Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.084
Filter
1.
J Obstet Gynaecol ; 44(1): 2372665, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38963181

ABSTRACT

BACKGROUND: Gestational diabetes mellitus (GDM) is a prevalent pregnancy complication during pregnancy. We aimed to evaluate a risk prediction model of GDM based on traditional and genetic factors. METHODS: A total of 2744 eligible pregnant women were included. Face-to-face questionnaire surveys were conducted to gather general data. Serum test results were collected from the laboratory information system. Independent risk factors for GDM were identified using univariate and multivariate logistic regression analyses. A GDM risk prediction model was constructed and evaluated with the Hosmer-Lemeshow goodness-of-fit test, goodness-of-fit calibration plot, receiver operating characteristic curve and area under the curve. RESULTS: Among traditional factors, age ≥30 years, family history, GDM history, impaired glucose tolerance history, systolic blood pressure ≥116.22 mmHg, diastolic blood pressure ≥74.52 mmHg, fasting plasma glucose ≥5.0 mmol/L, 1-hour postprandial blood glucose ≥8.8 mmol/L, 2-h postprandial blood glucose ≥7.9 mmol/L, total cholesterol ≥4.50 mmol/L, low-density lipoprotein ≥2.09 mmol/L and insulin ≥11.5 mIU/L were independent risk factors for GDM. Among genetic factors, 11 single nucleotide polymorphisms (SNPs) (rs2779116, rs5215, rs11605924, rs7072268, rs7172432, rs10811661, rs2191349, rs10830963, rs174550, rs13266634 and rs11071657) were identified as potential predictors of the risk of postpartum DM among women with GDM history, collectively accounting for 3.6% of the genetic risk. CONCLUSIONS: Both genetic and traditional factors contribute to the risk of GDM in women, operating through diverse mechanisms. Strengthening the risk prediction of SNPs for postpartum DM among women with GDM history is crucial for maternal and child health protection.


We aimed to evaluate a risk prediction model of gestational diabetes mellitus (GDM) based on traditional and genetic factors. A total of 2744 eligible pregnant women were included. Face-to-face questionnaire surveys were conducted to collect general data. Among traditional factors, age ≥30 years old, family history, GDM history, impaired glucose tolerance history, systolic blood pressure ≥116.22 mmHg, diastolic blood pressure ≥74.52 mmHg, fasting plasma glucose ≥5.0 mmol/L, 1-hour postprandial blood glucose ≥8.8 mmol/L, 2-h postprandial blood glucose ≥7.9 mmol/L, total cholesterol ≥4.50 mmol/L, low-density lipoprotein ≥2.09 mmol/L and insulin ≥11.5 mIU/L were independent risk factors for GDM. Among genetic factors, 11 single nucleotide polymorphisms were identified as potential predictors of the risk of postpartum DM among women with GDM history, collectively accounting for 3.6% of the genetic risk. Both genetic and traditional factors increase the risk of GDM in women.


Subject(s)
Diabetes, Gestational , Polymorphism, Single Nucleotide , Humans , Diabetes, Gestational/genetics , Diabetes, Gestational/epidemiology , Female , Pregnancy , Adult , Risk Factors , Risk Assessment/methods , Blood Glucose/analysis , Genetic Predisposition to Disease , Surveys and Questionnaires , ROC Curve , Logistic Models
2.
Nutr Diabetes ; 14(1): 48, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951151

ABSTRACT

BACKGROUND: This study aimed to assess whether the Haptoglobin (Hp) genotype influences the relationship between hemoglobin (Hb) levels and the development of gestational diabetes mellitus (GDM). Additionally, it sought to evaluate the interaction and joint association of Hb levels and Hp genotype with GDM risk. METHODS: This retrospective study involved 358 women with GDM and 1324 women with normal glucose tolerance (NGT). Peripheral blood leukocytes were collected from 360 individuals at 14-16 weeks' gestation for Hp genotyping. GDM was diagnosed between 24-28 weeks' gestation. Interactive moderating effect, joint analysis, and mediation analysis were performed to evaluate the crosslink of Hb levels and Hp genotype with GDM risk. RESULTS: Women who developed GDM had significantly higher Hb levels throughout pregnancy compared to those with NGT. Increase first-trimester Hb concentration was associated with a progressive rise in GDM incidence, glucose levels, glycosylated hemoglobin levels, Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) values, cesarean delivery rates, and composite neonatal outcomes. Spline regression showed a significant linear association of GDM incidence with continuous first-trimester Hb level when the latter exceeded 122 g/L. Increased first-trimester Hb concentration was an independent risk factor for GDM development after adjusting for potential confounding factors in both the overall population and a matched case-control group. The Hp2-2 genotype was more prevalent among pregnant women with GDM when first-trimester Hb exceeded 122 g/L. Significant multiplicative and additive interactions were identified between Hb levels and Hp genotype for GDM risk, adjusted for age and pre-pregnancy BMI. The odds ratio (OR) for GDM development increased incrementally when stratified by Hb levels and Hp genotype. Moreover, first-trimester Hb level partially mediated the association between Hp genotype and GDM risk. CONCLUSION: Increased first-trimester Hb levels were closely associated with the development of GDM and adverse pregnancy outcomes, with this association moderated by the Hp2-2 genotype.


Subject(s)
Diabetes, Gestational , Genotype , Haptoglobins , Hemoglobins , Pregnancy Trimester, First , Humans , Female , Pregnancy , Diabetes, Gestational/genetics , Diabetes, Gestational/blood , Diabetes, Gestational/epidemiology , Haptoglobins/genetics , Retrospective Studies , Adult , Hemoglobins/analysis , China/epidemiology , Risk Factors , Asian People/genetics , Glycated Hemoglobin/analysis , Blood Glucose/analysis , Blood Glucose/metabolism , Insulin Resistance/genetics , East Asian People
3.
Environ Sci Technol ; 58(26): 11596-11605, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38888423

ABSTRACT

Gestational diabetes mellitus (GDM) has been found to be a common complication in pregnant women, known to escalate the risk of negative obstetric outcomes. In our study, we genotyped 1,566 Chinese pregnant women for two single nucleotide polymorphisms (SNPs) in the LINGO2 gene and one SNP in the GLIS3 gene, utilizing targeted next-generation sequencing. The impact of two interacting genes, and the interaction of genes with the environment─including exposure to particulate matter (PM2.5), ozone (O3), and variations in prepregnancy body mass index (BMI)─on the incidence of GDM were analyzed using logistic regression. Our findings identify the variants LINGO2 rs10968576 (P = 0.022, OR = 1.224) and rs1412239 (P = 0.018, OR = 1.231), as well as GLIS3 rs10814916 (P = 0.028, OR = 1.172), as risk mutations significantly linked to increased susceptibility to GDM. Further analysis underscores the crucial role of gene-gene and gene-environment interactions in the development of GDM among Chinese women (P < 0.05). Particularly, the individuals carrying the rs10968576 G-rs1412239 G-rs10814916 C haplotype exhibit increased susceptibility to GDM during the prepregnancy period when interacting with PM2.5, O3, and BMI (P = 8.004 × 10-7, OR = 1.206; P = 6.3264 × 10-11, OR = 1.280; P = 9.928 × 10-7, OR = 1.334, respectively). In conclusion, our research emphasizes the importance of the interaction between specific gene variations─LINGO2 and GLIS3─and environmental factors in influencing GDM risk. Notably, we found significant associations between these gene variations and GDM risk across various environmental exposure periods.


Subject(s)
Diabetes, Gestational , Gene-Environment Interaction , Polymorphism, Single Nucleotide , Humans , Female , Diabetes, Gestational/genetics , Pregnancy , Adult , China , Asian People/genetics , Genetic Predisposition to Disease , East Asian People
4.
Front Endocrinol (Lausanne) ; 15: 1396347, 2024.
Article in English | MEDLINE | ID: mdl-38836232

ABSTRACT

Background: Associations of liver function with the risk of gestational diabetes mellitus (GDM) remain unclear. This study aimed to examine the relationship and the potential causality between maternal liver biomarkers and the risk of subsequent GDM, as well as to evaluate the interaction between liver biomarkers and lipids on GDM risk. Methods: In an ongoing Zhoushan Pregnant Women Cohort, pregnant women who finished the first prenatal follow-up record, underwent liver function tests in early pregnancy, and completed the GDM screening were included in this study. Logistic regression models were used to investigate the association, and the inverse-variance weighted method supplemented with other methods of two-sample Mendelian randomization (MR) analysis was applied to deduce the causality. Results: Among 9,148 pregnant women, 1,668 (18.2%) developed GDM. In general, the highest quartile of liver function index (LFI), including ALT, AST, GGT, ALP, and hepatic steatosis index, was significantly associated with an increased risk of GDM (OR ranging from 1.29 to 3.15), especially an elevated risk of abnormal postprandial blood glucose level. Moreover, the causal link between ALT and GDM was confirmed by the MR analysis (OR=1.28, 95%CI:1.05-1.54). A significant interaction between AST/ALT and TG on GDM risk was observed (P interaction = 0.026). Conclusion: Elevated levels of LFI in early pregnancy were remarkably associated with an increased risk of GDM in our prospective cohort. Besides, a positive causal link between ALT and GDM was suggested.


Subject(s)
Biomarkers , Diabetes, Gestational , Liver , Mendelian Randomization Analysis , Humans , Female , Pregnancy , Diabetes, Gestational/epidemiology , Diabetes, Gestational/blood , Diabetes, Gestational/genetics , Adult , Prospective Studies , Biomarkers/blood , Liver/metabolism , Risk Factors , Liver Function Tests , Cohort Studies , Alanine Transaminase/blood
5.
Front Endocrinol (Lausanne) ; 15: 1399694, 2024.
Article in English | MEDLINE | ID: mdl-38694942

ABSTRACT

Gestational diabetes mellitus (GDM) poses a significant global health concern, impacting both maternal and fetal well-being. Early detection and treatment are imperative to mitigate adverse outcomes during pregnancy. This review delves into the pivotal role of insulin function and the influence of genetic variants, including SLC30A8, CDKAL1, TCF7L2, IRS1, and GCK, in GDM development. These genetic variations affect beta-cell function and insulin activity in crucial tissues, such as muscle, disrupting glucose regulation during pregnancy. We propose a hypothesis that this variation may disrupt zinc transport, consequently impairing insulin production and secretion, thereby contributing to GDM onset. Furthermore, we discussed the involvement of inflammatory pathways, such as TNF-alpha and IL-6, in predisposing individuals to GDM. Genetic modulation of these pathways may exacerbate glucose metabolism dysregulation observed in GDM patients. We also discussed how GDM affects cardiovascular disease (CVD) through a direct correlation between pregnancy and cardiometabolic function, increasing atherosclerosis, decreased vascular function, dyslipidemia, and hypertension in women with GDM history. However, further research is imperative to unravel the intricate interplay between inflammatory pathways, genetics, and GDM. This understanding is pivotal for devising targeted gene therapies and pharmacological interventions to rectify genetic variations in SLC30A8, CDKAL1, TCF7L2, IRS1, GCK, and other pertinent genes. Ultimately, this review offers insights into the pathophysiological mechanisms of GDM, providing a foundation for developing strategies to mitigate its impact.


Subject(s)
Diabetes, Gestational , Humans , Diabetes, Gestational/genetics , Diabetes, Gestational/metabolism , Pregnancy , Female , Inflammation/genetics , Inflammation/metabolism , Genetic Predisposition to Disease
7.
Placenta ; 151: 27-36, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701658

ABSTRACT

INTRODUCTION: This study aimed to screen circRNAs involved in gestational diabetes mellitus (GDM)-related macrosomia. One differentially expressed circRNA (DEC), hsa_circ_0024838, was further tested for its potential role and mechanism in trophoblasts. METHODS: DECs in GDM were selected through GSE182737 and GSE194119. The targets were predicted for DECs and microRNAs (miRNAs), to complete the construction of the circRNA-miRNA-gene network. Functional annotation and related biological pathway enrichment analysis were performed on the target genes of miRNAs in the network. Subsequently, the expression levels of hsa_circ_0024838, miR-543, and HIF1A mRNA were identified by real-time quantitative real-time PCR (RT-qPCR) in GDM patients. Trophoblast activity was assessed via CCK-8 assay, apoptosis assay, and Matrigel invasion assay. Finally, interactions between miR-543 and either hsa_circ_0024838 or HIF1A were confirmed using dual-luciferase reporter assays. RESULTS: A GDM-related circRNA-miRNA-genes interaction network was constructed, consisting of 35 circRNAs, 46 miRNAs, and 122 target genes. Functional enrichment revealed that the enriched pathways were involved in GDM. Hsa_circ_0024838 and HIF1A mRNA expression levels were upregulated in GDM, while miR-543 expression levels were downregulated. A significant positive correlation between hsa_circ_0024838 and newborn weight was observed. Both hsa_circ_0024838 and HIF1A possessed binding sites for miR-543. Overexpressing hsa_circ_0024838 in high-glucose (HG)-cultured trophoblasts can partially reverse HG-induced reduction in trophoblast cell proliferation/migration and increase apoptosis. But this reversal can be negated by co-transfection with miR-543 mimics. The effects of miR-543 can be counteracted by HIF1A. DISCUSSION: Hsa_circ_0024838 can regulate the expression of HIF1A by interacting with miR-543. This regulates the HIF1A signaling pathway and enhance vitality in trophoblast cells.


Subject(s)
Diabetes, Gestational , Hypoxia-Inducible Factor 1, alpha Subunit , MicroRNAs , RNA, Circular , Trophoblasts , Humans , Diabetes, Gestational/genetics , Diabetes, Gestational/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Female , RNA, Circular/genetics , RNA, Circular/metabolism , Pregnancy , Trophoblasts/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Adult
9.
J Proteome Res ; 23(6): 1937-1947, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38776154

ABSTRACT

Lactylation is a novel post-translational modification of proteins. Although the histone lactylation modification has been reported to be involved in glucose metabolism, its role and molecular pathways in gestational diabetes mellitus (GDM) are still unclear. This study aims to elucidate the histone lactylation modification landscapes of GDM patients and explore lactylation-modification-related genes involved in GDM. We employed a combination of RNA-seq analysis and chromatin immunoprecipitation sequencing (ChIP-seq) analysis to identify upregulated differentially expressed genes (DEGs) with hyperhistone lactylation modification in GDM. We demonstrated that the levels of lactate and histone lactylation were significantly elevated in GDM patients. DEGs were involved in diabetes-related pathways, such as the PI3K-Akt signaling pathway, Jak-STAT signaling pathway, and mTOR signaling pathway. ChIP-seq analysis indicated that histone lactylation modification in the promoter regions of the GDM group was significantly changed. By integrating the results of RNA-seq and ChIP-seq analysis, we found that CACNA2D1 is a key gene for histone lactylation modification and is involved in the progression of GDM by promoting cell vitality and proliferation. In conclusion, we identified the key gene CACNA2D1, which upregulated and exhibited hypermodification of histone lactylation in GDM. These findings establish a theoretical groundwork for the targeted therapy of GDM.


Subject(s)
Chromatin Immunoprecipitation Sequencing , Diabetes, Gestational , Histones , Protein Processing, Post-Translational , Diabetes, Gestational/genetics , Diabetes, Gestational/metabolism , Humans , Female , Pregnancy , Histones/metabolism , Histones/genetics , Signal Transduction/genetics , RNA-Seq , Adult
10.
Clin Epigenetics ; 16(1): 61, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715048

ABSTRACT

BACKGROUND: Diabetes in pregnancy is associated with increased risk of long-term metabolic disease in the offspring, potentially mediated by in utero epigenetic variation. Previously, we identified multiple differentially methylated single CpG sites in offspring of women with gestational diabetes mellitus (GDM), but whether stretches of differentially methylated regions (DMRs) can also be identified in adolescent GDM offspring is unknown. Here, we investigate which DNA regions in adolescent offspring are differentially methylated in blood by exposure to diabetes in pregnancy. The secondary aim was to characterize the RNA expression of the identified DMR, which contained the nc886 non-coding RNA. METHODS: To identify DMRs, we employed the bump hunter method in samples from young (9-16 yr, n = 92) offspring of women with GDM (O-GDM) and control offspring (n = 94). Validation by pyrosequencing was performed in an adult offspring cohort (age 28-33 years) consisting of O-GDM (n = 82), offspring exposed to maternal type 1 diabetes (O-T1D, n = 67) and control offspring (O-BP, n = 57). RNA-expression was measured using RT-qPCR in subcutaneous adipose tissue and skeletal muscle. RESULTS: One significant DMR represented by 10 CpGs with a bimodal methylation pattern was identified, located in the nc886/VTRNA2-1 non-coding RNA gene. Low methylation status across all CpGs of the nc886 in the young offspring was associated with maternal GDM. While low methylation degree in adult offspring in blood, adipose tissue, and skeletal muscle was not associated with maternal GDM, adipose tissue nc886 expression was increased in O-GDM compared to O-BP, but not in O-T1D. In addition, adipose tissue nc886 expression levels were positively associated with maternal pre-pregnancy BMI (p = 0.006), but not with the offspring's own adiposity. CONCLUSIONS: Our results highlight that nc886 is a metastable epiallele, whose methylation in young offspring is negatively correlated with maternal obesity and GDM status. The physiological effect of nc886 may be more important in adipose tissue than in skeletal muscle. Further research should aim to investigate how nc886 regulation in adipose tissue by exposure to GDM may contribute to development of metabolic disease.


Subject(s)
Adipose Tissue , DNA Methylation , Diabetes, Gestational , Epigenesis, Genetic , Muscle, Skeletal , Prenatal Exposure Delayed Effects , Humans , Pregnancy , Female , Diabetes, Gestational/genetics , Epigenesis, Genetic/genetics , Adult , DNA Methylation/genetics , Muscle, Skeletal/metabolism , Adolescent , Adipose Tissue/metabolism , Male , Prenatal Exposure Delayed Effects/genetics , Child , Diabetes Mellitus, Type 1/genetics , RNA, Untranslated/genetics , RNA, Untranslated/blood , RNA, Long Noncoding/genetics , CpG Islands/genetics
11.
Front Endocrinol (Lausanne) ; 15: 1358144, 2024.
Article in English | MEDLINE | ID: mdl-38706698

ABSTRACT

Background: Diabetes that only appears or is diagnosed during pregnancy is referred to as gestational diabetes mellitus (GDM). The maternal physiological immune profile is essential for a positive pregnancy outcome. However, the causal relationship between GDM and immunophenotypes is not fully defined. Methods: Based on the high-density genetic variation data at the genome-wide level, we evaluated the logical associations between 731 specific immune mediators and GDM using bidirectional Mendelian randomization (MR). The inverse variance weighted (IVW) was the main method employed for MR analysis. We performed multiple methods to verify the robustness and dependability of the MR results, and sensitivity measures were applied to rule out potential heterogeneity and horizontal pleiotropy. Results: A substantial causal association between several immune mediators and GDM was detected. After FDR testing, HLA DR++ monocyte %leukocyte and HLA DR on plasmacytoid DC were shown to increase the risk of GDM; in contrast, CD127 on CD28+ CD45RA+ CD8br and CD19 on PB/PC were shown to attenuate the effect of GDM. Moreover, the progression of GDM has been shown to decrease the maternal levels of CD39+ activated Treg AC, CD39+ activated Treg %CD4 Treg, CD39+ resting Treg AC, CD39+ resting Treg %CD4 Treg, and CD39+ CD8BR %T cell. Conclusions: Our findings support a possible causal association between GDM and various immunophenotypes, thus facilitating the provision of multiple options for preventive recognition as well as for the diagnostic and therapeutic management of GDM in clinical practice.


Subject(s)
Diabetes, Gestational , Mendelian Randomization Analysis , Humans , Female , Diabetes, Gestational/genetics , Diabetes, Gestational/immunology , Pregnancy , Genome-Wide Association Study
12.
BMC Pregnancy Childbirth ; 24(1): 347, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711000

ABSTRACT

BACKGROUND: This study investigates the causal relationship between lipid traits and GDM in an effort to better understand the aetiology of GDM. METHODS: Employing a two-sample Mendelian Randomization (MR) framework, we used Single Nucleotide Polymorphisms (SNPs) as instrumental variables to examine the impact of lipids and apolipoproteins on GDM. The research comprised univariable and multivariable MR analyses, with a prime focus on individual and combined effects of lipid-related traits. Statistical techniques included the fixed-effect inverse variance weighted (IVW) method and supplementary methods such as MR-Egger for comprehensive assessment. RESULTS: Our findings revealed the following significant associations: apoA-I and HDL cholesterol were inversely correlated with GDM risk, while triglycerides showed a positive correlation. In multivariable analysis, apoA-I consistently exhibited a strong causal link with GDM, even after adjusting for other lipids and Body Mass Index (BMI). CONCLUSION: The study demonstrates a significant causal relationship between apoA-I and GDM risk.


Subject(s)
Apolipoprotein A-I , Cholesterol, HDL , Diabetes, Gestational , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Triglycerides , Humans , Female , Pregnancy , Diabetes, Gestational/genetics , Diabetes, Gestational/blood , Triglycerides/blood , Apolipoprotein A-I/blood , Apolipoprotein A-I/genetics , Cholesterol, HDL/blood , Apolipoproteins/blood , Apolipoproteins/genetics , Body Mass Index , Lipids/blood , Risk Factors
13.
PLoS One ; 19(5): e0298063, 2024.
Article in English | MEDLINE | ID: mdl-38701040

ABSTRACT

OBJECTIVE: To investigate the associations of Insulin-like growth factor-II (IGF2) gene, Insulin-like growth factor-II receptor (IGF2R) gene and Insulin-like growth factor-II binding protein 2 (IGF2BP2) gene polymorphisms with the susceptibility to gestational diabetes mellitus (GDM) in Chinese population. METHODS: A total of 1703 pregnant women (835 GDM and 868 Non-GDM) were recruited in this case-control study. All participants underwent prenatal 75 g oral glucose tolerance test (OGTT) examinations during 24-28 gestational weeks at the Maternal and Child Health Hospital of Hubei Province from January 15, 2018 to March 31, 2019. Genotyping of candidate SNPs (IGF2 rs680, IGF2R rs416572, IGF2BP2 rs4402960, rs1470579, rs1374910, rs11705701, rs6777038, rs16860234, rs7651090) was performed on Sequenom MassARRAY platform. Logistic regression analysis was conducted to investigate the associations between candidate SNPs and risk of GDM. In addition, multifactor dimensionality reduction (MDR) method was applied to explore the effects of gene-gene interactions on GDM risk. RESULTS: There were significant distribution differences between GDM group and non-GDM group in age, pre-pregnancy BMI, education level and family history of diabetes (P < 0.05). After adjusted for age, pre-pregnancy BMI, education level and family history of diabetes, there were no significant associations of the candidate SNPs polymorphisms and GDM risk (P > 0.05). Furthermore, there were no gene-gene interactions on the GDM risk among the candidate SNPs (P > 0.05). However, the fasting blood glucose (FBG) levels of rs6777038 CT carriers were significantly lower than TT carriers (4.69±0.69 vs. 5.03±1.57 mmol/L, P < 0.01), and the OGTT-2h levels of rs6777038 CC and CT genotype carriers were significantly lower than TT genotype carriers (8.10±1.91 and 8.08±1.87 vs. 8.99±2.90 mmol/L, P < 0.01). CONCLUSIONS: IGF2 rs680, IGF2R rs416572, IGF2BP2 rs4402960, rs1470579, rs11705701, rs6777038, rs16860234, rs7651090 polymorphisms were not significantly associated with GDM risk in Wuhan, China. Further lager multicenter researches are needed to confirm these results.


Subject(s)
Diabetes, Gestational , Genetic Predisposition to Disease , Insulin-Like Growth Factor II , Polymorphism, Single Nucleotide , RNA-Binding Proteins , Receptor, IGF Type 2 , Humans , Diabetes, Gestational/genetics , Female , Pregnancy , Case-Control Studies , Adult , Receptor, IGF Type 2/genetics , Insulin-Like Growth Factor II/genetics , RNA-Binding Proteins/genetics , Glucose Tolerance Test , China/epidemiology , Asian People/genetics , Genotype
14.
Sci Rep ; 14(1): 10514, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714721

ABSTRACT

Adverse pregnancy outcomes (APOs) affect a large proportion of pregnancies and represent an important cause of morbidity and mortality worldwide. Yet the pathophysiology of APOs is poorly understood, limiting our ability to prevent and treat these conditions. To search for genetic markers of maternal risk for four APOs, we performed multi-ancestry genome-wide association studies (GWAS) for pregnancy loss, gestational length, gestational diabetes, and preeclampsia. We clustered participants by their genetic ancestry and focused our analyses on three sub-cohorts with the largest sample sizes: European, African, and Admixed American. Association tests were carried out separately for each sub-cohort and then meta-analyzed together. Two novel loci were significantly associated with an increased risk of pregnancy loss: a cluster of SNPs located downstream of the TRMU gene (top SNP: rs142795512), and the SNP rs62021480 near RGMA. In the GWAS of gestational length we identified two new variants, rs2550487 and rs58548906 near WFDC1 and AC005052.1, respectively. Lastly, three new loci were significantly associated with gestational diabetes (top SNPs: rs72956265, rs10890563, rs79596863), located on or near ZBTB20, GUCY1A2, and RPL7P20, respectively. Fourteen loci previously correlated with preterm birth, gestational diabetes, and preeclampsia were found to be associated with these outcomes as well.


Subject(s)
Diabetes, Gestational , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Pregnancy Outcome , Humans , Pregnancy , Female , Pregnancy Outcome/genetics , Diabetes, Gestational/genetics , Adult , Pre-Eclampsia/genetics , Genetic Predisposition to Disease , Parity/genetics
15.
Clin Epigenetics ; 16(1): 65, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741114

ABSTRACT

OBJECTIVE: Youth-onset type 2 diabetes (T2D) is physiologically distinct from adult-onset, but it is not clear how the two diseases differ at a molecular level. In utero exposure to maternal type 2 diabetes (T2D) is known to be a specific risk factor for youth-onset T2D. DNA methylation (DNAm) changes associated with T2D but which differ between youth- and adult-onset might delineate the impacts of T2D development at different ages and could also determine the contribution of exposure to in utero diabetes. METHODS: We performed an epigenome-wide analysis of DNAm on whole blood from 218 youth with T2D and 77 normoglycemic controls from the iCARE (improving renal Complications in Adolescents with type 2 diabetes through REsearch) cohort. Associations were tested using multiple linear regression models while adjusting for maternal diabetes, sex, age, BMI, smoking status, second-hand smoking exposure, cell-type proportions and genetic ancestry. RESULTS: We identified 3830 differentially methylated sites associated with youth T2D onset, of which 3794 were moderately (adjusted p-value < 0.05 and effect size estimate > 0.01) associated and 36 were strongly (adjusted p-value < 0.05 and effect size estimate > 0.05) associated. A total of 3725 of these sites were not previously reported in the EWAS Atlas as associated with T2D, adult obesity or youth obesity. Moreover, three CpGs associated with youth-onset T2D in the PFKFB3 gene were also associated with maternal T2D exposure (FDR < 0.05 and effect size > 0.01). This is the first study to link PFKFB3 and T2D in youth. CONCLUSION: Our findings support that T2D in youth has different impacts on DNAm than adult-onset, and suggests that changes in DNAm could provide an important link between in utero exposure to maternal diabetes and the onset of T2D.


Subject(s)
DNA Methylation , Diabetes Mellitus, Type 2 , Prenatal Exposure Delayed Effects , Humans , Diabetes Mellitus, Type 2/genetics , Female , DNA Methylation/genetics , Pregnancy , Adolescent , Male , Prenatal Exposure Delayed Effects/genetics , Epigenesis, Genetic/genetics , Age of Onset , Child , Case-Control Studies , Diabetes, Gestational/genetics , Adult , Epigenome/genetics
16.
Genes (Basel) ; 15(4)2024 04 11.
Article in English | MEDLINE | ID: mdl-38674416

ABSTRACT

The pathophysiology of gestational diabetes mellitus (GDM) comprises clinical and genetic factors. In fact, GDM is associated with several single nucleotide polymorphisms (SNPs). This study aimed to build a prediction model of GDM combining clinical and genetic risk factors. A total of 1588 pregnant women from the San Carlos Cohort participated in the present study, including 1069 (67.3%) Caucasian (CAU) and 519 (32.7%) Latin American (LAT) individuals, and 255 (16.1%) had GDM. The incidence of GDM was similar in both groups (16.1% CAU and 16.0% LAT). Genotyping was performed via IPLEX Mass ARRAY PCR, selecting 110 SNPs based on literature references. SNPs showing the strongest likelihood of developing GDM were rs10830963, rs7651090, and rs1371614 in CAU and rs1387153 and rs9368222 in LAT. Clinical variables, including age, pre-pregnancy body mass index, and fasting plasma glucose (FPG) at 12 gestational weeks, predicted the risk of GDM (AUC 0.648, 95% CI 0.601-0.695 in CAU; AUC 0.688, 95% CI 0.628-9.748 in LAT), and adding SNPs modestly improved prediction (AUC 0.722, 95%CI 0.680-0.764 in CAU; AUC 0.769, 95% CI 0.711-0.826 in LAT). In conclusion, adding genetic variants enhanced the prediction model of GDM risk in CAU and LAT pregnant women.


Subject(s)
Diabetes, Gestational , Polymorphism, Single Nucleotide , White People , Adult , Female , Humans , Pregnancy , Blood Glucose , Body Mass Index , Diabetes, Gestational/genetics , Diabetes, Gestational/epidemiology , Genetic Predisposition to Disease , Latin America/ethnology , Risk Factors , White People/ethnology , White People/genetics , Spain
17.
Nat Med ; 30(6): 1689-1695, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38627562

ABSTRACT

Reduced insulin sensitivity (insulin resistance) is a hallmark of normal physiology in late pregnancy and also underlies gestational diabetes mellitus (GDM). We conducted transcriptomic profiling of 434 human placentas and identified a positive association between insulin-like growth factor binding protein 1 gene (IGFBP1) expression in the placenta and insulin sensitivity at ~26 weeks gestation. Circulating IGFBP1 protein levels rose over the course of pregnancy and declined postpartum, which, together with high gene expression levels in our placenta samples, suggests a placental or decidual source. Higher circulating IGFBP1 levels were associated with greater insulin sensitivity (lesser insulin resistance) at ~26 weeks gestation in the same cohort and in two additional pregnancy cohorts. In addition, low circulating IGFBP1 levels in early pregnancy predicted subsequent GDM diagnosis in two cohorts of pregnant women. These results implicate IGFBP1 in the glycemic physiology of pregnancy and suggest a role for placental IGFBP1 deficiency in GDM pathogenesis.


Subject(s)
Diabetes, Gestational , Insulin Resistance , Insulin-Like Growth Factor Binding Protein 1 , Placenta , Humans , Pregnancy , Insulin-Like Growth Factor Binding Protein 1/genetics , Insulin-Like Growth Factor Binding Protein 1/blood , Insulin-Like Growth Factor Binding Protein 1/metabolism , Female , Diabetes, Gestational/metabolism , Diabetes, Gestational/genetics , Diabetes, Gestational/blood , Placenta/metabolism , Insulin Resistance/genetics , Adult , Gene Expression Profiling , Cohort Studies
18.
Yale J Biol Med ; 97(1): 67-72, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38559462

ABSTRACT

Background: Adverse outcomes from gestational diabetes mellitus (GDM) in the mother and newborn are well established. Genetic variants may predict GDM and Artificial Intelligence (AI) can potentially assist with improved screening and early identification in lower resource settings. There is limited information on genetic variants associated with GDM in sub-Saharan Africa and the implementation of AI in GDM screening in sub-Saharan Africa is largely unknown. Methods: We reviewed the literature on what is known about genetic predictors of GDM in sub-Saharan African women. We searched PubMed and Google Scholar for single nucleotide polymorphisms (SNPs) involved in GDM predisposition in a sub-Saharan African population. We report on barriers that limit the implementation of AI that could assist with GDM screening and offer possible solutions. Results: In a Black South African cohort, the minor allele of the SNP rs4581569 existing in the PDX1 gene was significantly associated with GDM. We were not able to find any published literature on the implementation of AI to identify women at risk of GDM before second trimester of pregnancy in sub-Saharan Africa. Barriers to successful integration of AI into healthcare systems are broad but solutions exist. Conclusions: More research is needed to identify SNPs associated with GDM in sub-Saharan Africa. The implementation of AI and its applications in the field of healthcare in the sub-Saharan African region is a significant opportunity to positively impact early identification of GDM.


Subject(s)
Diabetes, Gestational , Pregnancy , Infant, Newborn , Female , Humans , Diabetes, Gestational/diagnosis , Diabetes, Gestational/genetics , Diabetes, Gestational/epidemiology , Artificial Intelligence , Africa South of the Sahara/epidemiology , Risk Assessment
19.
Front Endocrinol (Lausanne) ; 15: 1330704, 2024.
Article in English | MEDLINE | ID: mdl-38660519

ABSTRACT

Background: Both the mother and the infant are negatively impacted by macrosomia. Macrosomia is three times as common in hyperglycemic mothers as in normal mothers. This study sought to determine why hyperglycemic mothers experienced higher macrosomia. Methods: Hematoxylin and Eosin staining was used to detect the placental structure of normal mother(NN), mothers who gave birth to macrosomia(NM), and mothers who gave birth to macrosomia and had hyperglycemia (DM). The gene expressions of different groups were detected by RNA-seq. The differentially expressed genes (DEGs) were screened with DESeq2 R software and verified by qRT-PCR. The STRING database was used to build protein-protein interaction networks of DEGs. The Cytoscape was used to screen the Hub genes of the different group. Results: The NN group's placental weight differed significantly from that of the other groups. The structure of NN group's placenta is different from that of the other group, too. 614 and 3207 DEGs of NM and DM, respectively, were examined in comparison to the NN group. Additionally, 394 DEGs of DM were examined in comparison to NM. qRT-PCR verified the results of RNA-seq. Nucleolar stress appears to be an important factor in macrosomia, according on the results of KEGG and GO analyses. The results revealed 74 overlapped DEGs that acted as links between hyperglycemia and macrosomia, and 10 of these, known as Hub genes, were key players in this process. Additionally, this analysis believes that due of their close connections, non-overlapping Hubs shouldn't be discounted. Conclusion: In diabetic mother, ten Hub genes (RPL36, RPS29, RPL8 and so on) are key factors in the increased macrosomia in hyperglycemia. Hyperglycemia and macrosomia are linked by 74 overlapping DEGs. Additionally, this approach contends that non-overlapping Hubs shouldn't be ignored because of their tight relationships.


Subject(s)
Diabetes, Gestational , Fetal Macrosomia , RNA-Seq , Humans , Pregnancy , Female , Fetal Macrosomia/genetics , Diabetes, Gestational/genetics , Diabetes, Gestational/metabolism , Adult , Placenta/metabolism , Placenta/pathology , Protein Interaction Maps , Hyperglycemia/genetics , Hyperglycemia/metabolism , Gene Expression Profiling , Infant, Newborn
20.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612564

ABSTRACT

This systematic review delves into the connections between microRNAs and preterm labor, with a focus on identifying diagnostic and prognostic markers for this crucial pregnancy complication. Covering studies disseminated from 2018 to 2023, the review integrates discoveries from diverse pregnancy-related scenarios, encompassing gestational diabetes, hypertensive disorders and pregnancy loss. Through meticulous search strategies and rigorous quality assessments, 47 relevant studies were incorporated. The synthesis highlights the transformative potential of microRNAs as valuable diagnostic tools, offering promising avenues for early intervention. Notably, specific miRNAs demonstrate robust predictive capabilities. In conclusion, this comprehensive analysis lays the foundation for subsequent research, intervention strategies and improved outcomes in the realm of preterm labor.


Subject(s)
Abortion, Spontaneous , Diabetes, Gestational , Hypertension , Obstetric Labor, Premature , Female , Pregnancy , Infant, Newborn , Humans , Obstetric Labor, Premature/genetics , Diabetes, Gestational/diagnosis , Diabetes, Gestational/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...