomic regions that are replicated early and late in the S phase. Here, we found from ChIP-Seq analysis that DNA polymerase (Pol) κ is enriched in early-replicating genomic regions in HEK293T cells. In addition, by feeding cells with N 2-heptynyl-2'-deoxyguanosine followed by click chemistry-based enrichment and high-throughput sequencing, we observed elevated Pol κ activities in genomic regions that are replicated early in the S phase. On the basis of the established functions of Pol κ in accurate and efficient nucleotide insertion opposite endogenously induced N 2-modified dG lesions, our work suggests that active engagement of Pol κ may contribute to diminished mutation rates observed in early-replicating regions of the human genome, including cancer genomes. Together, our work expands the functions of Pol κ and offered a plausible mechanism underlying replication timing-dependent mutation accrual in the human genome.


Subject(s)
DNA Replication , DNA-Directed DNA Polymerase , S Phase , Humans , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , HEK293 Cells , Genome, Human , DNA Replication Timing
4.
PLoS Genet ; 20(7): e1011341, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38954736

ABSTRACT

The drug floxuridine (5-fluorodeoxyuridine, FUdR) is an active metabolite of 5-Fluorouracil (5-FU). It converts to 5-fluorodeoxyuridine monophosphate (FdUMP) and 5-fluorodeoxyuridine triphosphate (FdUTP), which on incorporation into the genome inhibits DNA replication. Additionally, it inhibits thymidylate synthase, causing dTMP shortage while increasing dUMP availability, which induces uracil incorporation into the genome. However, the mechanisms underlying cellular tolerance to FUdR are yet to be fully elucidated. In this study, we explored the mechanisms underlying cellular resistance to FUdR by screening for FUdR hypersensitive mutants from a collection of DT40 mutants deficient in each genomic maintenance system. We identified REV3, which is involved in translesion DNA synthesis (TLS), to be a critical factor in FUdR tolerance. Replication using a FUdR-damaged template was attenuated in REV3-/- cells, indicating that the TLS function of REV3 is required to maintain replication on the FUdR-damaged template. Notably, FUdR-exposed REV3-/- cells exhibited defective cell cycle arrest in the early S phase, suggesting that REV3 is involved in intra-S checkpoint activation. Furthermore, REV3-/- cells showed defects in Chk1 phosphorylation, which is required for checkpoint activation, but the survival of FUdR-exposed REV3-/- cells was further reduced by the inhibition of Chk1 or ATR. These data indicate that REV3 mediates DNA checkpoint activation at least through Chk1 phosphorylation, but this signal acts in parallel with ATR-Chk1 DNA damage checkpoint pathway. Collectively, we reveal a previously unappreciated role of REV3 in FUdR tolerance.


Subject(s)
DNA Damage , DNA Replication , Floxuridine , Floxuridine/pharmacology , Animals , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/genetics , S Phase Cell Cycle Checkpoints/genetics , S Phase Cell Cycle Checkpoints/drug effects , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Chickens , Humans , DNA Repair/genetics , Phosphorylation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Translesion DNA Synthesis , Deoxyuridine/analogs & derivatives
5.
PLoS Genet ; 20(7): e1011181, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39074150

ABSTRACT

When replication forks encounter damaged DNA, cells utilize damage tolerance mechanisms to allow replication to proceed. These include translesion synthesis at the fork, postreplication gap filling, and template switching via fork reversal or homologous recombination. The extent to which these different damage tolerance mechanisms are utilized depends on cell, tissue, and developmental context-specific cues, the last two of which are poorly understood. To address this gap, we have investigated damage tolerance responses in Drosophila melanogaster. We report that tolerance of DNA alkylation damage in rapidly dividing larval tissues depends heavily on translesion synthesis. Furthermore, we show that the REV1 protein plays a multi-faceted role in damage tolerance in Drosophila. Larvae lacking REV1 are hypersensitive to methyl methanesulfonate (MMS) and have highly elevated levels of γ-H2Av (Drosophila γ-H2AX) foci and chromosome aberrations in MMS-treated tissues. Loss of the REV1 C-terminal domain (CTD), which recruits multiple translesion polymerases to damage sites, sensitizes flies to MMS. In the absence of the REV1 CTD, DNA polymerases eta and zeta become critical for MMS tolerance. In addition, flies lacking REV3, the catalytic subunit of polymerase zeta, require the deoxycytidyl transferase activity of REV1 to tolerate MMS. Together, our results demonstrate that Drosophila prioritize the use of multiple translesion polymerases to tolerate alkylation damage and highlight the critical role of REV1 in the coordination of this response to prevent genome instability.


Subject(s)
DNA Damage , DNA Repair , DNA Replication , DNA-Directed DNA Polymerase , Drosophila Proteins , Drosophila melanogaster , Methyl Methanesulfonate , Nucleotidyltransferases , Animals , Drosophila melanogaster/genetics , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Methyl Methanesulfonate/pharmacology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Alkylation , DNA Repair/genetics , DNA Replication/genetics , Larva/genetics , Histones/metabolism , Histones/genetics
6.
Sci Rep ; 14(1): 15874, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38982265

ABSTRACT

Random mutagenesis, such as error-prone PCR (epPCR), is a technique capable of generating a wide variety of a single gene. However, epPCR can produce a large number of mutated gene variants, posing a challenge in ligating these mutated PCR products into plasmid vectors. Typically, the primers for mutagenic PCRs incorporate artificial restriction enzyme sites compatible with chosen plasmids. Products are cleaved and ligated to linearized plasmids, then recircularized by DNA ligase. However, this cut-and-paste method known as ligation-dependent process cloning (LDCP), has limited efficiency, as the loss of potential mutants is inevitable leading to a significant reduction in the library's breadth. An alternative to LDCP is the circular polymerase extension cloning (CPEC) method. This technique involves a reaction where a high-fidelity DNA polymerase extends the overlapping regions between the insert and vector, forming a circular molecule. In this study, our objective was to compare the traditional cut-and-paste enzymatic method with CPEC in producing a variant library from the gene encoding the red fluorescent protein (DsRed2) obtained by epPCR. Our findings suggest that CPEC can accelerate the cloning process in gene library generation, enabling the acquisition of a greater number of gene variants compared to methods reliant on restriction enzymes.


Subject(s)
Cloning, Molecular , Gene Library , Mutagenesis , Polymerase Chain Reaction , Polymerase Chain Reaction/methods , Cloning, Molecular/methods , Genetic Vectors/genetics , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Plasmids/genetics
7.
Int J Biol Macromol ; 274(Pt 1): 133243, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901507

ABSTRACT

To enhance the DNA/RNA amplification efficiency and inhibitor tolerance of Bst DNA polymerase, four chimeric Bst DNA polymerase by fusing with a DNA-binding protein Sto7d and/or a highly hydrophobic protein Hp47 to Bst DNA polymerase large fragment. One of chimeric protein HpStBL exhibited highest inhibitor tolerance, which retained high active under 0.1 U/µL sodium heparin, 0.8 ng/µL humic acid, 2.5× SYBR Green I, 8 % (v/v) whole blood, 20 % (v/v) tissue, and 2.5 % (v/v) stool. Meanwhile, HpStBL showed highest sensitivity (93.75 %) to crude whole blood infected with the African swine fever virus. Moreover, HpStBL showed excellent reverse transcriptase activity in reverse transcription loop-mediated isothermal amplification, which could successfully detect 0.5 pg/µL severe acute respiratory syndrome coronavirus 2 RNA in the presence of 1 % (v/v) stools. The fusion of two domains with different functions to Bst DNA polymerase would be an effective strategy to improve Bst DNA polymerase performance in direct loop-mediated isothermal amplification and reverse transcription loop-mediated isothermal amplification detection, and HpStBL would be a promising DNA polymerase for direct African swine fever virus/severe acute respiratory syndrome coronavirus 2 detection due to simultaneously increased inhibitor tolerance and reverse transcriptase activity.


Subject(s)
African Swine Fever Virus , RNA-Directed DNA Polymerase , RNA-Directed DNA Polymerase/metabolism , RNA-Directed DNA Polymerase/genetics , African Swine Fever Virus/genetics , African Swine Fever Virus/enzymology , Animals , Recombinant Fusion Proteins/genetics , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Swine , Nucleic Acid Amplification Techniques/methods , Protein Domains , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Reverse Transcriptase Inhibitors/pharmacology , COVID-19/virology , RNA, Viral/genetics
8.
J Virol ; 98(7): e0057224, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38860782

ABSTRACT

Treatment options for Epstein-Barr virus (EBV)-cancers are limited, underscoring the need for new therapeutic approaches. We have previously shown that EBV-transformed cells and cancers lack homologous recombination (HR) repair, a prominent error-free pathway that repairs double-stranded DNA breaks; instead, EBV-transformed cells demonstrate genome-wide scars of the error-prone microhomology-mediated end joining (MMEJ) repair pathway. This suggests that EBV-cancers are vulnerable to synthetic lethal therapeutic approaches that target MMEJ repair. Indeed, we have previously found that targeting PARP, an enzyme that contributes to MMEJ, results in the death of EBV-lymphoma cells. With the emergence of clinical resistance to PARP inhibitors and the recent discovery of inhibitors of Polymerase theta (POLθ), the polymerase essential for MMEJ, we investigated the role of POLθ in EBV-lymphoma cells. We report that EBV-transformed cell lines, EBV-lymphoma cell lines, and EBV-lymphomas in AIDS patients demonstrate greater abundance of POLθ, driven by the EBV protein EBNA1, compared to EBV-uninfected primary lymphocytes and EBV-negative lymphomas from AIDS patients (a group that also abundantly expresses POLθ). We also find POLθ enriched at cellular DNA replication forks and exposure to the POLθ inhibitor Novobiocin impedes replication fork progress, impairs MMEJ-mediated repair of DNA double-stranded breaks, and kills EBV-lymphoma cells. Notably, cell killing is not due to Novobiocin-induced activation of the lytic/replicative phase of EBV. These findings support a role for POLθ not just in DNA repair but also DNA replication and as a therapeutic target in EBV-lymphomas and potentially other EBV-cancers as EBNA1 is expressed in all EBV-cancers.IMPORTANCEEpstein-Barr virus (EBV) contributes to ~2% of the global cancer burden. With a recent estimate of >200,000 deaths a year, identifying molecular vulnerabilities will be key to the management of these frequently aggressive and treatment-resistant cancers. Building on our earlier work demonstrating reliance of EBV-cancers on microhomology-mediated end-joining repair, we now report that EBV lymphomas and transformed B cell lines abundantly express the MMEJ enzyme POLθ that likely protects cellular replication forks and repairs replication-related cellular DNA breaks. Importantly also, we show that a newly identified POLθ inhibitor kills EBV-cancer cells, revealing a novel strategy to block DNA replication and repair of these aggressive cancers.


Subject(s)
DNA Polymerase theta , DNA-Directed DNA Polymerase , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Humans , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/physiology , Epstein-Barr Virus Infections/virology , Cell Line, Tumor , DNA End-Joining Repair , Lymphoma/virology , Lymphoma/drug therapy , Lymphoma/genetics , Epstein-Barr Virus Nuclear Antigens/metabolism , Epstein-Barr Virus Nuclear Antigens/genetics , DNA Breaks, Double-Stranded , Synthetic Lethal Mutations , DNA Replication/drug effects
9.
Nucleic Acids Res ; 52(13): 7863-7875, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38932681

ABSTRACT

The replicative mitochondrial DNA polymerase, Polγ, and its protein regulation are essential for the integrity of the mitochondrial genome. The intricacies of Polγ regulation and its interactions with regulatory proteins, which are essential for fine-tuning polymerase function, remain poorly understood. Misregulation of the Polγ heterotrimer, consisting of (i) PolG, the polymerase catalytic subunit and (ii) PolG2, the accessory subunit, ultimately results in mitochondrial diseases. Here, we used single particle cryo-electron microscopy to resolve the structure of PolG in its apoprotein state and we captured Polγ at three intermediates within the catalytic cycle: DNA bound, engaged, and an active polymerization state. Chemical crosslinking mass spectrometry, and site-directed mutagenesis uncovered the region of LonP1 engagement of PolG, which promoted proteolysis and regulation of PolG protein levels. PolG2 clinical variants, which disrupted a stable Polγ complex, led to enhanced LonP1-mediated PolG degradation. Overall, this insight into Polγ aids in an understanding of mitochondrial DNA replication and characterizes how machinery of the replication fork may be targeted for proteolytic degradation when improperly functioning.


Subject(s)
DNA Polymerase gamma , DNA Replication , DNA, Mitochondrial , Mitochondrial Proteins , Polymerization , Proteolysis , DNA Polymerase gamma/metabolism , DNA Polymerase gamma/genetics , Humans , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/chemistry , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/chemistry , ATP-Dependent Proteases/metabolism , ATP-Dependent Proteases/genetics
10.
Cancer Genomics Proteomics ; 21(4): 399-404, 2024.
Article in English | MEDLINE | ID: mdl-38944428

ABSTRACT

BACKGROUND/AIM: BRCA1/2 mutations in breast cancer cells impair homologous recombination and promote alternative end joining (Alt-EJ) for DNA-damage repair. DNA polymerase theta, encoded by POLQ, plays a crucial role in Alt-EJ, making it a potential therapeutic target, particularly in BRCA1/2-mutant cancers. Methionine restriction is a promising approach to target cancer cells due to their addiction to this amino acid. The present study investigated the expression of POLQ in BRCA1/2 wild-type and BRCA1-mutant breast cancer cells under methionine restriction. MATERIALS AND METHODS: POLQ mRNA expression was measured using qRT-PCR in BRCA1/2 wild-type (MDA-MB-231) and BRCA1- mutant (HCC1937 and MDA-MB-436) breast-cancer cells under normal, or serum-restricted, or serum- and methionine-restricted conditions. RESULTS: Compared to BRCA1/2 wild-type cells, BRCA1-mutant cells displayed significantly higher basal POLQ expression in normal medium. Methionine restriction further increased POLQ expression in the BRCA1-mutant cells but decreased it in the BRCA1/2 wild-type cells. CONCLUSION: The present findings suggest that methionine restriction showed differential effects on POLQ expression, potentially impacting Alt-EJ activity, in BRCA1/2 wild-type and BRCA1-mutant breast-cancer cells. Further investigation is needed to explore the potential of combining methionine restriction with DNA-repair inhibitors, such as PARP inhibitors, to overcome drug resistance in BRCA1/2 mutant cancers.


Subject(s)
BRCA1 Protein , Breast Neoplasms , DNA Polymerase theta , Methionine , Mutation , Humans , Methionine/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , DNA Repair , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , BRCA2 Protein/genetics , BRCA2 Protein/metabolism
11.
Proc Natl Acad Sci U S A ; 121(25): e2320782121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38875150

ABSTRACT

Human bocavirus 1 (HBoV1) is a human parvovirus that causes lower respiratory tract infections in young children. It contains a single-stranded (ss) DNA genome of ~5.5 kb that encodes a small noncoding RNA of 140 nucleotides known as bocavirus-encoded small RNA (BocaSR), in addition to viral proteins. Here, we determined the secondary structure of BocaSR in vivo by using DMS-MaPseq. Our findings reveal that BocaSR undergoes N6-methyladenosine (m6A) modification at multiple sites, which is critical for viral DNA replication in both dividing HEK293 cells and nondividing cells of the human airway epithelium. Mechanistically, we found that m6A-modified BocaSR serves as a mediator for recruiting Y-family DNA repair DNA polymerase (Pol) η and Pol κ likely through a direct interaction between BocaSR and the viral DNA replication origin at the right terminus of the viral genome. Thus, this report represents direct involvement of a viral small noncoding RNA in viral DNA replication through m6A modification.


Subject(s)
Adenosine , DNA Replication , DNA, Viral , DNA-Directed DNA Polymerase , RNA, Viral , Virus Replication , Humans , Adenosine/analogs & derivatives , Adenosine/metabolism , Virus Replication/genetics , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , DNA, Viral/genetics , DNA, Viral/metabolism , HEK293 Cells , RNA, Viral/genetics , RNA, Viral/metabolism , Human bocavirus/genetics , Human bocavirus/metabolism , Genome, Viral/genetics , Parvoviridae Infections/virology
12.
Int J Biol Sci ; 20(8): 2860-2880, 2024.
Article in English | MEDLINE | ID: mdl-38904024

ABSTRACT

Mitochondrial diseases are associated with neuronal death and mtDNA depletion. Astrocytes respond to injury or stimuli and damage to the central nervous system. Neurodegeneration can cause astrocytes to activate and acquire toxic functions that induce neuronal death. However, astrocyte activation and its impact on neuronal homeostasis in mitochondrial disease remain to be explored. Using patient cells carrying POLG mutations, we generated iPSCs and then differentiated these into astrocytes. POLG astrocytes exhibited mitochondrial dysfunction including loss of mitochondrial membrane potential, energy failure, loss of complex I and IV, disturbed NAD+/NADH metabolism, and mtDNA depletion. Further, POLG derived astrocytes presented an A1-like reactive phenotype with increased proliferation, invasion, upregulation of pathways involved in response to stimulus, immune system process, cell proliferation and cell killing. Under direct and indirect co-culture with neurons, POLG astrocytes manifested a toxic effect leading to the death of neurons. We demonstrate that mitochondrial dysfunction caused by POLG mutations leads not only to intrinsic defects in energy metabolism affecting both neurons and astrocytes, but also to neurotoxic damage driven by astrocytes. These findings reveal a novel role for dysfunctional astrocytes that contribute to the pathogenesis of POLG diseases.


Subject(s)
Astrocytes , DNA Polymerase gamma , DNA-Directed DNA Polymerase , Mitochondria , Mutation , Astrocytes/metabolism , DNA Polymerase gamma/genetics , DNA Polymerase gamma/metabolism , Humans , Mitochondria/metabolism , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Neurons/metabolism , Membrane Potential, Mitochondrial , Induced Pluripotent Stem Cells/metabolism , Cells, Cultured , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Coculture Techniques
13.
J Biol Chem ; 300(7): 107461, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876299

ABSTRACT

Theta-mediated end joining (TMEJ) is critical for survival of cancer cells when other DNA double-stranded break repair pathways are impaired. Human DNA polymerase theta (Pol θ) can extend ssDNA oligonucleotides, but little is known about preferred substrates and mechanism. We show that Pol θ can extend both ssDNA and RNA substrates by unimolecular stem-loop synthesis initiated by only two 3' terminal base pairs. Given sufficient time, Pol θ uses alternative pairing configurations that greatly expand the repertoire of sequence outcomes. Further primer-template adjustments yield low-fidelity outcomes when the nucleotide pool is imbalanced. Unimolecular stem-loop synthesis competes with bimolecular end joining, even when a longer terminal microhomology for end joining is available. Both reactions are partially suppressed by the ssDNA-binding protein replication protein A. Protein-primer grasp residues that are specific to Pol θ are needed for rapid stem-loop synthesis. The ability to perform stem-loop synthesis from a minimally paired primer is rare among human DNA polymerases, but we show that human DNA polymerases Pol η and Pol λ can catalyze related reactions. Using purified human Pol θ, we reconstituted in vitro TMEJ incorporating an insertion arising from a stem-loop extension. These activities may help explain TMEJ repair events that include inverted repeat sequences.


Subject(s)
DNA Polymerase theta , DNA-Directed DNA Polymerase , Humans , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , DNA, Single-Stranded/chemistry , DNA End-Joining Repair , DNA Repair , Replication Protein A/metabolism , Replication Protein A/genetics , DNA Polymerase beta/metabolism , DNA Polymerase beta/genetics , DNA Polymerase beta/chemistry
14.
Nucleic Acids Res ; 52(14): 8320-8331, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38917325

ABSTRACT

Replication repriming by the specialized primase-polymerase PRIMPOL ensures the continuity of DNA synthesis during replication stress. PRIMPOL activity generates residual post-replicative single-stranded nascent DNA gaps, which are linked with mutagenesis and chemosensitivity in BRCA1/2-deficient models, and which are suppressed by replication fork reversal mediated by the DNA translocases SMARCAL1 and ZRANB3. Here, we report that the MRE11 regulator MRNIP limits the prevalence of PRIMPOL and MRE11-dependent ssDNA gaps in cells in which fork reversal is perturbed either by treatment with the PARP inhibitor Olaparib, or by depletion of SMARCAL1 or ZRANB3. MRNIP-deficient cells are sensitive to PARP inhibition and accumulate PRIMPOL-dependent DNA damage, supportive of a pro-survival role for MRNIP linked to the regulation of gap prevalence. In MRNIP-deficient cells, post-replicative gap filling is driven in S-phase by UBC13-mediated template switching involving REV1 and the TLS polymerase Pol-ζ. Our findings represent the first report of modulation of post-replicative ssDNA gap dynamics by a direct MRE11 regulator.


Subject(s)
DNA Helicases , DNA Primase , DNA Replication , DNA, Single-Stranded , DNA-Directed DNA Polymerase , MRE11 Homologue Protein , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , MRE11 Homologue Protein/metabolism , MRE11 Homologue Protein/genetics , Humans , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , DNA Primase/metabolism , DNA Primase/genetics , DNA Helicases/metabolism , DNA Helicases/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA Damage , Phthalazines/pharmacology , Piperazines/pharmacology , Multifunctional Enzymes/genetics , Multifunctional Enzymes/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Carrier Proteins/metabolism , Carrier Proteins/genetics
15.
Cancer Lett ; 597: 217063, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38925361

ABSTRACT

In this study we have identified POLθ-S6K-p62 as a novel druggable regulator of radiation response in prostate cancer. Despite significant advances in delivery, radiotherapy continues to negatively affect treatment outcomes and quality of life due to resistance and late toxic effects to the surrounding normal tissues such as bladder and rectum. It is essential to develop new and effective strategies to achieve better control of tumor. We found that ribosomal protein S6K (RPS6KB1) is elevated in human prostate tumors, and contributes to resistance to radiation. As a downstream effector of mTOR signaling, S6K is known to be involved in growth regulation. However, the impact of S6K signaling on radiation response has not been fully explored. Here we show that loss of S6K led to formation of smaller tumors with less metastatic ability in mice. Mechanistically we found that S6K depletion reduced NFκB and SQSTM1 (p62) reporter activity and DNA polymerase θ (POLθ) that is involved in alternate end-joining repair. We further show that the natural compound berberine interacts with S6K in a in a hitherto unreported novel mode and that pharmacological inhibition of S6K with berberine reduces Polθ and downregulates p62 transcriptional activity via NFκB. Loss of S6K or pre-treatment with berberine improved response to radiation in prostate cancer cells and prevented radiation-mediated resurgence of PSA in animals implanted with prostate cancer cells. Notably, silencing POLQ in S6K overexpressing cells enhanced response to radiation suggesting S6K sensitizes prostate cancer cells to radiation via POLQ. Additionally, inhibition of autophagy with CQ potentiated growth inhibition induced by berberine plus radiation. These observations suggest that pharmacological inhibition of S6K with berberine not only downregulates NFκB/p62 signaling to disrupt autophagic flux but also decreases Polθ. Therefore, combination treatment with radiation and berberine inhibits autophagy and alternate end-joining DNA repair, two processes associated with radioresistance leading to increased radiation sensitivity.


Subject(s)
NF-kappa B , Prostatic Neoplasms , Radiation Tolerance , Sequestosome-1 Protein , Signal Transduction , Male , Animals , Humans , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/drug therapy , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , NF-kappa B/metabolism , NF-kappa B/genetics , Signal Transduction/drug effects , Mice , Radiation Tolerance/drug effects , Cell Line, Tumor , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/genetics
16.
Int J Biol Macromol ; 269(Pt 2): 131965, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697428

ABSTRACT

In A-family DNA polymerases (dPols), a functional 3'-5' exonuclease activity is known to proofread newly synthesized DNA. The identification of a mismatch in substrate DNA leads to transfer of the primer strand from the polymerase active site to the exonuclease active site. To shed more light regarding the mechanism responsible for the detection of mismatches, we have utilized DNA polymerase 1 from Aquifex pyrophilus (ApPol1). The enzyme synthesized DNA with high fidelity and exhibited maximal exonuclease activity with DNA substrates bearing mismatches at the -2 and - 3 positions. The crystal structure of apo-ApPol1 was utilized to generate a computational model of the functional ternary complex of this enzyme. The analysis of the model showed that N332 forms interactions with minor groove atoms of the base pairs at the -2 and - 3 positions. The majority of known A-family dPols show the presence of Asn at a position equivalent to N332. The N332L mutation led to a decrease in the exonuclease activity for representative purine-pyrimidine, and pyrimidine-pyrimidine mismatches at -2 and - 3 positions, respectively. Overall, our findings suggest that conserved polar residues located towards the minor groove may facilitate the detection of position-specific mismatches to enhance the fidelity of DNA synthesis.


Subject(s)
Base Pair Mismatch , Models, Molecular , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , DNA/chemistry , DNA/metabolism , DNA/genetics , Catalytic Domain , Conserved Sequence , Amino Acid Sequence , Mutation , DNA Polymerase I/chemistry , DNA Polymerase I/metabolism , DNA Polymerase I/genetics , Substrate Specificity
17.
Nat Commun ; 15(1): 4057, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744910

ABSTRACT

With just four building blocks, low sequence information density, few functional groups, poor control over folding, and difficulties in forming compact folds, natural DNA and RNA have been disappointing platforms from which to evolve receptors, ligands, and catalysts. Accordingly, synthetic biology has created "artificially expanded genetic information systems" (AEGIS) to add nucleotides, functionality, and information density. With the expected improvements seen in AegisBodies and AegisZymes, the task for synthetic biologists shifts to developing for expanded DNA the same analytical tools available to natural DNA. Here we report one of these, an enzyme-assisted sequencing of expanded genetic alphabet (ESEGA) method to sequence six-letter AEGIS DNA. We show how ESEGA analyses this DNA at single base resolution, and applies it to optimized conditions for six-nucleotide PCR, assessing the fidelity of various DNA polymerases, and extending this to AEGIS components with functional groups. This supports the renewed exploitation of expanded DNA alphabets in biotechnology.


Subject(s)
DNA , High-Throughput Nucleotide Sequencing , High-Throughput Nucleotide Sequencing/methods , DNA/genetics , DNA/metabolism , Synthetic Biology/methods , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Polymerase Chain Reaction/methods , Base Sequence , Sequence Analysis, DNA/methods
19.
Nucleic Acids Res ; 52(12): 7292-7304, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38806233

ABSTRACT

Herpes simplex virus 1 (HSV-1), a double-stranded DNA virus, replicates using seven essential proteins encoded by its genome. Among these, the UL30 DNA polymerase, complexed with the UL42 processivity factor, orchestrates leading and lagging strand replication of the 152 kb viral genome. UL30 polymerase is a prime target for antiviral therapy, and resistance to current drugs can arise in immunocompromised individuals. Using electron cryo-microscopy (cryo-EM), we unveil the dynamic changes of the UL30/UL42 complex with DNA in three distinct states. First, a pre-translocation state with an open fingers domain ready for nucleotide incorporation. Second, a halted elongation state where the fingers close, trapping dATP in the dNTP pocket. Third, a DNA-editing state involving significant conformational changes to allow DNA realignment for exonuclease activity. Additionally, the flexible UL30 C-terminal domain interacts with UL42, forming an extended positively charged surface binding to DNA, thereby enhancing processive synthesis. These findings highlight substantial structural shifts in the polymerase and its DNA interactions during replication, offering insights for future antiviral drug development.


Subject(s)
Cryoelectron Microscopy , DNA, Viral , DNA-Directed DNA Polymerase , Herpesvirus 1, Human , Viral Proteins , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/genetics , Viral Proteins/metabolism , Viral Proteins/chemistry , Viral Proteins/ultrastructure , Herpesvirus 1, Human/enzymology , Herpesvirus 1, Human/genetics , DNA, Viral/metabolism , DNA, Viral/biosynthesis , DNA Replication , Holoenzymes/chemistry , Holoenzymes/metabolism , Models, Molecular , Virus Replication , Protein Binding , Exodeoxyribonucleases
20.
Proc Natl Acad Sci U S A ; 121(23): e2400667121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38758693

ABSTRACT

In the mid-1950s, Arthur Kornberg elucidated the enzymatic synthesis of DNA by DNA polymerase, for which he was recognized with the 1959 Nobel Prize in Physiology or Medicine. He then identified many of the proteins that cooperate with DNA polymerase to replicate duplex DNA of small bacteriophages. However, one major unanswered problem was understanding the mechanism and control of the initiation of chromosome replication in bacteria. In a seminal paper in 1981, Fuller, Kaguni, and Kornberg reported the development of a cell-free enzyme system that could replicate DNA that was dependent on the bacterial origin of DNA replication, oriC. This advance opened the door to a flurry of discoveries and important papers that elucidated the process and control of initiation of chromosome replication in bacteria.


Subject(s)
Chromosomes, Bacterial , DNA Replication , Chromosomes, Bacterial/genetics , Chromosomes, Bacterial/metabolism , History, 20th Century , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Bacteria/genetics , Bacteria/metabolism , DNA, Bacterial/metabolism , DNA, Bacterial/genetics
SELECTION OF CITATIONS
SEARCH DETAIL