Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Toxicol Appl Pharmacol ; 490: 117044, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39074624

ABSTRACT

BACKGROUND: Many studies have reported that prenatal exposure to Per- and Polyfluoroalkyl Substances (PFASs) can disrupt immune function. However, little is known about the effects of PFASs on immune molecules. The study analyzed the association between prenatal exposure to mixed and single PFASs and plasma immune molecules in three-year-old children. METHODS: Ten PFASs were measured in umbilical cord serum, while peripheral blood samples were collected at age three to measure immune molecules. Associations between exposure to individual and combined PFASs and immune molecules were analyzed using Generalized Linear Models and Weighted Quantile Sum (WQS) regression. RESULTS: (1) Interleukin-4 (IL-4) increased by 23.85% (95% CI:2.99,48.94) with each doubling of Perfluorooctanoic Acid (PFOA), and Interleukin-6 (IL-6) increased by 39.07% (95%CI:4.06,85.86) with Perfluorotridecanoic Acid (PFTrDA). Elevated PFOA and Perfluorononanoic Acid (PFNA) were correlated with increases of 34.06% (95% CI: 6.41, 70.28) and 24.41% (95% CI: 0.99, 53.27) in Eotaxin-3, respectively. Additionally, the doubling of Perfluorohexane Sulfonic Acid (PFHxS) was associated with a 9.51% decrease in Periostin (95% CI: -17.84, -0.33). (2) The WQS analysis revealed that mixed PFASs were associated with increased IL-6 (ß = 0.37, 95%CI:0.04,0.69), mainly driven by PFTrDA, PFNA, and 8:2 Chlorinated Perfluoroethyl Sulfonamide (8:2 Cl-PFESA). Moreover, mixed PFASs were linked to an increase in Eotaxin-3 (ß = 0.32, 95% CI: 0.09,0.55), primarily influenced by PFOA, PFTrDA, and Perfluorododecanoic Acid (PFDoDA). CONCLUSIONS: Prenatal PFASs exposure significantly alters the levels of immune molecules in three-year-old children, highlighting the importance of understanding environmental impacts on early immune development.


Subject(s)
Fluorocarbons , Prenatal Exposure Delayed Effects , Humans , Female , Fluorocarbons/blood , Fluorocarbons/toxicity , Child, Preschool , Pregnancy , Prenatal Exposure Delayed Effects/blood , Prenatal Exposure Delayed Effects/immunology , Prenatal Exposure Delayed Effects/chemically induced , China/epidemiology , Male , Environmental Pollutants/blood , Fetal Blood/immunology , Fetal Blood/chemistry , Caprylates/blood , Caprylates/toxicity , Interleukin-6/blood , Interleukin-4/blood , Decanoic Acids/blood , Decanoic Acids/toxicity , Alkanesulfonic Acids/blood , Alkanesulfonic Acids/toxicity , Adult , Maternal Exposure/adverse effects
2.
Lipids Health Dis ; 23(1): 177, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851716

ABSTRACT

BACKGROUND: Exposure to different concentration levels of fatty acids (FAs) may have an impact on depression. However, previous studies using individual FAs may not reflect the performance of mixtures of various FAs, and the associations of FA patterns with depression remain unclear. METHODS: We conducted the cross-sectional analysis in 792 adults aged 18 and older with available serum FAs and depression screening data in the National Health and Nutrition Examination Survey (NHANES) 2011-2012. The serum concentrations of thirty FAs were measured using gas chromatography-mass spectrometry and their percentage compositions were subsequently calculated. Depression was defined as the Patient Health Questionnaire-9 score ≥ 10. We employed principal component analysis to derive serum FA patterns. We examined the association between these patterns and depression in the overall population and various subgroups through survey-weighted logistic regression. RESULTS: Four distinct patterns of serum FAs were identified: 'high eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA); low docosatetraenoic acid (DTA) and docosapentaenoic acid (DPA) n-6', 'high long-chain saturated FA and long chain FA', 'low median-chain saturated FA and myristoleic acid' and 'low capric acid and lauric acid; high gamma-linolenic acid (GLA) and stearidonic acid (SDA)' pattern. Individuals in the high tertile of 'high EPA and DHA; low DTA and DPA n-6' pattern score had 0.46 (95% CI: 0.22, 0.93) lower odds of developing depression compared to individuals in the lowest tertile after adjusting for confounders such as age, sex, physical activity and total energy intake, etc. The odds ratio (OR) of depression was increased in the population with the highest tertile of 'low capric acid and lauric acid; high GLA and SDA' pattern (OR: 2.45, 95% CI: 1.24, 4.83). In subgroup analyses, we observed that the association between 'high EPA and DHA; low DTA and DPA n-6' and depression persisted among specific demographic and lifestyle subgroups, including females, non-Mexican Americans, non-obese, those aged over 60 years, smokers and drinkers. Similarly, 'low capric acid and lauric acid; high GLA and SDA' showed stable associations in female, non-Mexican Americans and smokers. CONCLUSIONS: Serum FA patterns are associated with depression, and their relationships vary across sex, race, BMI, age, smoking and drinking subgroups, highlighting the importance of considering specific FA patterns within these demographic and lifestyle categories. Utilization of combined FA administration may serve as a mitigation measure against depression in these specific populations.


Subject(s)
Depression , Fatty Acids , Nutrition Surveys , Humans , Female , Male , Depression/blood , Depression/epidemiology , Adult , Middle Aged , Fatty Acids/blood , Cross-Sectional Studies , United States/epidemiology , Decanoic Acids/blood , Eicosapentaenoic Acid/blood , Aged , Fatty Acids, Unsaturated/blood , Young Adult , Adolescent , Principal Component Analysis
3.
Hypertension ; 81(8): 1799-1810, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38853753

ABSTRACT

BACKGROUND: Perfluoroalkyl and polyfluoroalkyl substance (PFAS) has endocrine-disrupting properties and may affect blood pressure. Endogenous hormones also play a crucial role in the progression of hypertension. However, their interaction with hypertension remains to be explored. METHODS: This study included 10 794 adults aged ≥18 years from the China National Human Biomonitoring program. Weighted multiple logistic regression and linear regression were used to examine the associations of serum PFAS with hypertension, diastolic blood pressure, and systolic blood pressure. Joint effects of PFAS mixtures on hypertension, diastolic blood pressure, and systolic blood pressure were evaluated using quantile-based g-computation. Additive and multiplicative interactions were used to assess the role of PFAS with testosterone and estradiol on hypertension. RESULTS: The prevalence of hypertension in Chinese adults was 35.50%. Comparing the fourth quartile with the first quartile, odds ratio (95% CI) of hypertension were 1.53 (1.13-2.09) for perfluorononanoic acid, 1.40 (1.03-1.91) for perfluorodecanoic acid, 1.34 (1.02-1.78) for perfluoroheptane sulfonic acid, and 1.46 (1.07-1.99) for perfluorooctane sulfonic acid. Moreover, PFAS mixtures, with perfluorononanoic acid contributing the most, were positively associated with hypertension, diastolic blood pressure, and systolic blood pressure. PFAS and endogenous hormones had an antagonistic interaction in hypertension. For example, the relative excess risk ratio, attributable proportion, and synergy index for perfluorononanoic acid and estradiol were -3.61 (-4.68 to -2.53), -1.65 (-2.59 to -0.71), and 0.25 (0.13-0.47), respectively. CONCLUSIONS: Perfluorononanoic acid, perfluorodecanoic acid, perfluoroheptane sulfonic acid, perfluorooctane sulfonic acid, and PFAS mixtures showed positive associations with hypertension, systolic blood pressure, and diastolic blood pressure. Positive associations of PFAS with hypertension might be attenuated by increased levels of endogenous sex hormones.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Hypertension , Humans , Fluorocarbons/blood , Female , Hypertension/epidemiology , Hypertension/blood , Male , Cross-Sectional Studies , China/epidemiology , Middle Aged , Adult , Alkanesulfonic Acids/blood , Blood Pressure/drug effects , Blood Pressure/physiology , Environmental Exposure/adverse effects , Decanoic Acids/blood , Endocrine Disruptors/blood , Endocrine Disruptors/adverse effects , Fatty Acids/blood , Prevalence , Gonadal Steroid Hormones/blood , Sulfonic Acids/blood , Environmental Pollutants/blood , Environmental Pollutants/adverse effects , Lauric Acids/blood , Lauric Acids/pharmacology
4.
Sci Total Environ ; 933: 173157, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38740209

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are related to various adverse health outcomes, and food is a common source of PFAS exposure. Dietary sources of PFAS have not been adequately explored among U.S. pregnant individuals. We examined associations of dietary factors during pregnancy with PFAS concentrations in maternal plasma and human milk in the New Hampshire Birth Cohort Study. PFAS concentrations, including perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), and perfluorodecanoate (PFDA), were measured in maternal plasma collected at ∼28 gestational weeks and human milk collected at ∼6 postpartum weeks. Sociodemographic, lifestyle and reproductive factors were collected from prenatal questionnaires and diet from food frequency questionnaires at ∼28 gestational weeks. We used adaptive elastic net (AENET) to identify important dietary variables for PFAS concentrations. We used multivariable linear regression to assess associations of dietary variables selected by AENET models with PFAS concentrations. Models were adjusted for sociodemographic, lifestyle, and reproductive factors, as well as gestational week of blood sample collection (plasma PFAS), postpartum week of milk sample collection (milk PFAS), and enrollment year. A higher intake of fish/seafood, eggs, coffee, or white rice during pregnancy was associated with higher plasma or milk PFAS concentrations. For example, every 1 standard deviation (SD) servings/day increase in egg intake during pregnancy was associated with 4.4 % (95 % CI: 0.6, 8.4), 3.3 % (0.1, 6.7), and 10.3 % (5.6, 15.2) higher plasma PFOS, PFOA, and PFDA concentrations respectively. Similarly, every 1 SD servings/day increase in white rice intake during pregnancy was associated with 7.5 % (95 % CI: -0.2, 15.8) and 12.4 % (4.8, 20.5) greater milk PFOS and PFOA concentrations, respectively. Our study suggests that certain dietary factors during pregnancy may contribute to higher PFAS concentrations in maternal plasma and human milk, which could inform interventions to reduce PFAS exposure for both birthing people and offspring.


Subject(s)
Alkanesulfonic Acids , Diet , Environmental Pollutants , Fluorocarbons , Milk, Human , Humans , Fluorocarbons/blood , Fluorocarbons/analysis , Milk, Human/chemistry , Female , Diet/statistics & numerical data , Environmental Pollutants/blood , Environmental Pollutants/analysis , New Hampshire , Alkanesulfonic Acids/analysis , Alkanesulfonic Acids/blood , Adult , Birth Cohort , Maternal Exposure/statistics & numerical data , Pregnancy , Caprylates/blood , Caprylates/analysis , Cohort Studies , Dietary Exposure/statistics & numerical data , Dietary Exposure/analysis , Decanoic Acids/blood , Decanoic Acids/analysis
5.
Eur Thyroid J ; 13(3)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38657654

ABSTRACT

Objective: The aim was to evaluate the possible association between some endocrine disruptive chemicals and thyroid cancer (TC) in an Italian case-control cohort. Methods: We enrolled 112 TC patients and 112 sex- and age-matched controls without known thyroid diseases. Per- and poly-fluoroalkyl substances (PFAS), poly-chlorinated biphenyls (PCBs), and dichlorodiphenyltrichloroethane (4,4'-DDT and 4,4'-DDE) were measured in the serum by liquid or gas chromatography-mass spectrometry. Unconditional logistic regression, Bayesan kernel machine regression and weighted quantile sum models were used to estimate the association between TC and pollutants' levels, considered individually or as mixture. BRAFV600E mutation was assessed by standard methods. Results: The detection of perfluorodecanoic acid (PFDA) was positively correlated to TC (OR = 2.03, 95% CI: 1.10-3.75, P = 0.02), while a negative association was found with perfluorohexanesulfonic acid (PFHxS) levels (OR = 0.63, 95% CI: 0.41-0.98, P = 0.04). Moreover, perfluorononanoic acid (PFNA) was positively associated with the presence of thyroiditis, while PFHxS and perfluorooctane sulfonic acid (PFOS) with higher levels of presurgical thyroid-stimulating hormone (TSH). PFHxS, PFOS, PFNA, and PFDA were correlated with less aggressive TC, while poly-chlorinated biphenyls (PCB-105 and PCB-118) with larger and more aggressive tumors. Statistical models showed a negative association between pollutants' mixture and TC. BRAF V600E mutations were associated with PCB-153, PCB-138, and PCB-180. Conclusion: Our study suggests, for the first time in a case-control population, that exposure to some PFAS and PCBs associates with TC and some clinical and molecular features. On the contrary, an inverse correlation was found with both PFHxS and pollutants' mixture, likely due to a potential reverse causality.


Subject(s)
Alkanesulfonic Acids , Endocrine Disruptors , Fluorocarbons , Persistent Organic Pollutants , Polychlorinated Biphenyls , Thyroid Neoplasms , Humans , Case-Control Studies , Fluorocarbons/blood , Fluorocarbons/adverse effects , Female , Male , Middle Aged , Endocrine Disruptors/blood , Endocrine Disruptors/adverse effects , Thyroid Neoplasms/epidemiology , Thyroid Neoplasms/blood , Thyroid Neoplasms/chemically induced , Thyroid Neoplasms/genetics , Polychlorinated Biphenyls/blood , Polychlorinated Biphenyls/adverse effects , Alkanesulfonic Acids/blood , Adult , Persistent Organic Pollutants/adverse effects , Persistent Organic Pollutants/blood , Aged , Dichlorodiphenyl Dichloroethylene/blood , Decanoic Acids/blood , Decanoic Acids/adverse effects , DDT/blood , DDT/adverse effects , Italy/epidemiology , Caprylates/blood , Caprylates/adverse effects , Proto-Oncogene Proteins B-raf/genetics , Fatty Acids/blood , Sulfonic Acids/blood , Mutation , Environmental Exposure/adverse effects
6.
Int J Hyg Environ Health ; 259: 114385, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38676994

ABSTRACT

AIMS: Recent epidemiologic research has examined the relationship between perfluoroalkyl and polyfluoroalkyl substances (PFAS) and diabetes mellitus with inconclusive findings. In this cross-sectional study, we aimed to explore the association between serum PFAS concentrations and the prevalence of prediabetes and pre-diagnostic diabetes in the general Korean population as well as the combined effects of exposure to mixed PFAS compounds. METHODS: We analyzed data from participants aged ≥19 years enrolled in the Korean National Environmental Health Survey Cycle 4 (2018-2020). Individuals diagnosed with diabetes were excluded to minimize potential bias. We identified cases of pre-diagnostic diabetes based on the HbA1c level ≥6.5% and prediabetes as HbA1c levels of 5.7-6.49%. Serum concentrations of PFAS, including perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDeA), perfluorohexane sulfonic acid (PFHxS), and perfluorooctane sulfonic acid (PFOS), were quantified using high-performance liquid chromatography-tandem mass spectrometry. Survey-weighted logistic regression models were used to assess the relationships between PFAS levels and diabetes risk, adjusting for covariates. Additionally, Bayesian kernel machine regression (BKMR) was used to investigate the combined effects of exposure to mixed PFAS compounds. RESULTS: In the study population excluding participants with diagnosed diabetes (n = 2709), the prevalence of pre-diagnostic diabetes and prediabetes was 4.8% and 30.1%, respectively. Significant positive associations were found between serum PFHxS and PFOS quartiles and pre-diagnostic diabetes risk. Likewise, among those without diagnosed or pre-diagnostic diabetes (n = 2579), the highest quartiles of PFDeA, PFHxS, and PFOS and the overall PFAS level were associated with an increased risk of prediabetes compared with the lowest quartiles. BKMR analysis revealed a significant positive association between overall serum PFAS level and prediabetes risk, which was most marked for PFOS. CONCLUSIONS: These findings highlight the potential health implications of PFAS exposure and prediabetes risk. Further research is needed to validate these associations and identify potential mechanistic pathways.


Subject(s)
Alkanesulfonic Acids , Diabetes Mellitus , Environmental Pollutants , Fluorocarbons , Humans , Fluorocarbons/blood , Middle Aged , Female , Republic of Korea/epidemiology , Male , Diabetes Mellitus/epidemiology , Diabetes Mellitus/blood , Adult , Environmental Pollutants/blood , Alkanesulfonic Acids/blood , Cross-Sectional Studies , Aged , Health Surveys , Environmental Exposure/adverse effects , Prevalence , Caprylates/blood , Prediabetic State/blood , Prediabetic State/epidemiology , Decanoic Acids/blood , Young Adult , Fatty Acids
7.
Environ Health Perspect ; 132(4): 47014, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38683744

ABSTRACT

BACKGROUND: Previous studies have identified the consumption of country foods (hunted/harvested foods from the land) as the primary exposure source of perfluoroalkyl acids (PFAA) in Arctic communities. However, identifying the specific foods associated with PFAA exposures is complicated due to correlation between country foods that are commonly consumed together. METHODS: We used venous blood sample data and food frequency questionnaire data from the Qanuilirpitaa? ("How are we now?") 2017 (Q2017) survey of Inuit individuals ≥16 y of age residing in Nunavik (n=1,193). Adaptive elastic net, a machine learning technique, identified the most important food items for predicting PFAA biomarker levels while accounting for the correlation among the food items. We used generalized linear regression models to quantify the association between the most predictive food items and six plasma PFAA biomarker levels. The estimates were converted to percent changes in a specific PFAA biomarker level per standard deviation increase in the consumption of a food item. Models were also stratified by food type (market or country foods). RESULTS: Perfluorooctanesulfonic acid (PFOS), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA) were associated with frequent consumption of beluga misirak (rendered fat) [14.6%; 95% confidence interval (CI): 10.3%, 18.9%; 14.6% (95% CI: 10.1%, 19.0%)], seal liver [9.3% (95% CI: 5.0%, 13.7%); 8.1% (95% CI: 3.5%, 12.6%)], and suuvalik (fish roe mixed with berries and fat) [6.0% (95% CI: 1.3%, 10.7%); 7.5% (95% CI: 2.7%, 12.3%)]. Beluga misirak was also associated with higher concentrations of perfluorohexanesulphonic acid (PFHxS) and perfluorononanoic acid (PFNA), albeit with lower percentage changes. PFHxS, perfluorooctanoic acid (PFOA), and PFNA followed some similar patterns, with higher levels associated with frequent consumption of ptarmigan [6.1% (95% CI: 3.2%, 9.0%); 5.1% (95% CI: 1.1%, 9.1%); 5.4% (95% CI: 1.8%, 9.0%)]. Among market foods, frequent consumption of processed meat and popcorn was consistently associated with lower PFAA exposure. CONCLUSIONS: Our study identifies specific food items contributing to environmental contaminant exposure in Indigenous or small communities relying on local subsistence foods using adaptive elastic net to prioritize responses from a complex food frequency questionnaire. In Nunavik, higher PFAA biomarker levels were primarily related to increased consumption of country foods, particularly beluga misirak, seal liver, suuvalik, and ptarmigan. Our results support policies regulating PFAA production and use to limit the contamination of Arctic species through long-range transport. https://doi.org/10.1289/EHP13556.


Subject(s)
Dietary Exposure , Environmental Pollutants , Fluorocarbons , Inuit , Humans , Fluorocarbons/blood , Inuit/statistics & numerical data , Adult , Dietary Exposure/statistics & numerical data , Dietary Exposure/analysis , Female , Male , Environmental Pollutants/blood , Adolescent , Young Adult , Alkanesulfonic Acids/blood , Food Contamination/analysis , Middle Aged , Decanoic Acids/blood , Environmental Exposure/statistics & numerical data , Biomarkers/blood , Diet/statistics & numerical data , Arctic Regions
8.
Article in English | MEDLINE | ID: mdl-34732107

ABSTRACT

Cattle that were at steady-state serum polyfluoroalkyl substances (PFAS) concentrations due to several years of exposure to water contaminated by residues of Aqueous Film-Forming (AFFF) firefighting foam had perfluorooctane sulphonate (PFOS) isomers, perfluoroheptane sulphonate (PFHpS), perfluorohexane sulphonate (PFHxS), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA) in serum. Elimination serum half-lives were determined in five heifers from serial blood sampling over 215 days. Eleven additional animals that had blood sampled on day 19 (d19) were euthanised on d63. PFAS half-life estimates from the serial blood sampling and from d19/d63 data were not significantly different. The combined (n = 16) serum half-lives (in days) were: total PFOS (tPFOS, 74.1 ± 13.4), PFHpS (45.7 ± 9.4), PFHxS (9.3 ± 1.3), PFNA (12.3 ± 3.2) and PFDA (60.4 ± 10.4). The half-lives of linear PFOS (L-PFOS, 69.4 ± 11.6) and mono branched PFOS isomers (m-PFOS, 83.6 ± 19) were not significantly different from tPFOS, but for the di-branched isomers (di-PFOS), the serum half-life was significantly lower (29.9 ± 5.8). Animal age (1.4-12.3 years old) and serum concentration at the start of depuration did not influence half-lives, and there was no difference between steers and heifers. Consideration of serum and tissue PFAS concentrations at d63 and d215 indicated there was no difference in tPFOS depuration from serum or muscle, but elimination from liver and kidney may be slightly longer. Depuration of PFHpS is essentially the same in serum, kidney and liver, and it is expected depletion from muscle would be comparable. The short half-life of di-PFOS, PFHxS and PFNA did not allow an assessment of clearance from tissues because they were not measurable at d215 but based on the results for PFOS and PFHpS, elimination of PFHxS from tissues is expected to mirror that from serum. Human health risk assessment implications are discussed.


Subject(s)
Alkanesulfonic Acids/blood , Decanoic Acids/blood , Environmental Pollutants/blood , Fluorocarbons/blood , Kidney/chemistry , Liver/chemistry , Animals , Cattle
9.
Environ Health ; 20(1): 73, 2021 06 28.
Article in English | MEDLINE | ID: mdl-34187491

ABSTRACT

BACKGROUND: Exposure to perfluoroalkyl substances (PFASs) has been associated with changes in body mass index and adiposity, but evidence is inconsistent as study design, population age, follow-up periods and exposure levels vary between studies. We investigated associations between PFAS exposure and body fat in a cross-sectional study of healthy boys. METHODS: In 109 boys (10-14 years old), magnetic resonance imaging and dual-energy X-ray absorptiometry were performed to evaluate abdominal, visceral fat, total body, android, gynoid, android/gynoid ratio, and total fat percentage standard deviation score. Serum was analysed for perfluorooctanoic acid, perfluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic acid, perfluorononanoic acid, and perfluorodecanoic acid using liquid chromatography and triple quadrupole mass spectrometry. Data were analysed by multivariate linear regression. RESULTS: Serum concentrations of PFASs were low. Generally, no clear associations between PFAS exposure and body fat measures were found; however, PFOS was negatively associated with abdominal fat (ß = -0.18, P = 0.046), android fat (ß = -0.34, P = 0.022), android/gynoid ratio (ß = -0.21, P = 0.004), as well as total body fat (ß = -0.21, P = 0.079) when adjusting for Tanner stage. CONCLUSIONS: Overall, we found no consistent associations between PFAS exposure and body fat. This could be due to our cross-sectional study design. Furthermore, we assessed PFAS exposure in adolescence and not in utero, which is considered a more vulnerable time window of exposure.


Subject(s)
Adipose Tissue , Alkanesulfonic Acids/blood , Caprylates/blood , Decanoic Acids/blood , Environmental Pollutants/blood , Fluorocarbons/blood , Absorptiometry, Photon , Adolescent , Biological Monitoring , Child , Humans , Magnetic Resonance Imaging , Male
10.
J Clin Endocrinol Metab ; 106(8): 2495-2504, 2021 07 13.
Article in English | MEDLINE | ID: mdl-33890111

ABSTRACT

OBJECTIVE: To investigate the prospective associations of life-course perfluoroalkyl substances (PFASs) exposure with glucose homeostasis at adulthood. METHODS: We calculated insulin sensitivity and beta-cell function indices based on 2-h oral glucose tolerance tests at age 28 in 699 Faroese born in 1986-1987. Five major PFASs were measured in cord whole blood and in serum from ages 7, 14, 22, and 28 years. We evaluated the associations with glucose homeostasis measures by PFAS exposures at different ages using multiple informant models fitting generalized estimating equations and by life-course PFAS exposures using structural equation models. RESULTS: Associations were stronger for perfluorooctane sulfonate (PFOS) and suggested decreased insulin sensitivity and increased beta-cell function-for example, ß (95% CI) for log-insulinogenic index per PFOS doubling = 0.12 (0.02, 0.22) for prenatal exposures, 0.04 (-0.10, 0.19) at age 7, 0.07 (-0.07, 0.21) at age 14, 0.05 (-0.04, 0.15) at age 22, and 0.04 (-0.03, 0.11) at age 28. Associations were consistent across ages (P for age interaction > 0.10 for all PFASs) and sex (P for sex interaction > 0.10 for all PFASs, except perfluorodecanoic acid). The overall life-course PFOS exposure was also associated with altered glucose homeostasis (P = 0.04). Associations for other life-course PFAS exposures were nonsignificant. CONCLUSIONS: Life-course PFAS exposure is associated with decreased insulin sensitivity and increased pancreatic beta-cell function in young adults.


Subject(s)
Blood Glucose/metabolism , Environmental Exposure , Environmental Pollutants/toxicity , Insulin Resistance/physiology , Insulin-Secreting Cells/drug effects , Adolescent , Adult , Alkanesulfonic Acids/blood , Alkanesulfonic Acids/toxicity , Caprylates/blood , Caprylates/toxicity , Child , Decanoic Acids/blood , Decanoic Acids/toxicity , Environmental Pollutants/blood , Fatty Acids , Female , Fluorocarbons/blood , Fluorocarbons/toxicity , Glucose Tolerance Test , Humans , Insulin-Secreting Cells/metabolism , Male , Sulfonic Acids/blood , Sulfonic Acids/toxicity , Young Adult
11.
J Clin Endocrinol Metab ; 106(9): e3760-e3770, 2021 08 18.
Article in English | MEDLINE | ID: mdl-33740056

ABSTRACT

CONTEXT: Per- and polyfluoroalkyl substances (PFAS) may alter body composition by lowering anabolic hormones and increasing inflammation, but data are limited, particularly in adolescence when body composition is rapidly changing. OBJECTIVE: To evaluate associations of PFAS plasma concentrations in childhood with change in body composition through early adolescence. METHODS: A total of 537 children in the Boston-area Project Viva cohort participated in this study. We used multivariable linear regression and Bayesian kernel machine regression (BKMR) to examine associations of plasma concentrations of 6 PFAS, quantified by mass spectrometry, in mid-childhood (mean age, 7.9 years; 2007-2010) with change in body composition measured by dual-energy x-ray absorptiometry from mid-childhood to early adolescence (mean age, 13.1 years). RESULTS: In single-PFAS linear regression models, children with higher concentrations of perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), perfluorodecanoate (PFDA), and perfluorohexane sulfonate (PFHxS) had less accrual of lean mass (eg, -0.33 [95% CI: -0.52, -0.13] kg/m2 per doubling of PFOA). Children with higher PFOS and PFHxS had less accrual of total and truncal fat mass (eg, -0.32 [95% CI: -0.54, -0.11] kg/m2 total fat mass per doubling of PFOS), particularly subcutaneous fat mass (eg, -17.26 [95% CI -32.25, -2.27] g/m2 per doubling of PFOS). Children with higher PFDA and perfluorononanoate (PFNA) had greater accrual of visceral fat mass (eg, 0.44 [95% CI: 0.13, 0.75] g/m2 per doubling of PFDA). Results from BKMR mixture models were consistent with linear regression analyses. CONCLUSION: Early life exposure to some but not all PFAS may be associated with adverse changes in body composition.


Subject(s)
Body Composition , Fluorocarbons/blood , Adiposity , Adolescent , Adult , Alkanesulfonic Acids/blood , Caprylates/blood , Child , Decanoic Acids/blood , Female , Humans , Male , Sulfonic Acids/blood
12.
Environ Health ; 19(1): 127, 2020 11 26.
Article in English | MEDLINE | ID: mdl-33243245

ABSTRACT

BACKGROUND: Evidence of associations between prenatal exposure to perfluoroalkyl substances (PFASs) and fetal thyroid hormones (THs) is controversial, and few studies have estimated the associations, while addressing the high correlations among multiple PFASs. We aimed to examine the associations between prenatal PFAS exposure and thyroid hormone concentrations in cord blood. METHODS: A total of 300 mother-infant pairs from the Shanghai-Minhang Birth Cohort Study were included. We measured the concentrations of eight PFASs in maternal plasma samples collected at 12-16 gestational weeks, as well as those of total thyroxine (T4), free T4 (FT4), total triiodothyronine (T3), free T3 (FT3), and thyroid stimulating hormone (TSH) in cord plasma. We estimated the associations between maternal PFAS concentrations and TH concentrations using linear regression and Bayesian kernel machine regression (BKMR) models. RESULTS: In BKMR models, higher PFAS mixture concentrations were associated with increased T3 concentrations, and there were suggestive associations with increased FT3 concentrations. For single-exposure effects in BKMR models, a change in PFDA, PFUdA, and PFOA concentrations from the 25th to 75th percentile was associated with a 0.04 (95%CrI: - 0.01, 0.09), 0.02 (95%CrI: - 0.03, 0.07), and 0.03 (95%CrI: - 0.001, 0.06) nmol/L increase in T3 concentrations, respectively. PFOA, PFNA, and PFDA were the predominant compounds in PFASs-FT3 associations, and the corresponding estimates were 0.11 (95% CrI: 0.02, 0.19), - 0.17 (95% CrI: - 0.28, - 0.07), and 0.12 (95% CrI: - 0.004, 0.24) pmol/L, respectively. A change in PFNA and PFOA concentrations from the 25th to 75th percentile was associated with a - 1.69 (95% CrI: - 2.98, - 0.41) µIU/mL decrease and a 1.51 (95% CrI: 0.48, 2.55) µIU/mL increase in TSH concentrations. The associations of PFOA and PFNA with T3/FT3 were more pronounced in boys, while those with TSH were more pronounced in girls. CONCLUSION: Our results suggest that prenatal exposure to multiple PFASs was associated with thyroid hormones in cord blood. However, individual PFAS had varied effects-differing in magnitude and direction-on fetal thyroid hormones.


Subject(s)
Environmental Pollutants/blood , Fetal Blood/chemistry , Fluorocarbons/blood , Maternal Exposure , Maternal-Fetal Exchange , Thyrotropin/blood , Triiodothyronine/blood , Adolescent , Adult , Alkanesulfonic Acids/blood , Carboxylic Acids/blood , China , Cohort Studies , Decanoic Acids/blood , Female , Humans , Infant, Newborn , Male , Pregnancy , Thyroxine/blood , Young Adult
13.
Chemosphere ; 259: 127446, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32590180

ABSTRACT

BACKGROUND: Previous studies have reported a positive association of perfluoralkyl acids (PFAAs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), with hyperuricemia. The objective of the study is to investigate whether there is an association between concurrent serum levels of several PFAAs and gout, serum uric acid (SUA) or hyperuricemia in the U.S. adult population as represented by the National Health and Nutrition Examination Survey (NHANES) 2009-2014 sample (n = 4917). The PFAAs investigated include PFOA, perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorohexane sulfonic acid (PFHxS) and PFOS. METHODS: This cross-sectional study used multivariate logistic regressions to analyze the association of single PFAAs with hyperuricemia and self-reported gout; the association with SUA was analyzed by multivariate linear regression. Analyses were adjusted for race/ethnicity, age, sex, education, alcohol consumption, smoking, serum cotinine, BMI, diabetes, hypertension, chronic kidney disease, and SUA (for gout only). RESULTS: Higher quartile values of serum PFOA and PFHxS were associated with increased odds of self-reported gout. There was a positive association of SUA with increased levels of PFOA, PFNA, PFOS, PFHxS and PFDA. Higher quartile values of PFOA, PFNA, and PFHxS were associated with higher odds of hyperuricemia. CONCLUSIONS: In this population-based cross-sectional analysis, we found an association between selected PFAAs and self-reported gout. We also confirmed previous reports of an association between several PFAAs and hyperuricemia. Our study suggests that exposure to PFAAs may be a risk factor for hyperuricemia and gout.


Subject(s)
Environmental Exposure/statistics & numerical data , Fluorocarbons/blood , Gout/epidemiology , Hyperuricemia/epidemiology , Adult , Alkanesulfonic Acids/blood , Caprylates/blood , Cotinine , Cross-Sectional Studies , Decanoic Acids/blood , Female , Humans , Male , Middle Aged , Nutrition Surveys , Sulfonic Acids/blood , United States/epidemiology , Uric Acid , Young Adult
14.
Environ Health ; 19(1): 5, 2020 01 13.
Article in English | MEDLINE | ID: mdl-31931806

ABSTRACT

BACKGROUND: The associations of perfluoroalkyl substance (PFAS) exposure with blood lipids and lipoproteins are inconsistent, and existing studies did not account for metabolic heterogeneity of lipoprotein subspecies. This study aimed to examine the associations between plasma PFAS concentrations and lipoprotein and apolipoprotein subspecies. METHODS: The study included 326 men and women from the 2-year Prevention of Obesity Using Novel Dietary Strategies (POUNDS) Lost randomized trial. Five PFASs, including perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS), perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA), were measured in plasma at baseline. For lipoprotein and apolipoprotein subspecies, total plasma was fractionated first by apolipoprotein (apo) C-III content and then by density. Each subfraction was then measured for apoB, apoC-III, and apoE concentrations, as well as triglyceride and cholesterol contents, both at baseline and at 2 years. RESULTS: For lipids and apolipoproteins in total plasma at baseline, elevated plasma PFAS concentrations were significantly associated with higher apoB and apoC-III concentrations, but not with total cholesterol or triglycerides. After multivariate adjustment of lifestyle factors, lipid-lowering medication use, and dietary intervention groups, PFAS concentrations were primarily associated with lipids or apolipoprotein concentrations in intermediate-to-low density lipoprotein (IDL + LDL) and high-density lipoprotein (HDL) that contain apoC-III. Comparing the highest and lowest tertiles of PFOA, the least-square means (SE) (mg/dl) were 4.16 (0.4) vs 3.47 (0.4) for apoB (P trend = 0.04), 2.03 (0.2) vs 1.66 (0.2) for apoC-III (P trend = 0.04), and 8.4 (0.8) vs 6.8 (0.8) for triglycerides (P trend = 0.03) in IDL + LDL fraction that contains apoC-III. For HDL that contains apoC-III, comparing the highest and lowest tertiles of PFOA, the least-square means (SE) (mg/dl) of apoC-III were 11.9 (0.7) vs 10.4 (0.7) (P trend = 0.01). In addition, elevated PFNA and PFDA concentrations were also significantly associated with higher concentrations of apoE in HDL that contains apoC-III (P trend< 0.01). Similar patterns of associations were demonstrated between baseline PFAS concentrations and lipoprotein subspecies measured at 2 years. Baseline PFAS levels were not associated with changes in lipoprotein subspecies during the intervention. CONCLUSIONS: Our results suggest that plasma PFAS concentrations are primarily associated with blood lipids and apolipoproteins in subspecies of IDL, LDL, and HDL that contain apoC-III, which are associated with elevated cardiovascular risk in epidemiological studies. Future studies of PFAS-associated cardiovascular risk should focus on lipid subfractions.


Subject(s)
Fluorocarbons/blood , Lipids/blood , Obesity/blood , Adult , Aged , Alkanesulfonic Acids/blood , Apolipoproteins/blood , Caprylates/blood , Decanoic Acids/blood , Female , Humans , Lipoproteins/blood , Male , Middle Aged , Obesity/prevention & control , Sulfonic Acids/blood
15.
Pediatr Res ; 87(6): 1093-1099, 2020 05.
Article in English | MEDLINE | ID: mdl-31835271

ABSTRACT

BACKGROUND: Perfluoroalkyl substances (PFASs) are widespread, bioaccumulating, and persistent and show placental transfer. Emerging research indicates associations between prenatal exposure and low birth weight. The aim of this study was to assess the associations between first trimester exposure to PFASs and birth weight (BW) in the Swedish Environmental, Longitudinal, Mother and child, Asthma and allergy (SELMA) study and examine whether associations differ between girls and boys. METHODS: Eight PFASs were analyzed in maternal serum (median: 10 weeks of pregnancy). Associations between prenatal PFAS exposure and birth outcomes with BW, BW for gestational age, and birth small for gestational age (SGA) were assessed in 1533 infants, adjusted for potential confounders and stratified by sex. RESULTS: Increased maternal perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA) were associated with lower BW, lower BW for gestational age, and SGA birth. Associations were significant only in girls, where prenatal exposure in the upper quartile was associated with a 93-142-g lower BW when compared with that of the lowest quartile exposure. The associations were not mediated by effects on gestational age. CONCLUSIONS: We found associations between prenatal exposure for five different PFASs and birth weight, with more pronounced associations in girls than in boys.


Subject(s)
Alkanesulfonic Acids/blood , Birth Weight/drug effects , Caprylates/blood , Decanoic Acids/blood , Fatty Acids/blood , Fluorocarbons/blood , Infant, Low Birth Weight , Adult , Alkanesulfonic Acids/adverse effects , Biomarkers/blood , Caprylates/adverse effects , Decanoic Acids/adverse effects , Fatty Acids/adverse effects , Female , Fluorocarbons/adverse effects , Humans , Infant, Newborn , Infant, Small for Gestational Age , Longitudinal Studies , Maternal Exposure , Pregnancy , Pregnancy Trimester, First , Prenatal Exposure Delayed Effects , Risk Factors , Sex Factors , Sweden
16.
Int J Hyg Environ Health ; 223(1): 179-186, 2020 01.
Article in English | MEDLINE | ID: mdl-31542349

ABSTRACT

For decades, perfluoroalkyl acids (PFAAs) have been commonly used for industrial and commercial purposes due to their water- and stain-resistant properties. Persistent pollutants that contain PFAAs have been associated with adverse health effects in humans, and many studies have documented dietary intake, indoor air inhalation, and dermal contact as the potential routes for human exposure to PFAAs. The aim of this study was to assess the level of PFAAs in the serum samples of a general population in a specific region in Malaysia. Using 219 serum samples collected from residents of Klang Valley, Malaysia, the levels of nine PFAAs were analyzed using liquid chromatography-tandem mass spectrometry. In addition, questionnaire surveys on the dietary habits and lifestyles of the subjects were conducted. The results showed that PFAA concentrations of up to 32.57 ng/mL were detected in all serum samples. In 82.6% of the participants, at least seven PFAAs were detected in the serum samples, with perfluorooctanesulfonic acid being the predominant PFAA (median = 8.79 ng/mL). In the adjusted regression model, the concentrations of most PFAAs were higher in men than in women and positively correlated with age, although body mass index and smoking were not significantly associated with the serum PFAA concentrations. Taking into consideration the lifestyle variables, significant associations were found between nonstick cookware and perfluorononanoic acid, between dental floss and cosmetics and perfluorodecanoic acid (PFDA), and between leather sofa and perfluoroundecanoic acid (PFUnDA). Besides, consumption of beef was significantly associated with increased levels of serum PFUnDA, whereas consumption of lamb and chicken eggs was negatively associated with the serum levels of PFUnDA and PFDA, respectively.


Subject(s)
Environmental Exposure/statistics & numerical data , Environmental Pollutants/blood , Fluorocarbons/blood , Alkanesulfonic Acids/blood , Chromatography, Liquid , Decanoic Acids/blood , Environmental Monitoring , Fatty Acids/blood , Female , Humans , Malaysia , Male , Tandem Mass Spectrometry
17.
Int J Hyg Environ Health ; 223(1): 80-92, 2020 01.
Article in English | MEDLINE | ID: mdl-31653559

ABSTRACT

BACKGROUND: Perfluoroalkyl substances (PFASs) are persistent organic pollutants that are suspected to be neurodevelopmental toxicants, but epidemiological evidence on neurodevelopmental effects of PFAS exposure is inconsistent. We investigated the associations between prenatal exposure to PFASs and symptoms of attention-deficit/hyperactivity disorder (ADHD) and cognitive functioning (language skills, estimated IQ and working memory) in preschool children, as well as effect modification by child sex. MATERIAL AND METHODS: This study included 944 mother-child pairs enrolled in a longitudinal prospective study of ADHD symptoms (the ADHD Study), with participants recruited from The Norwegian Mother, Father and Child Cohort Study (MoBa). Boys and girls aged three and a half years, participated in extensive clinical assessments using well-validated tools; The Preschool Age Psychiatric Assessment interview, Child Development Inventory and Stanford-Binet (5th revision). Prenatal levels of 19 PFASs were measured in maternal blood at week 17 of gestation. Multivariable adjusted regression models were used to examine exposure-outcome associations with two principal components extracted from the seven detected PFASs. Based on these results, we performed regression analyses of individual PFASs categorized into quintiles. RESULTS: PFAS component 1 was mainly explained by perfluoroheptane sulfonate (PFHpS), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS) and perfluorooctanoic acid (PFOA). PFAS component 2 was mainly explained by perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA) and perfluorononanoic acid (PFNA). Regression models showed a negative association between PFAS component 1 and nonverbal working memory [ß = -0.08 (CI: -0.12, -0.03)] and a positive association between PFAS component 2 and verbal working memory [ß = 0.07 (CI: 0.01, 0.12)]. There were no associations with ADHD symptoms, language skills or IQ. For verbal working memory and PFAS component 2, we found evidence for effect modification by child sex, with associations only for boys. The results of quintile models with individual PFASs, showed the same pattern for working memory as the results in the component regression analyses. There were negative associations between nonverbal working memory and quintiles of PFOA, PFNA, PFHxS, PFHpS and PFOS and positive associations between verbal working memory and quintiles of PFOA, PFNA, PFDA and PFUnDA, with significant relationships mainly in the highest concentration groups. CONCLUSIONS: Based on our results, we did not find consistent evidence to conclude that prenatal exposure to PFASs are associated with ADHD symptoms or cognitive dysfunctions in preschool children aged three and a half years, which is in line with the majority of studies in this area. Our results showed some associations between PFASs and working memory, particularly negative relationships with nonverbal working memory, but also positive relationships with verbal working memory. The relationships were weak, as well as both positive and negative, which suggest no clear association - and need for replication.


Subject(s)
Attention Deficit Disorder with Hyperactivity/epidemiology , Cognition/drug effects , Environmental Exposure/statistics & numerical data , Environmental Pollutants/blood , Fluorocarbons/blood , Prenatal Exposure Delayed Effects/epidemiology , Alkanesulfonic Acids/blood , Caprylates/blood , Child, Preschool , Decanoic Acids/blood , Environmental Pollutants/toxicity , Fatty Acids/blood , Female , Fluorocarbons/toxicity , Humans , Male , Memory, Short-Term , Norway/epidemiology , Pregnancy
18.
Environ Health Perspect ; 127(8): 87006, 2019 08.
Article in English | MEDLINE | ID: mdl-31433236

ABSTRACT

BACKGROUND: Identifying factors that impair bone accrual during childhood is a critical step toward osteoporosis prevention. Exposure to per- and polyfluoroalkyl substances (PFASs) has been associated with lower bone mineral density, but data are limited, particularly in children. METHODS: We studied 576 children in Project Viva, a Boston-area cohort of mother/child pairs recruited prenatally from 1999 to 2002. We quantified plasma concentrations of several PFASs and measured areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) in midchildhood. We used linear regression to examine associations between plasma concentrations of individual PFASs and aBMD z-score. We used weighted quantile sum (WQS) regression to examine the association of the PFAS mixture with aBMD z-score. All models were adjusted for maternal age, education, annual household income, census tract median household income, and child age, sex, race/ethnicity, dairy intake, physical activity, and year of blood draw. RESULTS: Children were [[Formula: see text]] [Formula: see text] of age. The highest PFAS plasma concentrations were of perfluorooctanesulfonic acid (PFOS) {median [interquartile range (IQR)]: 6.4 (5.6) ng/mL} and perfluorooctanoic acid (PFOA) [median (IQR): 4.4 (3.2) ng/mL]. Using linear regression, children with higher plasma concentrations of PFOA, PFOS, and perfluorodecanoate (PFDA) had lower aBMD z-scores [e.g., [Formula: see text]: [Formula: see text]; 95% confidence interval (CI): [Formula: see text], [Formula: see text] per doubling of PFOA]. The PFAS mixture was negatively associated with aBMD z-score ([Formula: see text]: [Formula: see text]; 95% CI: [Formula: see text], [Formula: see text] per IQR increment of the mixture index). CONCLUSIONS: PFAS exposure may impair bone accrual in childhood and peak bone mass, an important determinant of lifelong skeletal health. https://doi.org/10.1289/EHP4918.


Subject(s)
Alkanesulfonic Acids/blood , Bone Density/drug effects , Caprylates/blood , Decanoic Acids/blood , Environmental Exposure/analysis , Environmental Pollutants/blood , Fluorocarbons/blood , Boston , Child , Cross-Sectional Studies , Female , Humans , Male
19.
Epileptic Disord ; 21(4): 366-369, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31366451

ABSTRACT

Recently, decanoic acid (C10), a medium-chain fatty acid, was shown to be a direct inhibitor of the AMPA receptor. Accordingly, C10 has been suggested as a potential anticonvulsant factor in the ketogenic diet (KD) or the medium-chain triglyceride KD. Here, we tested whether C10 serum levels correlate with the response to KD in five children (1.5 ± 0.6 years of age) with epilepsy. The serum levels of C10 were measured before and after KD initiation (n=2 at one month, n=3 at three months, and n=1 at six months after initiation) by gas chromatography-mass spectrometry. After three months on KD, two patients were found to be responders. The mean serum level before KD initiation was 63.2 µM. Only one patient, who was a non-responder, showed an increase (5%) in C10 serum level after a month of KD. The remaining four patients (two responders) showed a decrease in the C10 level from -5.3% to -75.5%. Our preliminary data show that KD does not lead to an increase in C10 serum levels, suggesting that increased concentration of C10 might not be directly involved in the anticonvulsant effects of classic KD.


Subject(s)
Decanoic Acids/blood , Diet, Ketogenic , Epilepsy/blood , Seizures/blood , Adolescent , Anticonvulsants/therapeutic use , Child , Diet, Ketogenic/methods , Epilepsy/diagnosis , Epilepsy/drug therapy , Female , Humans , Male , Seizures/diagnosis , Seizures/drug therapy
20.
J Clin Endocrinol Metab ; 104(11): 5338-5348, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31216000

ABSTRACT

BACKGROUND: Birth cohort studies have linked exposure to perfluoroalkyl substances (PFASs) with child anthropometry. Metabolic hormone dysregulation needs to be considered as a potential adverse outcome pathway. We examined the associations between PFAS exposures and concentrations of adipokine hormones from birth to adolescence. METHODS: We studied 80 mother-child pairs from a Faroese cohort born in 1997 to 2000. Five PFASs were measured in maternal pregnancy serum and in child serum at ages 5, 7, and 13 years. Leptin, adiponectin, and resistin were analyzed in cord serum and child serum at the same ages. We fitted multivariable-adjusted generalized estimating equations to assess the associations of PFASs at each age with repeated adipokine concentrations at concurrent and subsequent ages. RESULTS: We observed tendencies of inverse associations between PFASs and adipokine hormones specific to particular ages and sex. Significant associations with all adipokines were observed for maternal and child 5-year serum PFAS concentrations, whereas associations for PFASs measured at ages 7 to 13 years were mostly null. The inverse associations with leptin and adiponectin were seen mainly in females, whereas the inverse PFAS associations with resistin levels were seen mainly in males. Estimates for significant associations (P value <0.05) suggested mean decreases in hormone levels (range) by 38% to 89% for leptin, 16% to 70% for adiponectin, and 33% to 62% for resistin for each twofold increase in serum PFAS concentration. CONCLUSIONS: These findings suggest adipokine hormone dysregulation in early life as a potential pathway underlying PFAS-related health outcomes and underscore the need to further account for susceptibility windows and sex-dimorphic effects in future investigations.


Subject(s)
Adipokines/blood , Environmental Pollutants/blood , Fluorocarbons/blood , Maternal Exposure , Prenatal Exposure Delayed Effects/blood , Adolescent , Adult , Alkanesulfonic Acids/blood , Caprylates/blood , Child , Child, Preschool , Decanoic Acids/blood , Fatty Acids , Female , Humans , Infant, Newborn , Male , Pregnancy , Sulfonic Acids/blood
SELECTION OF CITATIONS
SEARCH DETAIL