Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.933
1.
Acta Cir Bras ; 39: e391624, 2024.
Article En | MEDLINE | ID: mdl-38808816

PURPOSE: To evaluate the chemotherapeutic activity of temozolomide counter to mammary carcinoma. METHODS: In-vitro anticancer activity has been conducted on MCF7 cells, and mammary carcinoma has been induced in Wistar rats by introduction of 7, 12-Dimethylbenz(a)anthracene (DMBA), which was sustained for 24 weeks. Histopathology, immunohistochemistry, cell proliferation study and apoptosis assay via TUNEL method was conducted to evaluate an antineoplastic activity of temozolomide in rat breast tissue. RESULTS: IC50 value of temozolomide in MCF7 cell has been obtained as 103 µM, which demonstrated an initiation of apoptosis. The temozolomide treatment facilitated cell cycle arrest in G2/M and S phase dose dependently. The treatment with temozolomide suggested decrease of the hyperplastic abrasions and renovation of the typical histological features of mammary tissue. Moreover, temozolomide therapy caused the downregulation of epidermal growth factor receptor, extracellular signal-regulated kinase, and metalloproteinase-1 expression and upstream of p53 and caspase-3 proliferation to indicate an initiation of apoptotic events. CONCLUSIONS: The occurrence of mammary carcinoma has been significantly decreased by activation of apoptotic pathway and abrogation of cellular propagation that allowable for developing a suitable mechanistic pathway of temozolomide in order to facilitate chemotherapeutic approach.


Antineoplastic Agents, Alkylating , Apoptosis , ErbB Receptors , Rats, Wistar , Temozolomide , Temozolomide/pharmacology , Temozolomide/therapeutic use , Animals , Apoptosis/drug effects , Female , ErbB Receptors/drug effects , ErbB Receptors/antagonists & inhibitors , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Matrix Metalloproteinase 1/drug effects , Matrix Metalloproteinase 1/metabolism , Cell Proliferation/drug effects , Dacarbazine/analogs & derivatives , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Humans , MCF-7 Cells , Extracellular Signal-Regulated MAP Kinases/metabolism , Extracellular Signal-Regulated MAP Kinases/drug effects , Immunohistochemistry , Reproducibility of Results , Rats , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/pathology
2.
BMJ Case Rep ; 17(5)2024 May 21.
Article En | MEDLINE | ID: mdl-38772873

Vanishing bile duct syndrome is an uncommon condition characterised by the progressive loss and disappearance of bile ducts. It is an acquired form of cholestatic liver disease presenting with hepatic ductopenia (loss of >50% bile ducts in the portal areas). We present a case of vanishing bile duct syndrome as a presentation of Hodgkin's lymphoma who was treated with standard-of-care chemotherapy-doxorubicin, bleomycin, vinblastine and dacarbazine (along with brief administration of rituximab), which led to complete response and normalisation of liver function.


Antineoplastic Combined Chemotherapy Protocols , Bleomycin , Hodgkin Disease , Adult , Female , Humans , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bile Duct Diseases/diagnosis , Bleomycin/administration & dosage , Bleomycin/therapeutic use , Dacarbazine/therapeutic use , Dacarbazine/administration & dosage , Doxorubicin/therapeutic use , Hodgkin Disease/complications , Hodgkin Disease/drug therapy , Hodgkin Disease/diagnosis , Rituximab/therapeutic use , Rituximab/administration & dosage , Syndrome , Vinblastine/therapeutic use , Vinblastine/administration & dosage
3.
Indian J Med Res ; 159(2): 193-205, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38577858

BACKGROUND OBJECTIVES: The role of consolidation radiation therapy (CRT) after complete metabolic response to chemotherapy in advanced-stage (stage III and IV) Hodgkin lymphoma (HL) is controversial. This study was undertaken to assess the clinical outcomes in terms of event free survival, local failure free survival and overall survival in individuals with advanced HL treated with chemotherapy and CRT. METHODS: A retrospective review was conducted to study the long-term clinical outcomes in individuals diagnosed with HL and treated with chemotherapy and CRT from 2012 to 2016 at a tertiary cancer care hospital in India. RESULTS: Data from 203 study participants with advanced-stage HL were analyzed. Positron emission tomography-computed tomography (PET-CT) was done at baseline and after 2 cycles for response assessment. The median age at presentation was 32 yr [interquartile range (IQR): 26-46]. Early metabolic response (after 2 cycles) and delayed metabolic response (after 4 or 6 cycles) were observed in 74.4 and 25.6 per cent of individuals, respectively. With a median follow up of 52 months (IQR: 40-67), the five-year event-free survival (EFS), local failure-free survival (LFFS) and overall survival (OS) were 83.2, 95.1 and 94.6 per cent, respectively. On univariate analysis, extranodal disease was associated with inferior EFS (P=0.043). Haemoglobin <10.5 g/dl (P=0.002) and Hasenclever index >3 (P=0.00047) were associated with poorer OS. Relapses were observed in 28/203 (13.8%) study participants with predominance at central nodal stations. The median time to relapse was 19.4 months (IQR: 13-33). Local relapse alone (at the irradiated site) was observed in 5/28 study participants, systemic (distant) relapse in 14/28 individuals, while both systemic and local relapse was observed in 9/28 participants. Extranodal disease (P=0.05), bulky disease (P=0.005) and haemoglobin concentration ≤10.5 g/dl (P=0.036) were significant predictors for disease relapse. INTERPRETATION CONCLUSIONS: Individuals with advanced-stage HL treated with anthracycline-based chemotherapy (anthracycline-based chemotherapy with doxorubicin, bleomycin, vinblastine and dacarbazine regimen) and CRT had excellent long-term outcomes. As isolated infield failures are uncommon, selective consolidation with conformal RT to high-risk sites improves final disease outcomes.


Hodgkin Disease , Humans , Hodgkin Disease/diagnostic imaging , Hodgkin Disease/drug therapy , Retrospective Studies , Positron Emission Tomography Computed Tomography , Dacarbazine/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoplasm Recurrence, Local/diagnostic imaging , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Combined Modality Therapy , Doxorubicin , Recurrence , Hemoglobins , Neoplasm Staging , Treatment Outcome
4.
CNS Neurosci Ther ; 30(4): e14711, 2024 04.
Article En | MEDLINE | ID: mdl-38644551

OBJECTIVE: To elucidate the relationship between USP19 and O(6)-methylguanine-DNA methyltransferase (MGMT) after temozolomide treatment in glioblastoma (GBM) patients with chemotherapy resistance. METHODS: Screening the deubiquitinase pannel and identifying the deubiquitinase directly interacts with and deubiquitination MGMT. Deubiquitination assay to confirm USP19 deubiquitinates MGMT. The colony formation and tumor growth study in xenograft assess USP19 affects the GBM sensitive to TMZ was performed by T98G, LN18, U251, and U87 cell lines. Immunohistochemistry staining and survival analysis were performed to explore how USP19 is correlated to MGMT in GBM clinical management. RESULTS: USP19 removes the ubiquitination of MGMT to facilitate the DNA methylation damage repair. Depletion of USP19 results in the glioblastoma cell sensitivity to temozolomide, which can be rescued by overexpressing MGMT. USP19 is overexpressed in glioblastoma patient samples, which positively correlates with the level of MGMT protein and poor prognosis in these patients. CONCLUSION: The regulation of MGMT ubiquitination by USP19 plays a critical role in DNA methylation damage repair and GBM patients' temozolomide chemotherapy response.


Antineoplastic Agents, Alkylating , DNA Methylation , DNA Modification Methylases , DNA Repair Enzymes , Drug Resistance, Neoplasm , Temozolomide , Tumor Suppressor Proteins , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , DNA Modification Methylases/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , DNA Methylation/drug effects , Mice, Nude , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Mice , Male , Female , Dacarbazine/analogs & derivatives , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , DNA Repair/drug effects , Endopeptidases/metabolism , Endopeptidases/genetics , Xenograft Model Antitumor Assays , Ubiquitination/drug effects
5.
Cancer Lett ; 588: 216812, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38490327

The efficacy of temozolomide (TMZ) treatment in glioblastoma (GBM) is influenced by various mechanisms, mainly including the level of O6-methylguanine-DNA methyltransferase (MGMT) and the activity of DNA damage repair (DDR) pathways. In our previous study, we had proved that long non-coding RNA HOTAIR regulated the GBM progression and mediated DDR by interacting with EZH2, the catalytic subunit of PRC2. In this study, we developed a small-molecule inhibitor called EPIC-0628 that selectively disrupted the HOTAIR-EZH2 interaction and promoted ATF3 expression. The upregulation of ATF3 inhibited the recruitment of p300, p-p65, p-Stat3 and SP1 to the MGMT promoter. Hence, EPIC-0628 silenced MGMT expression. Besides, EPIC-0628 induced cell cycle arrest by increasing the expression of CDKN1A and impaired DNA double-strand break repair via suppressing the ATF3-p38-E2F1 pathway. Lastly, EPIC-0628 enhanced TMZ efficacy in GBM in vitro and vivo. Hence, this study provided evidence for the combination of epigenetic drugs EPIC-0628 with TMZ for GBM treatment through the above mechanisms.


Glioblastoma , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Dacarbazine/pharmacology , Cell Line, Tumor , DNA Repair Enzymes/genetics , O(6)-Methylguanine-DNA Methyltransferase/metabolism , DNA Breaks, Double-Stranded , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , Drug Resistance, Neoplasm , Enhancer of Zeste Homolog 2 Protein/genetics , Activating Transcription Factor 3/genetics
6.
J Neurooncol ; 167(1): 145-154, 2024 Mar.
Article En | MEDLINE | ID: mdl-38457090

PURPOSE: Adult Diffuse midline glioma (DMG) is a very rare disease. DMGs are currently treated with radiotherapy and chemotherapy even if only a few retrospective studies assessed the impact on overall survival (OS) of these approaches. METHODS: We carried out an Italian multicentric retrospective study of adult patients with H3K27-altered DMG to assess the effective role of systemic therapy in the treatment landscape of this rare tumor type. RESULTS: We evaluated 49 patients from 6 Institutions. The median age was 37.3 years (range 20.1-68.3). Most patients received biopsy as primary approach (n = 30, 61.2%) and radiation therapy after surgery (n = 39, 79.6%). 25 (51.0%) of patients received concurrent chemotherapy and 26 (53.1%) patients received adjuvant temozolomide. In univariate analysis, concurrent chemotherapy did not result in OS improvement while adjuvant temozolomide was associated with longer OS (21.2 vs. 9.0 months, HR 0.14, 0.05-0.41, p < 0.001). Multivariate analysis confirmed the role of adjuvant chemotherapy (HR 0.1, 95%CI: 0.03-0.34, p = 0.003). In patients who progressed after radiation and/or chemotherapy the administration of a second-line systemic treatment had a significantly favorable impact on survival (8.0 vs. 3.2 months, HR 0.2, 95%CI 0.1-0.65, p = 0.004). CONCLUSION: In our series, adjuvant treatment after radiotherapy can be useful in improving OS of patients with H3K27-altered DMG. When feasible another systemic treatment after treatment progression could be proposed.


Brain Neoplasms , Glioma , Adult , Humans , Young Adult , Middle Aged , Aged , Temozolomide/therapeutic use , Retrospective Studies , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Antineoplastic Agents, Alkylating/therapeutic use , Glioma/drug therapy , Glioma/pathology , Dacarbazine/therapeutic use , Chemotherapy, Adjuvant
8.
Eur J Cancer ; 202: 114004, 2024 May.
Article En | MEDLINE | ID: mdl-38493668

BACKGROUND: Glioblastoma (GBM) is the most common devastating primary brain cancer in adults. In our clinical practice, median overall survival (mOS) of GBM patients seems increasing over time. METHODS: To address this observation, we have retrospectively analyzed the prognosis of 722 newly diagnosed GBM patients, aged below 70, in good clinical conditions (i.e. Karnofsky Performance Status -KPS- above 70%) and treated in our department according to the standard of care (SOC) between 2005 and 2018. Patients were divided into two groups according to the year of diagnosis (group 1: from 2005 to 2012; group 2: from 2013 to 2018). RESULTS: Characteristics of patients and tumors of both groups were very similar regarding confounding factors (age, KPS, MGMT promoter methylation status and treatments). Follow-up time was fixed at 24 months to ensure comparable survival times between both groups. Group 1 patients had a mOS of 19 months ([17.3-21.3]) while mOS of group 2 patients was not reached. The recent period of diagnosis was significantly associated with a longer mOS in univariate analysis (HR=0.64, 95% CI [0.51 - 0.81]), p < 0.001). Multivariate Cox analysis showed that the period of diagnosis remained significantly prognostic after adjustment on confounding factors (adjusted Hazard Ratio (aHR) 0.49, 95% CI [0.36-0.67], p < 0.001). CONCLUSION: This increase of mOS over time in newly diagnosed GBM patients could be explained by better management of potentially associated non-neurological diseases, optimization of validated SOC, better management of treatments side effects, supportive care and participation in clinical trials.


Brain Neoplasms , Glioblastoma , Adult , Humans , Aged , Glioblastoma/therapy , Glioblastoma/drug therapy , Temozolomide/therapeutic use , Dacarbazine/therapeutic use , Antineoplastic Agents, Alkylating/therapeutic use , Retrospective Studies , Brain Neoplasms/therapy , Brain Neoplasms/drug therapy , Prognosis
9.
ACS Appl Bio Mater ; 7(3): 1810-1819, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38403964

Polymer-drug conjugates (PDCs) provide possibilities for the development of multiresponsive drug delivery and release platforms utilized in cancer therapy. The delivery of Temozolomide (TMZ, a DNA methylation agent) by PDCs has been developed to improve TMZ stability under physiological conditions for the treatment of glioblastoma multiforme (GBM); however, with inefficient chemotherapeutic efficacy. In this work, we synthesized an amphiphilic triblock copolymer (P1-SNO) with four pendant functionalities, including (1) a TMZ intermediate (named MTIC) as a prodrug moiety, (2) a disulfide bond as a redox-responsive trigger to cage MTIC, (3) S-nitrosothiol as a light/heat-responsive donor of nitric oxide (NO), and (4) a poly(ethylene glycol) chain to enable self-assembly in aqueous media. P1-SNO was demonstrated to liberate MTIC in the presence of reduced glutathione and release gaseous NO upon exposure to light or heat. The in vitro results revealed a synergistic effect of released MTIC and NO on both TMZ-sensitive and TMZ-resistant GBM cells. The environment-responsive PDC system for codelivery of MTIC and NO is promising to overcome the efficacy issue in TMZ-based cancer therapy.


Dacarbazine/analogs & derivatives , Glioblastoma , Prodrugs , Humans , Temozolomide/pharmacology , Temozolomide/chemistry , Glioblastoma/drug therapy , Nitric Oxide , Polymers , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Prodrugs/pharmacology , Prodrugs/therapeutic use
11.
J Med Chem ; 67(4): 2425-2437, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38346097

Temozolomide (TMZ) is a DNA alkylating agent that produces objective responses in patients with neuroendocrine tumors (NETs) when the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) is inactivated. At high doses, TMZ therapy exhausts MGMT activity but also produces dose-limiting toxicities. To reduce off-target effects, we converted the clinically approved radiotracer 68Ga-DOTA-TOC into a peptide-drug conjugate (PDC) for targeted delivery of TMZ to somatostatin receptor subtype-2 (SSTR2)-positive tumor cells. We used an integrated radiolabeling strategy for direct quantitative assessment of receptor binding, pharmacokinetics, and tissue biodistribution. In vitro studies revealed selective binding to SSTR2-positive cells with high affinity (5.98 ± 0.96 nmol/L), internalization, receptor-dependent DNA damage, cytotoxicity, and MGMT depletion. Imaging and biodistribution analysis showed preferential accumulation of the PDC in receptor-positive tumors and high renal clearance. This study identified a trackable SSTR2-targeting system for TMZ delivery and utilizes a modular design that could be broadly applied in PDC development.


Dacarbazine , Receptors, Somatostatin , Humans , Temozolomide/pharmacology , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , Receptors, Somatostatin/metabolism , Tissue Distribution , O(6)-Methylguanine-DNA Methyltransferase/genetics , O(6)-Methylguanine-DNA Methyltransferase/metabolism , DNA Repair Enzymes/metabolism , DNA Modification Methylases/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Cell Line, Tumor
12.
Cells ; 13(3)2024 Feb 02.
Article En | MEDLINE | ID: mdl-38334668

Glioblastoma multiforme (GBM) is usually treated with surgery followed by adjuvant partial radiotherapy combined with temozolomide (TMZ) chemotherapy. Recent studies demonstrated a better survival and good response to TMZ in methylguanine-DNA methyltransferase (MGMT)-methylated GBM cases. However, approximately 20% of patients with MGMT-unmethylated GBM display an unexpectedly favorable outcome. Therefore, additional mechanisms related to the TMZ response need to be investigated. As such, we decided to investigate the clinical relevance of six miRNAs involved in brain tumorigenesis (miR-181c, miR-181d, miR-21, miR-195, miR-196b, miR-648) as additional markers of response and survival in patients receiving TMZ for GBM. We evaluated miRNA expression and the interplay between miRNAs in 112 IDH wt GBMs by applying commercial assays. Then, we correlated the miRNA expression with patients' clinical outcomes. Upon bivariate analyses, we found a significant association between the expression levels of the miRNAs analyzed, but, more interestingly, the OS curves show that the combination of low miR-648 and miR-181c or miR-181d expressions is associated with a worse prognosis than cases with other low-expression miRNA pairs. To conclude, we found how specific miRNA pairs can influence survival in GBM cases treated with TMZ.


Glioblastoma , MicroRNAs , Humans , Glioblastoma/metabolism , MicroRNAs/metabolism , Dacarbazine/therapeutic use , Clinical Relevance , Temozolomide/pharmacology , Temozolomide/therapeutic use
13.
J Clin Oncol ; 42(10): 1135-1145, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38190578

PURPOSE: Outcomes for children with relapsed and refractory high-risk neuroblastoma (RR-HRNB) remain dismal. The BEACON Neuroblastoma trial (EudraCT 2012-000072-42) evaluated three backbone chemotherapy regimens and the addition of the antiangiogenic agent bevacizumab (B). MATERIALS AND METHODS: Patients age 1-21 years with RR-HRNB with adequate organ function and performance status were randomly assigned in a 3 × 2 factorial design to temozolomide (T), irinotecan-temozolomide (IT), or topotecan-temozolomide (TTo) with or without B. The primary end point was best overall response (complete or partial) rate (ORR) during the first six courses, by RECIST or International Neuroblastoma Response Criteria for patients with measurable or evaluable disease, respectively. Safety, progression-free survival (PFS), and overall survival (OS) time were secondary end points. RESULTS: One hundred sixty patients with RR-HRNB were included. For B random assignment (n = 160), the ORR was 26% (95% CI, 17 to 37) with B and 18% (95% CI, 10 to 28) without B (risk ratio [RR], 1.52 [95% CI, 0.83 to 2.77]; P = .17). Adjusted hazard ratio for PFS and OS were 0.89 (95% CI, 0.63 to 1.27) and 1.01 (95% CI, 0.70 to 1.45), respectively. For irinotecan ([I]; n = 121) and topotecan (n = 60) random assignments, RRs for ORR were 0.94 and 1.22, respectively. A potential interaction between I and B was identified. For patients in the bevacizumab-irinotecan-temozolomide (BIT) arm, the ORR was 23% (95% CI, 10 to 42), and the 1-year PFS estimate was 0.67 (95% CI, 0.47 to 0.80). CONCLUSION: The addition of B met protocol-defined success criteria for ORR and appeared to improve PFS. Within this phase II trial, BIT showed signals of antitumor activity with acceptable tolerability. Future trials will confirm these results in the chemoimmunotherapy era.


Neuroblastoma , Topotecan , Child , Humans , Infant , Child, Preschool , Adolescent , Young Adult , Adult , Temozolomide/therapeutic use , Irinotecan/therapeutic use , Topotecan/adverse effects , Bevacizumab/adverse effects , Dacarbazine/adverse effects , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Neuroblastoma/pathology , Antineoplastic Combined Chemotherapy Protocols/adverse effects
14.
Clin Genitourin Cancer ; 22(2): 413-419, 2024 04.
Article En | MEDLINE | ID: mdl-38228412

INTRODUCTION: Metastatic disease affects approximately 15% to 17% of patients with pheochromocytomas and paragangliomas (PPGLs). Unfortunately, treatment options for metastatic PPGLs are limited and rely on small, nonrandomized clinical trials. The impact of germline mutation status on systemic treatment outcomes remains unclear. To address these gaps, we retrospectively evaluated treatment outcomes in patients with PPGL. PATIENTS AND METHODS: Between December 2004 and December 2021, 33 patients were diagnosed with metastatic PPGLs and received systemic treatment at the Department of Oncology, Asan Medical Center, Seoul, South Korea. RESULTS: The median age of the patients was 49. Germline mutations were revealed in nine patients (39.1%) out of 23 who underwent germline testing, with SDHB mutation being the most frequent in 5 patients. Cyclophosphamide, vincristine, and dacarbazine (CVD) chemotherapy was administered to 18 patients, with an objective response rate (ORR) of 22% and a disease control rate (DCR) of 67%. The median progression-free survival (PFS) was 7.9 and the median overall survival (OS) was 36.2 months. Sunitinib was given to 6 patients, which had an ORR of 33%, a DCR of 83%, and a median PFS of 14.6 months. Notably, patients with SDHB/SDHD mutation (4 patients and one patient, respectively) who received CVD treatment had a significantly better OS than those without (median OS 94.0 months vs. 13.7 months, P = .01). CONCLUSION: Our study reveals that CVD and sunitinib are effective treatments for metastatic PPGLs. The results are consistent with previous studies and patients with SDHB and SDHD mutations may benefit most from CVD treatment.


Adrenal Gland Neoplasms , Cardiovascular Diseases , Paraganglioma , Pheochromocytoma , Humans , Pheochromocytoma/drug therapy , Pheochromocytoma/genetics , Pheochromocytoma/diagnosis , Germ-Line Mutation , Retrospective Studies , Sunitinib/therapeutic use , Succinate Dehydrogenase/genetics , Paraganglioma/drug therapy , Paraganglioma/genetics , Dacarbazine/therapeutic use , Adrenal Gland Neoplasms/drug therapy , Adrenal Gland Neoplasms/genetics , Adrenal Gland Neoplasms/diagnosis , Cyclophosphamide/therapeutic use
15.
Brain Tumor Pathol ; 41(2): 80-84, 2024 Apr.
Article En | MEDLINE | ID: mdl-38294664

Oligodendrogliomas characterized and defined by 1p/19q co-deletion are slowly growing tumors showing better prognosis than astrocytomas. TP53 mutation is rare in oligodendrogliomas while the vast majority of astrocytomas harbor the mutation, making TP53 mutation mutually exclusive with 1p/19q codeletion in lower grade gliomas virtually. We report a case of 51-year-old woman with a left fronto-temporal oligodendroglioma that contained a small portion with a TP53 mutation, R248Q, at the initial surgery. On a first, slow-growing recurrence 29 months after radiation and nitrosourea-based chemotherapy, the patient underwent TMZ chemotherapy. The recurrent tumor responded well to TMZ but developed a rapid progression after 6 cycles as a malignant hypermutator tumor with a MSH6 mutation. Most of the recurrent tumor lacked typical oligodendroglioma morphology that was observed in the primary tumor, while it retained the IDH1 mutation and 1p/19q co-deletion. The identical TP53 mutation observed in the small portion of the primary tumor was universal in the recurrence. This case embodied the theoretically understandable clonal expansion of the TP53 mutation with additional mismatch repair gene dysfunction leading to hypermutator phenotype. It thus indicated that TP53 mutation in oligodendroglioma, although not common, may play a critical role in the development of hypermutator after TMZ treatment.


Antineoplastic Agents, Alkylating , Brain Neoplasms , Mutation , Neoplasm Recurrence, Local , Oligodendroglioma , Temozolomide , Tumor Suppressor Protein p53 , Female , Humans , Middle Aged , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/drug therapy , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 19/genetics , Dacarbazine/therapeutic use , Dacarbazine/analogs & derivatives , Isocitrate Dehydrogenase/genetics , Neoplasm Recurrence, Local/genetics , Oligodendroglioma/genetics , Oligodendroglioma/pathology , Oligodendroglioma/drug therapy , Phenotype , Temozolomide/therapeutic use , Tumor Suppressor Protein p53/genetics
16.
BMC Cancer ; 24(1): 133, 2024 Jan 25.
Article En | MEDLINE | ID: mdl-38273249

PURPOSE: There are limited and no standard therapies for recurrent glioblastoma. We herein report the antitumour activity and safety of sintilimab, bevacizumab and temozolomide (TMZ) in recurrent glioblastoma. METHODS: We retrospectively analysed eight patients with recurrent glioblastoma treated with sintilimab (200 mg) every three weeks + bevacizumab (10 mg/kg) every three weeks + TMZ (200 mg/m²orally) (5 days orally every 28 days for a total of four weeks). The primary objective was investigator-assessed median progression-free survival(mPFS). Secondary objectives were to assess the 6-month PFS, objective response rate (ORR) and duration of response (DOR) accroding to RANO criteria. RESULTS: The mPFS time for 8 patients was 3.340 months (95% CI: 2.217-4.463), The longest PFS was close to 9 months. Five patients were assessed to have achieved partial response (PR), with an overall remission rate of 62.5%, Four patients experienced a change in tumour volume at the best response time of greater than 60% shrinkage from baseline, and one patient remained progression free upon review, with a DOR of more than 6.57 months. The 6-month PFS was 25% (95% CI: 5.0-55.0%). Three patients had a treatment-related adverse events, though no grade 4 or 5 adverse events occurred. CONCLUSION: In this small retrospective study, the combination regimen of sintilimab, bevacizumab and TMZ showed promising antitumour activity in treatment of recurrent glioblastoma, with a good objective remission rate.


Antibodies, Monoclonal, Humanized , Brain Neoplasms , Glioblastoma , Humans , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/pathology , Bevacizumab/adverse effects , Retrospective Studies , Dacarbazine/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology
17.
Oncotarget ; 15: 1-18, 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38227740

Glioblastoma cells can restrict the DNA-damaging effects of temozolomide (TMZ) and radiation therapy (RT) using the DNA damage response (DDR) mechanism which activates cell cycle arrest and DNA repair pathways. Ataxia-telangiectasia and Rad3-Related protein (ATR) plays a pivotal role in the recognition of DNA damage induced by chemotherapy and radiation causing downstream DDR activation. Here, we investigated the activity of gartisertib, a potent ATR inhibitor, alone and in combination with TMZ and/or RT in 12 patient-derived glioblastoma cell lines. We showed that gartisertib alone potently reduced the cell viability of glioblastoma cell lines, where sensitivity was associated with the frequency of DDR mutations and higher expression of the G2 cell cycle pathway. ATR inhibition significantly enhanced cell death in combination with TMZ and RT and was shown to have higher synergy than TMZ+RT treatment. MGMT promoter unmethylated and TMZ+RT resistant glioblastoma cells were also more sensitive to gartisertib. Analysis of gene expression from gartisertib treated glioblastoma cells identified the upregulation of innate immune-related pathways. Overall, this study identifies ATR inhibition as a strategy to enhance the DNA-damaging ability of glioblastoma standard treatment, while providing preliminary evidence that ATR inhibition induces an innate immune gene signature that warrants further investigation.


Brain Neoplasms , Glioblastoma , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/radiotherapy , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Tumor Suppressor Proteins/metabolism , Cell Death , Cell Line , DNA , Cell Line, Tumor , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/radiotherapy , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism
18.
J Neurooncol ; 166(3): 419-430, 2024 Feb.
Article En | MEDLINE | ID: mdl-38277015

BACKGROUND: Glioblastoma (GBM) is the most common primary brain tumor in adults. Despite extensive research and clinical trials, median survival post-treatment remains at 15 months. Thus, all opportunities to optimize current treatments and improve patient outcomes should be considered. A recent retrospective clinical study found that taking TMZ in the morning compared to the evening was associated with a 6-month increase in median survival in patients with MGMT-methylated GBM. Here, we hypothesized that TMZ efficacy depends on time-of-day and O6-Methylguanine-DNA Methyltransferase (MGMT) activity in murine and human models of GBM. METHODS AND RESULTS: In vitro recordings using real-time bioluminescence reporters revealed that GBM cells have intrinsic circadian rhythms in the expression of the core circadian clock genes Bmal1 and Per2, as well as in the DNA repair enzyme, MGMT. Independent measures of MGMT transcript levels and promoter methylation also showed daily rhythms intrinsic to GBM cells. These cells were more susceptible to TMZ when delivered at the daily peak of Bmal1 transcription. We found that in vivo morning administration of TMZ also decreased tumor size and increased body weight compared to evening drug delivery in mice bearing GBM xenografts. Finally, inhibition of MGMT activity with O6-Benzylguanine abrogated the daily rhythm in sensitivity to TMZ in vitro by increasing sensitivity at both the peak and trough of Bmal1 expression. CONCLUSION: We conclude that chemotherapy with TMZ can be dramatically enhanced by delivering at the daily maximum of tumor Bmal1 expression and minimum of MGMT activity and that scoring MGMT methylation status requires controlling for time of day of biopsy.


Brain Neoplasms , Glioblastoma , Humans , Animals , Mice , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Temozolomide/pharmacology , Temozolomide/therapeutic use , Dacarbazine/therapeutic use , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , O(6)-Methylguanine-DNA Methyltransferase/genetics , Retrospective Studies , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Methylation , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , DNA Methylation , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
19.
Cancer Treat Res Commun ; 38: 100790, 2024.
Article En | MEDLINE | ID: mdl-38241969

PURPOSE: Hodgkin's lymphoma is currently treated with a chemotherapy protocol consisting of doxorubicin, bleomycin, vinblastine, and dacarbazine. Due to Brazil facing a bleomycin shortage in 2017, and this drug's high toxicity, this retrospective study evaluates the effect that the absence of bleomycin had on treatment response and overall survival of Hodgkin's lymphoma patients. METHODS: The medical records of 126 HL patients treated between 2007 and 2021 were reviewed and their data collected, followed by grouping into ABVD and AVD groups according to bleomycin use. Data concerning the patient's characteristics, cancer type, and treatment plan were analyzed with proportion tests, Kaplan-Meier curves. univariate Cox regression, and χ2 tests. RESULTS: No discernible differences were found in this study between the overall survival and recurrence rate of patients treated with bleomycin compared to those without. Additionally, there was an increased risk of death in each subsequent cycle of chemotherapy of the complete ABVD protocol, demonstrating a risk of toxicity. Among the variables analyzed, hypertension and the presence of B symptoms were also associated with an increased risk of death, while the use of radiotherapy significantly improved survival. CONCLUSION: The results of this study suggest that bleomycin did not impact the outcome of Hodgkin's lymphoma treatment. Moreover, the increased risk of death associated with its toxicity during each cycle of treatment raises concerns about its role as an essential component of the gold standard for Hodgkin's lymphoma treatment. Therefore, further research and consideration are needed to reassess the use of bleomycin in Hodgkin's lymphoma treatment protocols.


Hodgkin Disease , Humans , Hodgkin Disease/pathology , Bleomycin/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Retrospective Studies , Doxorubicin/adverse effects , Vinblastine/adverse effects , Dacarbazine/adverse effects
20.
NMR Biomed ; 37(4): e5095, 2024 Apr.
Article En | MEDLINE | ID: mdl-38213096

The standard treatment in glioblastoma includes maximal safe resection followed by concomitant radiotherapy plus chemotherapy and adjuvant temozolomide. The first follow-up study to evaluate treatment response is performed 1 month after concomitant treatment, when contrast-enhancing regions may appear that can correspond to true progression or pseudoprogression. We retrospectively evaluated 31 consecutive patients at the first follow-up after concomitant treatment to check whether the metabolic pattern assessed with multivoxel MRS was predictive of treatment response 2 months later. We extracted the underlying metabolic patterns of the contrast-enhancing regions with a blind-source separation method and mapped them over the reference images. Pattern heterogeneity was calculated using entropy, and association between patterns and outcomes was measured with Cramér's V. We identified three distinct metabolic patterns-proliferative, necrotic, and responsive, which were associated with status 2 months later. Individually, 70% of the patients showed metabolically heterogeneous patterns in the contrast-enhancing regions. Metabolic heterogeneity was not related to the regions' size and only stable patients were less heterogeneous than the rest. Contrast-enhancing regions are also metabolically heterogeneous 1 month after concomitant treatment. This could explain the reported difficulty in finding robust pseudoprogression biomarkers.


Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/therapy , Glioblastoma/drug therapy , Follow-Up Studies , Retrospective Studies , Dacarbazine/therapeutic use , Chemoradiotherapy/methods , Disease Progression , Brain Neoplasms/therapy , Brain Neoplasms/drug therapy , Magnetic Resonance Imaging/methods
...