Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.841
Filter
1.
Clin Immunol ; 265: 110305, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38972618

ABSTRACT

Auto-inflammatory skin diseases place considerable symptomatic and emotional burden on the affected and put pressure on healthcare expenditures. Although most apparent symptoms manifest on the skin, the systemic inflammation merits a deeper analysis beyond the surface. We set out to identify systemic commonalities, as well as differences in the metabolome and lipidome when comparing between diseases and healthy controls. Lipidomic and metabolomic LC-MS profiling was applied, using plasma samples collected from patients suffering from atopic dermatitis, plaque-type psoriasis or hidradenitis suppurativa or healthy controls. Plasma profiles revealed a notable shift in the non-enzymatic anti-oxidant defense in all three inflammatory disorders, placing cysteine metabolism at the center of potential dysregulation. Lipid network enrichment additionally indicated the disease-specific provision of lipid mediators associated with key roles in inflammation signaling. These findings will help to disentangle the systemic components of autoimmune dermatological diseases, paving the way to individualized therapy and improved prognosis.


Subject(s)
Dermatitis, Atopic , Hidradenitis Suppurativa , Lipidomics , Metabolomics , Psoriasis , Humans , Dermatitis, Atopic/immunology , Dermatitis, Atopic/blood , Dermatitis, Atopic/metabolism , Psoriasis/metabolism , Psoriasis/immunology , Psoriasis/blood , Hidradenitis Suppurativa/blood , Hidradenitis Suppurativa/metabolism , Hidradenitis Suppurativa/immunology , Lipidomics/methods , Female , Adult , Male , Metabolomics/methods , Middle Aged , Metabolome , Young Adult , Inflammation/metabolism , Inflammation/blood , Lipid Metabolism
2.
Int J Mol Sci ; 25(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39000019

ABSTRACT

Isoscopoletin is a compound derived from various plants traditionally used for the treatment of skin diseases. However, there have been no reported therapeutic effects of isoscopoletin on atopic dermatitis (AD). AD is a chronic inflammatory skin disease, and commonly used treatments have side effects; thus, there is a need to identify potential natural candidate substances. In this study, we aimed to investigate whether isoscopoletin regulates the inflammatory mediators associated with AD in TNF-α/IFN-γ-treated HaCaT cells and PMA/ionomycin treated RBL-2H3 cells. We determined the influence of isoscopoletin on cell viability through an MTT assay and investigated the production of inflammatory mediators using ELISA and RT-qPCR. Moreover, we analyzed the transcription factors that regulate inflammatory mediators using Western blots and ICC. The results showed that isoscopoletin did not affect cell viability below 40 µM in either HaCaT or RBL-2H3 cells. Isoscopoletin suppressed the production of TARC/CCL17, MDC/CCL22, MCP-1/CCL2, IL-8/CXCL8, and IL-1ß in TNF-α/IFN-γ-treated HaCaT cells and IL-4 in PMA/ionomycin-treated RBL-2H3 cells. Furthermore, in TNF-α/IFN-γ-treated HaCaT cells, the phosphorylation of signaling pathways, including MAPK, NF-κB, STAT, and AKT/PKB, increased but was decreased by isoscopoletin. In PMA/ionomycin-treated RBL-2H3 cells, the activation of signaling pathways including PKC, MAPK, and AP-1 increased but was decreased by isoscopoletin. In summary, isoscopoletin reduced the production of inflammatory mediators by regulating upstream transcription factors in TNF-α/IFN-γ-treated HaCaT cells and PMA/ionomycin-treated RBL-2H3 cells. Therefore, we suggest that isoscopoletin has the potential for a therapeutic effect, particularly in skin inflammatory diseases such as AD, by targeting keratinocytes and basophils.


Subject(s)
Basophils , Cell Survival , Cytokines , Keratinocytes , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Cytokines/metabolism , Basophils/drug effects , Basophils/metabolism , Cell Survival/drug effects , HaCaT Cells , Cell Line , Tumor Necrosis Factor-alpha/metabolism , Interferon-gamma/pharmacology , Interferon-gamma/metabolism , Signal Transduction/drug effects , Gene Expression Regulation/drug effects , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/metabolism
3.
Int J Mol Sci ; 25(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39000023

ABSTRACT

Chronic exposure to harmful pollutants, chemicals, and pathogens from the environment can lead to pathological changes in the epithelial barrier, which increase the risk of developing an allergy. During allergic inflammation, epithelial cells send proinflammatory signals to group 2 innate lymphoid cell (ILC2s) and eosinophils, which require energy and resources to mediate their activation, cytokine/chemokine secretion, and mobilization of other cells. This review aims to provide an overview of the metabolic regulation in allergic asthma, atopic dermatitis (AD), and allergic rhinitis (AR), highlighting its underlying mechanisms and phenotypes, and the potential metabolic regulatory roles of eosinophils and ILC2s. Eosinophils and ILC2s regulate allergic inflammation through lipid mediators, particularly cysteinyl leukotrienes (CysLTs) and prostaglandins (PGs). Arachidonic acid (AA)-derived metabolites and Sphinosine-1-phosphate (S1P) are significant metabolic markers that indicate immune dysfunction and epithelial barrier dysfunction in allergy. Notably, eosinophils are promoters of allergic symptoms and exhibit greater metabolic plasticity compared to ILC2s, directly involved in promoting allergic symptoms. Our findings suggest that metabolomic analysis provides insights into the complex interactions between immune cells, epithelial cells, and environmental factors. Potential therapeutic targets have been highlighted to further understand the metabolic regulation of eosinophils and ILC2s in allergy. Future research in metabolomics can facilitate the development of novel diagnostics and therapeutics for future application.


Subject(s)
Hypersensitivity , Humans , Hypersensitivity/metabolism , Hypersensitivity/immunology , Animals , Eosinophils/metabolism , Eosinophils/immunology , Epithelial Cells/metabolism , Epithelial Cells/immunology , Immunity, Innate , Dermatitis, Atopic/immunology , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Lymphocytes/metabolism , Lymphocytes/immunology , Rhinitis, Allergic/metabolism , Rhinitis, Allergic/immunology
4.
J Cell Mol Med ; 28(14): e18375, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39039796

ABSTRACT

Celastrol, a bioactive molecule extracted from the plant Tripterygium wilfordii Hook F., possesses anti-inflammatory, anti-obesity and anti-tumour properties. Despite its efficacy in improving erythema and scaling in psoriatic mice, the specific therapeutic mechanism of celastrol in atopic dermatitis (AD) remains unknown. This study aims to examine the role and mechanism of celastrol in AD using TNF-α-stimulated HaCaT cells and DNCB-induced Balb/c mice as in vitro and in vivo AD models, respectively. Celastrol was found to inhibit the increased epidermal thickness, reduce spleen and lymph node weights, attenuate inflammatory cell infiltration and mast cell degranulation and decrease thymic stromal lymphopoietin (TSLP) as well as various inflammatory factors (IL-4, IL-13, TNF-α, IL-5, IL-31, IL-33, IgE, TSLP, IL-17, IL-23, IL-1ß, CCL11 and CCL17) in AD mice. Additionally, celastrol inhibited Ezrin phosphorylation at Thr567, restored mitochondrial network structure, promoted translocation of Drp1 to the cytoplasm and reduced TNF-α-induced cellular reactive oxygen species (ROS), mitochondrial ROS (mtROS) and mitochondrial membrane potential (MMP) production. Interestingly, Mdivi-1 (a mitochondrial fission inhibitor) and Ezrin-specific siRNAs lowered inflammatory factor levels and restored mitochondrial reticular formation, as well as ROS, mtROS and MMP production. Co-immunoprecipitation revealed that Ezrin interacted with Drp1. Knocking down Ezrin reduced mitochondrial fission protein Drp1 phosphorylation and Fis1 expression while increasing the expression of fusion proteins Mfn1 and Mfn2. The regulation of mitochondrial fission and fusion by Ezrin was confirmed. Overall, celastrol may alleviate AD by regulating Ezrin-mediated mitochondrial fission and fusion, which may become a novel therapeutic reagent for alleviating AD.


Subject(s)
Cytokines , Cytoskeletal Proteins , Dermatitis, Atopic , Mice, Inbred BALB C , Mitochondrial Dynamics , Pentacyclic Triterpenes , Triterpenes , Animals , Mitochondrial Dynamics/drug effects , Pentacyclic Triterpenes/pharmacology , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Dermatitis, Atopic/metabolism , Humans , Triterpenes/pharmacology , Mice , Cytokines/metabolism , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Thymic Stromal Lymphopoietin , Disease Models, Animal , Mitochondria/metabolism , Mitochondria/drug effects , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/metabolism , HaCaT Cells , Phosphorylation/drug effects
5.
EMBO Mol Med ; 16(7): 1630-1656, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38877290

ABSTRACT

Thymic stromal lymphopoietin (TSLP) is a key player in atopic diseases, which has sparked great interest in therapeutically targeting TSLP. Yet, no small-molecule TSLP inhibitors exist due to the challenges of disrupting the protein-protein interaction between TSLP and its receptor. Here, we report the development of small-molecule TSLP receptor inhibitors using virtual screening and docking of >1,000,000 compounds followed by iterative chemical synthesis. BP79 emerged as our lead compound that effectively abrogates TSLP-triggered cytokines at low micromolar concentrations. For in-depth analysis, we developed a human atopic disease drug discovery platform using multi-organ chips. Here, topical application of BP79 onto atopic skin models that were co-cultivated with lung models and Th2 cells effectively suppressed immune cell infiltration and IL-13, IL-4, TSLP, and periostin secretion, while upregulating skin barrier proteins. RNA-Seq analysis corroborate these findings and indicate protective downstream effects on the lungs. To the best of our knowledge, this represents the first report of a potent putative small molecule TSLPR inhibitor which has the potential to expand the therapeutic and preventive options in atopic diseases.


Subject(s)
Cytokines , Receptors, Cytokine , Thymic Stromal Lymphopoietin , Humans , Cytokines/metabolism , Receptors, Cytokine/metabolism , Receptors, Cytokine/antagonists & inhibitors , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/metabolism , Th2 Cells/immunology , Th2 Cells/drug effects , Th2 Cells/metabolism , Animals , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Protein Binding/drug effects , Interleukin-4/metabolism , Skin/drug effects , Skin/metabolism , Skin/pathology , Lung/metabolism , Lung/drug effects , Lung/pathology , Molecular Docking Simulation
6.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891925

ABSTRACT

Stress exposure worsens allergic inflammatory diseases substantially. Mast cells (MCs) play a key role in peripheral immune responses to neuroendocrine stress mediators such as nerve growth factor (NGF) and substance P (SP). Mast cell proteases (MCPs) and cholinergic factors (Chrna7, SLURP1) were recently described to modulate MC stress response. We studied MCPs and Chrna7/SLURP1 and their interplay in a mouse model for noise induced stress (NiS) and atopic dermatitis-like allergic inflammation (AlD) and in cultured MC lacking Chrna7. We found that the cholinergic stress axis interacts with neuroendocrine stress mediators and stress-mediator cleaving enzymes in AlD. SP-cleaving mMCP4+ MC were upregulated in AlD and further upregulated by stress in NiS+AlD. Anti-NGF neutralizing antibody treatment blocked the stress-induced upregulation in vivo, and mMCP4+ MCs correlated with measures of AlD disease activity. Finally, high mMCP4 production in response to SP depended on Chrna7/SLURP1 in cultured MCs. In conclusion, mMCP4 and its upstream regulation by Chrna7/SLURP1 are interesting novel targets for the treatment of allergic inflammation and its aggravation by stress.


Subject(s)
Dermatitis, Atopic , Disease Models, Animal , Mast Cells , Skin , alpha7 Nicotinic Acetylcholine Receptor , Animals , Mast Cells/metabolism , Mast Cells/immunology , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Dermatitis, Atopic/immunology , Mice , Skin/metabolism , Skin/pathology , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Inflammation/metabolism , Inflammation/pathology , Peptide Hydrolases/metabolism , Urokinase-Type Plasminogen Activator/metabolism , Substance P/metabolism , Stress, Physiological , Mice, Inbred C57BL , Nerve Growth Factor/metabolism
7.
Int J Mol Sci ; 25(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38892346

ABSTRACT

Atopic dermatitis (AD) is one of the most common chronic inflammatory skin diseases, with an increasing number of targeted therapies available. While biologics to treat AD exclusively target the key cytokines of type 2 immunity, Janus kinase inhibitors target a broad variety of cytokines, including IFN-γ. To better stratify patients for optimal treatment outcomes, the identification and characterization of subgroups, especially with regard to their IFNG expression, is of great relevance, as the role of IFNG in AD has not yet been fully clarified. This study aims to define AD subgroups based on their lesional IFNG expression and to characterize them based on their gene expression, T cell secretome and clinical attributes. RNA from the lesional and non-lesional biopsies of 48 AD patients was analyzed by RNA sequencing. Based on IFNG gene expression and the release of IFN-γ by lesional T cells, this cohort was categorized into three IFNG groups (high, medium, and low) using unsupervised clustering. The low IFNG group showed features of extrinsic AD with a higher prevalence of atopic comorbidities and impaired epidermal lipid synthesis. In contrast, patients in the high IFNG group had a higher average age and an activation of additional pro-inflammatory pathways. On the cellular level, higher amounts of M1 macrophages and natural killer cell signaling were detected in the high IFNG group compared to the low IFNG group by a deconvolution algorithm. However, both groups shared a common dupilumab response gene signature, indicating that type 2 immunity is the dominant immune shift in both subgroups. In summary, high and low IFNG subgroups correspond to intrinsic and extrinsic AD classifications and might be considered in the future for evaluating therapeutic efficacy or non-responders.


Subject(s)
Dermatitis, Atopic , Interferon-gamma , Dermatitis, Atopic/genetics , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/immunology , Humans , Interferon-gamma/metabolism , Interferon-gamma/genetics , Female , Male , Adult , Middle Aged , Antibodies, Monoclonal, Humanized/therapeutic use , Macrophages/metabolism , Macrophages/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology
8.
Int J Biol Sci ; 20(8): 3094-3112, 2024.
Article in English | MEDLINE | ID: mdl-38904012

ABSTRACT

Atopic dermatitis (AD) is a common inflammation skin disease that involves dysregulated interplay between immune cells and keratinocytes. Interleukin-38 (IL-38), a poorly characterized IL-1 family cytokine, its role and mechanism in the pathogenesis of AD is elusive. Here, we show that IL-38 is mainly secreted by epidermal keratinocytes and highly expressed in the skin and downregulated in AD lesions. We generated IL-38 keratinocyte-specific knockout mice (K14Cre/+-IL-38f/f ) and induced AD models by 2,4-dinitrofluorobenzene (DNFB). Unexpectedly, after treatment with DNFB, K14Cre/+-IL-38f/f mice were less susceptible to cutaneous inflammation of AD. Moreover, keratinocyte-specific deletion of IL-38 suppressed the migration of Langerhans cells (LCs) into lymph nodes which results in disturbed differentiation of CD4+T cells and decreased the infiltration of immune cells into AD lesions. LCs are a type of dendritic cell that reside specifically in the epidermis and regulate immune responses. We developed LC-like cells in vitro from mouse bone marrow (BM) and treated with recombined IL-38. The results show that IL-38 depended on IL-36R, activated the phosphorylated expression of IRAK4 and NF-κB P65 and upregulated the expression of CCR7 to promoting the migration of LCs, nevertheless, the upregulation disappeared with the addition of IL-36 receptor antagonist (IL-36RA), IRAK4 or NF-κB P65 inhibitor. Furthermore, after treatment with IRAK4 inhibitors, the experimental AD phenotypes were alleviated and so IRAK4 is considered a promising target for the treatment of inflammatory diseases. Overall, our findings indicated a potential pathway that IL-38 depends on IL-36R, leading to LCs migration to promote AD by upregulating CCR7 via IRAK4/NF-κB and implied the prevention and treatment of AD, supporting potential clinical utilization of IRAK4 inhibitors in AD treatment.


Subject(s)
Cell Movement , Dermatitis, Atopic , Langerhans Cells , Animals , Dermatitis, Atopic/metabolism , Langerhans Cells/metabolism , Mice , Mice, Knockout , Interleukin-1/metabolism , Keratinocytes/metabolism , Dinitrofluorobenzene , NF-kappa B/metabolism , Interleukins/metabolism
9.
J Immunol ; 213(2): 125-134, 2024 07 15.
Article in English | MEDLINE | ID: mdl-38787155

ABSTRACT

Atopic dermatitis results in diminished barrier function and altered production of antimicrobial peptides. Dendritic epidermal T cells (DETCs) play an important role in the wound repair and inflammation process. Our previous work identified an IL-4-dependent loss of DETCs in Stat6VT mice and in the MC903-induced skin inflammation mouse model. However, the mechanisms through which IL-4 mediates the loss of DETCs are unclear. In this study, we show that IL-4Rα germline knockout mice (Il4ra-/-) have increased DETCs, faster wound healing, and increased epidermal differentiation complex gene and fibronectin expression. The absence of IL-4Rα minimized the MC903-induced loss of DETCs, and reciprocal bone marrow chimera experiments in Il4ra-/- and wild-type mice demonstrated structural nonhematopoietic IL-4-responsive cell-mediated DETC homeostasis. Skin keratinocyte-derived IL-15 decreased dramatically in the MC903 model, while injection of IL-15 rescued DETC loss by promoting DETC proliferation and limiting apoptosis. Conditional deletion of IL-4Rα from keratinocytes using Il4rafl/fl K14-Cre mice showed an increase of DETCs, increased IL-15 production, and diminished skin inflammation following wounding. These results suggest that IL-4-dependent effects on DETCs in allergic skin inflammation are mediated by the IL-4Rα receptor of keratinocytes.


Subject(s)
Dermatitis, Atopic , Keratinocytes , Receptors, Cell Surface , Signal Transduction , Animals , Mice , Dermatitis, Atopic/immunology , Dermatitis, Atopic/metabolism , Disease Models, Animal , Inflammation/immunology , Interleukin-4/immunology , Keratinocytes/immunology , Mice, Inbred C57BL , Mice, Knockout , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Skin/immunology , Skin/pathology
10.
PLoS One ; 19(5): e0302781, 2024.
Article in English | MEDLINE | ID: mdl-38713650

ABSTRACT

Atopic dermatitis is a multi-pathogenic disease characterized by chronic skin inflammation and barrier dysfunction. Therefore, improving the skin's ability to form an epidermal barrier and suppressing the production of cytokines that induce type 2 inflammatory responses are important for controlling atopic dermatitis symptoms. (-)-Blebbistatin, a non-muscle myosin II inhibitor, has been suggested to improve pulmonary endothelial barrier function and control inflammation by suppressing immune cell migration; however, its efficacy in atopic dermatitis is unknown. In this study, we investigated whether (S)-(-)-blebbistatin O-benzoate, a derivative of (-)-blebbistatin, improves dermatitis symptoms in a mite antigen-induced atopic dermatitis model using NC/Nga mice. The efficacy of the compound was confirmed using dermatitis scores, ear thickness measurements, serum IgE levels, histological analysis of lesions, and filaggrin expression analysis, which is important for barrier function. (S)-(-)-Blebbistatin O-benzoate treatment significantly reduced the dermatitis score and serum IgE levels compared to those in the vehicle group (p < 0.05). Furthermore, the histological analysis revealed enhanced filaggrin production and a decreased number of mast cells (p < 0.05), indicating that (S)-(-)-blebbistatin O-benzoate improved atopic dermatitis symptoms in a pathological model. In vitro analysis using cultured keratinocytes revealed increased expression of filaggrin, loricrin, involucrin, and ceramide production pathway-related genes, suggesting that (S)-(-)-blebbistatin O-benzoate promotes epidermal barrier formation. Furthermore, the effect of (S)-(-)-blebbistatin O-benzoate on type 2 alarmin cytokines, which are secreted from epidermal cells upon scratching or allergen stimulation and are involved in the pathogenesis of atopic dermatitis, was evaluated using antigens derived from mite feces. The results showed that (S)-(-)-blebbistatin O-benzoate inhibited the upregulation of these cytokines. Based on the above, (S)-(-)-blebbistatin O-benzoate has the potential to be developed as an atopic dermatitis treatment option that controls dermatitis symptoms by suppressing inflammation and improving barrier function by acting on multiple aspects of the pathogenesis of atopic dermatitis.


Subject(s)
Benzoates , Cytokines , Dermatitis, Atopic , Epidermis , Filaggrin Proteins , Heterocyclic Compounds, 4 or More Rings , Animals , Humans , Male , Mice , Antigens, Dermatophagoides/immunology , Benzoates/pharmacology , Benzoates/therapeutic use , Cytokines/metabolism , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Dermatitis, Atopic/metabolism , Disease Models, Animal , Epidermis/drug effects , Epidermis/metabolism , Epidermis/pathology , Filaggrin Proteins/drug effects , Heterocyclic Compounds, 4 or More Rings/pharmacology , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Immunoglobulin E/blood , Intermediate Filament Proteins/metabolism , Intermediate Filament Proteins/genetics , Keratinocytes/drug effects , Keratinocytes/metabolism , Alarmins/drug effects
11.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791249

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory skin disorder influenced by genetic predisposition, environmental factors, immune dysregulation, and skin barrier dysfunction. The skin microbiome and metabolome play crucial roles in modulating the skin's immune environment and integrity. However, their specific contributions to AD remain unclear. We aimed to investigate the distinct skin microbial communities and skin metabolic compounds in AD patients compared to healthy controls (HCs). Seven patients with AD patients and seven HCs were enrolled, from whom skin samples were obtained for examination. The study involved 16S rRNA metagenomic sequencing and bioinformatics analysis as well as the use of gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) to detect metabolites associated with AD in the skin. We observed significant differences in microbial diversity between lesional and non-lesional skin of AD patients and HCs. Staphylococcus overgrowth was prominent in AD lesions, while Cutibacterium levels were decreased. Metabolomic analysis revealed elevated levels of several metabolites, including hypoxanthine and glycerol-3-phosphate in AD lesions, indicating perturbations in purine metabolism and energy production pathways. Moreover, we found a positive correlation between hypoxanthine and glycerol-3-phosphate and clinical severity of AD and Staphylococcus overgrowth. These findings suggest potential biomarkers for monitoring AD severity. Further research is needed to elucidate the causal relationships between microbial dysbiosis, metabolic alterations, and AD progression, paving the way for targeted therapeutic interventions.


Subject(s)
Dermatitis, Atopic , Metabolome , Microbiota , Skin , Dermatitis, Atopic/microbiology , Dermatitis, Atopic/metabolism , Humans , Skin/microbiology , Skin/metabolism , Female , Male , Adult , RNA, Ribosomal, 16S/genetics , Metabolomics/methods , Young Adult , Middle Aged , Case-Control Studies
13.
Arch Dermatol Res ; 316(5): 156, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734816

ABSTRACT

Atopic dermatitis (AD) is an inflammatory skin disease with intense pruritus, and chronic skin colonization by Staphylococcus aureus. To understand the inflammatory status in AD, we investigated the inflammasome complex, that activates ASC (Apoptosis-associated speck-like protein containing a CARD), caspase-1 and GSDMD (gasdermin-D), and production of IL-1ß and IL-18. We aimed to evaluate the expression of the inflammasome pathway in the skin of adults with AD. Thirty patients with moderate to severe AD and 20 healthy controls were enrolled in the study. We performed the analysis of the inflammasome components NLRP1, NLRP3, AIM-2, IL-1ß, IL-18, Caspase-1, ASC, GSDMD, and CD68 expression (macrophage marker) by immunohistochemistry and immunofluorescence. The main findings included increased expression of NLRP3, NLRP1 and AIM-2 at dermal level of severe AD; augmented IL-18 and IL-1ß expression at epidermis of moderate and severe patients, and in the dermis of severe AD; augmented expression of ASC, caspase-1 and GSDMD in both epidermis and dermis of moderate and severe AD. We detected positive correlation between caspase-1, GSDMD and IL-1ß (epidermis) and caspase-1 (dermis) and AD severity; NLRP3, AIM-2 and IL-1ß, and NLRP3 with IL-18 in the epidermis; ASC, GSDMD and IL-1ß, and NLRP3, AIM-2, caspase-1, and IL-18 in the dermis. We also evidenced the presence of CD68+ macrophages secreting GSDMD, ASC and IL-1ß in moderate and severe AD. Cutaneous macrophages, early detected in moderate AD, have its role in the disease inflammatory mechanisms. Our study indicates a canonical activation pathway of inflammasomes, reinforced by the chronic status of inflammation in AD. The analysis of the inflammasome complex evidenced an imbalance in its regulation, with increased expression of the evaluated components, which is remarkably in severe AD, emphasizing its relevance as potential disease biomarkers and targets for immunomodulatory interventions.


Subject(s)
CARD Signaling Adaptor Proteins , Caspase 1 , Dermatitis, Atopic , Inflammasomes , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Adult , Female , Humans , Male , Middle Aged , Young Adult , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Apoptosis Regulatory Proteins/metabolism , CARD Signaling Adaptor Proteins/metabolism , Case-Control Studies , Caspase 1/metabolism , CD68 Molecule , Dermatitis, Atopic/immunology , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , DNA-Binding Proteins , Epidermis/immunology , Epidermis/metabolism , Epidermis/pathology , Gasdermins , Inflammasomes/metabolism , Inflammasomes/immunology , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Macrophages/metabolism , Macrophages/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins/metabolism , Phosphate-Binding Proteins/metabolism , Severity of Illness Index , Skin/pathology , Skin/immunology , Skin/metabolism
14.
Curr Med Sci ; 44(3): 475-484, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38748372

ABSTRACT

Proton-activated G protein-coupled receptors (GPCRs), initially discovered by Ludwig in 2003, are widely distributed in various tissues. These receptors have been found to modulate the immune system in several inflammatory diseases, including inflammatory bowel disease, atopic dermatitis, and asthma. Proton-activated GPCRs belong to the G protein-coupled receptor family and can detect alternations in extracellular pH. This detection triggers downstream signaling pathways within the cells, ultimately influencing the function of immune cells. In this review, we specifically focused on investigating the immune response of proton-activated GPCRs under inflammatory conditions.


Subject(s)
Immunomodulation , Inflammation , Receptors, G-Protein-Coupled , Signal Transduction , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/immunology , Humans , Inflammation/metabolism , Inflammation/immunology , Animals , Protons , Asthma/immunology , Asthma/metabolism , Dermatitis, Atopic/immunology , Dermatitis, Atopic/metabolism , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Hydrogen-Ion Concentration
15.
Expert Rev Proteomics ; 21(5-6): 247-257, 2024.
Article in English | MEDLINE | ID: mdl-38753434

ABSTRACT

INTRODUCTION: Atopic Dermatitis (AD) is the most common inflammatory skin disease with a complex and multifactorial pathogenesis. The use of proteomics in understanding AD has yielded the discovery of novel biomarkers and may further expand therapeutic options. AREAS COVERED: This review summarizes the most recent proteomic studies and the methodologies used in AD. It describes novel biomarkers that may monitor disease course and therapeutic response. The review also highlights skin and blood biomarkers characterizing different AD phenotypes and differentiates AD from other inflammatory skin disorders. A literature search was conducted by querying Scopus, Google Scholar, Pubmed/Medline, and Clinicaltrials.gov up to June 2023. EXPERT OPINION: The integration of proteomics into research efforts in atopic dermatitis has broadened our understanding of the molecular profile of AD through the discovery of new biomarkers. In addition, proteomics may contribute to the development of targeted treatments ultimately improving personalized medicine. An increasing number of studies are utilizing proteomics to explore this heterogeneous disease.


Subject(s)
Biomarkers , Dermatitis, Atopic , Proteomics , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/blood , Dermatitis, Atopic/pathology , Humans , Proteomics/methods , Biomarkers/blood , Biomarkers/metabolism , Proteome/metabolism
16.
Genomics ; 116(4): 110870, 2024 07.
Article in English | MEDLINE | ID: mdl-38821220

ABSTRACT

The pathophysiology of atopic dermatitis (AD) is complex. CD4+ T cells play an essential role in the development of lesions in AD. However, the underlying mechanism remains unclear. In the present study, we investigated the differentially expressed genes (DEGs) between adult AD lesioned and non-lesioned skin using two datasets from the Gene Expression Omnibus (GEO) database. 62 DEGs were shown to be related to cytokine response. Compared to non-lesioned skin, lesioned skin showed immune infiltration with increased numbers of activated natural killer (NK) cells and CD4+ T memory cells (p < 0.01). We then identified 13 hub genes with a strong association with CD4+ T cells using weighted correlation network analysis. Single-cell analysis of AD detected a novel CD4+ T subcluster, CD4+ tissue residency memory cells (TRMs), which were verified through immunohistochemistry (IHC) to be increased in the dermal area of AD. The significant relationship between CD4+ TRM and AD was assessed through further analyses. FOXO1 and SBNO2, two of the 13 hub genes, were characteristically expressed in the CD4+ TRM, but down-regulated in IFN-γ/TNF-α-induced HaCaT cells, as shown using quantitative polymerase chain reaction (qPCR). Moreover, SBNO2 expression was associated with increased Th1 infiltration in AD (p < 0.05). In addition, genes filtered using Mendelian randomization were positively correlated with CD4+ TRM and were highly expressed in IFN-γ/TNF-α-induced HaCaT cells, as determined using qPCR and western blotting. Collectively, our results revealed that the newly identified CD4+ TRM may be involved in the pathogenesis of adult AD.


Subject(s)
CD4-Positive T-Lymphocytes , Dermatitis, Atopic , Single-Cell Analysis , Dermatitis, Atopic/genetics , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/immunology , Dermatitis, Atopic/pathology , Humans , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , Adult , Memory T Cells/metabolism , Memory T Cells/immunology , Skin/metabolism , HaCaT Cells , Immunologic Memory , Male , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism
17.
Cells ; 13(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38607026

ABSTRACT

The transmembrane glycoprotein OX40 receptor (OX40) and its ligand, OX40L, are instrumental modulators of the adaptive immune response in humans. OX40 functions as a costimulatory molecule that promotes T cell activation, differentiation, and survival through ligation with OX40L. T cells play an integral role in the pathogenesis of several inflammatory skin conditions, including atopic dermatitis (AD). In particular, T helper 2 (TH2) cells strongly contribute to AD pathogenesis via the production of cytokines associated with type 2 inflammation (e.g., IL-4, IL-5, IL-13, and IL-31) that lead to skin barrier dysfunction and pruritus. The OX40-OX40L interaction also promotes the activation and proliferation of other T helper cell populations (e.g., TH1, TH22, and TH17), and AD patients have demonstrated higher levels of OX40 expression on peripheral blood mononuclear cells than healthy controls. As such, the OX40-OX40L pathway is a potential target for AD treatment. Novel therapies targeting the OX40 pathway are currently in development, several of which have demonstrated promising safety and efficacy results in patients with moderate-to-severe AD. Herein, we review the function of OX40 and the OX40-OX40L signaling pathway, their role in AD pathogenesis, and emerging therapies targeting OX40-OX40L that may offer insights into the future of AD management.


Subject(s)
Dermatitis, Atopic , Humans , Cell Differentiation , Cytokines/metabolism , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Inflammation , Leukocytes, Mononuclear/metabolism
18.
Exp Dermatol ; 33(4): e15079, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38654506

ABSTRACT

Common characteristics in the pathogenesis of psoriasis (PS) and atopic dermatitis (AD) have been presumed, but only a few studies have clearly supported this. The current aim was to find possible similarities and differences in protein expression patterns between these two major chronic inflammatory skin diseases. High-throughput tandem mass spectrometry proteomic analysis was performed using full thickness skin samples from adult PS patients, AD patients and healthy subjects. We detected a combined total of 3045 proteins in the three study groups. According to principal component analysis, there was significant overlap between the proteomic profiles of PS and AD, and both clearly differed from that of healthy skin. The following validation of selected proteins with western blot analysis showed similar tendencies in expression levels and produced statistically significant results. The expression of periostin (POSTN) was consistently high in AD and very low or undetectable in PS (5% FDR corrected p < 0.001), suggesting POSTN as a potential biomarker to distinguish these diseases. Immunohistochemistry further confirmed higher POSTN expression in AD compared to PS skin. Overall, our findings support the concept that these two chronic skin diseases might share considerably more common mechanisms in pathogenesis than has been suspected thus far.


Subject(s)
Cell Adhesion Molecules , Dermatitis, Atopic , Proteomics , Psoriasis , Dermatitis, Atopic/metabolism , Humans , Psoriasis/metabolism , Proteomics/methods , Cell Adhesion Molecules/metabolism , Adult , Female , Male , Middle Aged , Biomarkers/metabolism , Tandem Mass Spectrometry , Skin/metabolism , Principal Component Analysis , Case-Control Studies
19.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673730

ABSTRACT

Atopic dermatitis (AD), a chronic inflammatory skin disease, is exacerbated by obesity, yet the precise linking mechanism remains elusive. This study aimed to elucidate how obesity amplifies AD symptoms. We studied skin samples from three mouse groups: sham control, AD, and high-fat (HF) + AD. The HF + AD mice exhibited more severe AD symptoms than the AD or sham control mice. Skin lipidome analysis revealed noteworthy changes in arachidonic acid (AA) metabolism, including increased expression of pla2g4, a key enzyme in AA generation. Genes for phospholipid transport (Scarb1) and acyltransferase utilizing AA as the acyl donor (Agpat3) were upregulated in HF + AD skin. Associations were observed between AA-containing phospholipids and skin lipids containing AA and its metabolites. Furthermore, imbalanced phospholipid metabolism was identified in the HF + AD mice, marked by excessive activation of the AA and phosphatidic acid (PA)-mediated pathway. This imbalance featured increased expression of Plcb1, Plcg1, and Dgk involved in PA generation, along with a decrease in genes converting PA into diglycerol (DG) and CDP-DG (Lpin1 and cds1). This investigation revealed imbalanced phospholipid metabolism in the skin of HF + AD mice, contributing to the heightened inflammatory response observed in HF + AD, shedding light on potential mechanisms linking obesity to the exacerbation of AD symptoms.


Subject(s)
Dermatitis, Atopic , Diet, High-Fat , Disease Models, Animal , Obesity , Animals , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/etiology , Dermatitis, Atopic/genetics , Dermatitis, Atopic/pathology , Obesity/metabolism , Obesity/genetics , Obesity/complications , Mice , Diet, High-Fat/adverse effects , Skin/metabolism , Skin/pathology , Lipid Metabolism/genetics , Mice, Inbred C57BL , Arachidonic Acid/metabolism , Lipidomics/methods , Male , Phospholipids/metabolism
20.
Allergy ; 79(6): 1573-1583, 2024 06.
Article in English | MEDLINE | ID: mdl-38641894

ABSTRACT

BACKGROUND: The antimicrobial ribonuclease RNase 7 is abundantly expressed in the epidermis of lesional skin of atopic dermatitis (AD). Host RNase inhibitor (RI) binds to RNase 7 and blocks its ribonuclease activity. This study aimed to evaluate the impact of RNase 7-RI interactions on AD. METHODS: Cultured human primary keratinocytes, with siRNA-mediated downregulation of RNase 7 and RI, were stimulated with the synthetic RNA polyinosinic-polycytidylic acid (poly I:C). Induction of proinflammatory mediators was analyzed by real-time PCR and ELISA. RI expression in AD non-lesional and lesional skin biopsies and healthy controls was analyzed by real-time PCR and immunostaining. RI protein release in vivo on the AD skin surface was determined by western blot. Antimicrobial and ribonuclease assays were used to investigate the functional role of RI. RESULTS: RNase 7 inhibited the RNA-induced expression of proinflammatory mediators in keratinocytes. Accordingly, downregulation of RNase 7 in keratinocytes enhanced RNA-mediated induction of proinflammatory mediators, whereas downregulation of RI had the opposite effect. RI was released by damaged keratinocytes and epidermis. In vivo expression and release of RI on the skin surface were enhanced in lesional AD skin. Rinsing solution from the surface of lesional AD skin blocked the ribonuclease activity of RNase 7. The anti-Staphylococcus aureus activity of RNase 7 was abrogated by RI. CONCLUSIONS: Our data suggest a novel role of RI as a trigger factor of inflammation in AD by blocking the ribonuclease and antimicrobial activity of RNase 7, thereby enhancing RNA-mediated inflammation and S. aureus growth.


Subject(s)
Dermatitis, Atopic , Keratinocytes , Ribonucleases , Staphylococcus aureus , Humans , Dermatitis, Atopic/metabolism , Ribonucleases/metabolism , Keratinocytes/metabolism , Inflammation/metabolism , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL