Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.902
Filter
1.
Mol Metab ; 86: 101978, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38950776

ABSTRACT

OBJECTIVE: Aberrant glucolipid metabolism in the heart is a characteristic factor in diabetic cardiomyopathy (DbCM). Super-enhancers-driven noncoding RNAs (seRNAs) are emerging as powerful regulators in the progression of cardiac diseases. However, the functions of seRNAs in DbCM have not been fully elucidated. METHODS: Super enhancers and their associated seRNAs were screened and identified by H3K27ac ChIP-seq data in the Encyclopedia of DNA Elements (ENCODE) dataset. A dual-luciferase reporter assay was performed to analyze the function of super-enhancers on the transcription of peroxisome proliferator-activated receptor α-related seRNA (PPARα-seRNA). A DbCM mouse model was established using db/db leptin receptor-deficient mice. Adeno-associated virus serotype 9-seRNA (AAV9-seRNA) was injected via the tail vein to evaluate the role of seRNA in DbCM. The underlying mechanism was explored through RNA pull-down, RNA and chromatin immunoprecipitation, and chromatin isolation by RNA purification. RESULTS: PPARα-seRNA was regulated by super-enhancers and its levels were increased in response to high glucose and palmitic acid stimulation in cardiomyocytes. Functionally, PPARα-seRNA overexpression aggravated lipid deposition, reduced glucose uptake, and repressed energy production. In contrast, PPARα-seRNA knockdown ameliorated metabolic disorder in vitro. In vivo, overexpression of PPARα-seRNA exacerbated cardiac metabolic disorder and deteriorated cardiac dysfunction, myocardial fibrosis, and hypertrophy in DbCM. Mechanistically, PPARα-seRNA bound to the histone demethylase KDM4B (Lysine-specific demethylase 4B) and decreased H3K9me3 levels in the promoter region of PPARα, ultimately enhancing its transcription. CONCLUSIONS: Our study revealed the pivotal function of a super-enhancer-driven long noncoding RNA (lncRNA), PPARα-seRNA, in the deterioration of cardiac function and the exacerbation of metabolic abnormalities in diabetic cardiomyopathy, which recruited KDM4B to the promoter region of PPARα and repression of its transcription. This suggests a promising therapeutic strategy for the treatment of DbCM.


Subject(s)
Diabetic Cardiomyopathies , Lipid Metabolism , PPAR alpha , RNA, Long Noncoding , Animals , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Mice , PPAR alpha/metabolism , PPAR alpha/genetics , Lipid Metabolism/genetics , Mice, Inbred C57BL , Male , Myocytes, Cardiac/metabolism , Enhancer Elements, Genetic/genetics , Glucose/metabolism
2.
Biomed Pharmacother ; 177: 117048, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38959606

ABSTRACT

BACKGROUND AND OBJECTIVES: Diabetic cardiomyopathy (DCM) is a cardiac condition resulting from myocardial damage caused by diabetes mellitus (DM), currently lacking specific therapeutic interventions. Fuzhengkangfu decoction (FZK) plays an important role in the prevention and treatment of various cardiovascular diseases. However, the efficacy and potential mechanisms of FZK are not fully understood. This study aims to investigate the protective effect and mechanisms of FZK against DCM. METHODOLOGIES: Rats were given a high-calorie diet along with a low dosage of streptozotocin (STZ) to establish a rat model of DCM. The diabetic rats received FZK or normal saline subcutaneously for 12 weeks. Echocardiography was conducted to evaluate their heart function characteristics. Rat heart morphologies were assessed using Sirius Red staining and H&E staining. Transcriptome sequencing analysis and network pharmacology were used to reveal possible targets and mechanisms. Molecular docking was conducted to validate the association between the primary components of FZK and the essential target molecules. Finally, both in vitro and in vivo studies were conducted on the cardioprotective properties and mechanism of FZK. RESULTS: According to the results of network pharmacology, FZK may prevent DCM by reducing oxidative stress and preventing apoptosis. Transcriptomics confirmed that FZK protected against DCM-induced myocardial fibrosis and remodelling, as predicted by network pharmacology, and suggested that FZK regulated the expression of oxidative stress and apoptosis-related proteins. Integrating network pharmacology and transcriptome analysis results revealed that the AGE-RAGE signalling pathway-associated MMP2, SLC2A1, NOX4, CCND1, and CYP1A1 might be key targets. Molecular docking showed that Poricoic acid A and 5-O-Methylvisammioside had the highest docking activities with these targets. We further conducted in vivo experiments, and the results showed that FZK significantly attenuated left ventricular remodelling, reduced myocardial fibrosis, and improved cardiac contractile function. And, our study demonstrated that FZK effectively reduced oxidative stress and apoptosis of cardiomyocytes. The data showed that Erk, NF-κB, and Caspase 3 phosphorylation was significantly inhibited, and Bcl-2/Bax was significantly increased after FZK treatment. In vitro, FZK significantly reduced AGEs-induced ROS increase and apoptosis in cardiomyocytes. Furthermore, FZK significantly inhibited the phosphorylation of Erk and NF-κB proteins and decreased the expression of MMP2. All the results confirmed that FZK inhibited the activation of the Erk/NF-κB pathway in AGE-RAGE signalling and alleviated oxidative stress and apoptosis of cardiomyocytes. In summary, we verified that FZK protects against DCM by inhibiting myocardial apoptotic remodelling through the suppression of the AGE-RAGE signalling pathway. CONCLUSION: In conclusion, our research indicates that FZK demonstrates anti-cardiac dysfunction properties by reducing oxidative stress and cardiomyocyte apoptosis through the AGE-RAGE pathway in DCM, showing potential for therapeutic use.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Rats, Sprague-Dawley , Transcriptome , Animals , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Drugs, Chinese Herbal/pharmacology , Male , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Rats , Transcriptome/drug effects , Oxidative Stress/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Apoptosis/drug effects , Signal Transduction/drug effects , Fibrosis , Streptozocin , Gene Expression Profiling , Cardiotonic Agents/pharmacology
3.
BMC Cardiovasc Disord ; 24(1): 333, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961333

ABSTRACT

BACKGROUND: Oxidative stress may contribute to cardiac ryanodine receptor (RyR2) dysfunction in diabetic cardiomyopathy. Ginsenoside Rb1 (Rb1) is a major pharmacologically active component of ginseng to treat cardiovascular diseases. Whether Rb1 treat diabetes injured heart remains unknown. This study was to investigate the effect of Rb1 on diabetes injured cardiac muscle tissue and to further investigate its possible molecular pharmacology mechanisms. METHODS: Male Sprague-Dawley rats were injected streptozotocin solution for 2 weeks, followed 6 weeks Rb1 or insulin treatment. The activity of SOD, CAT, Gpx, and the levels of MDA was measured; histological and ultrastructure analyses, RyR2 activity and phosphorylated RyR2(Ser2808) protein expression analyses; and Tunel assay were performed. RESULTS: There was decreased activity of SOD, CAT, Gpx and increased levels of MDA in the diabetic group from control. Rb1 treatment increased activity of SOD, CAT, Gpx and decreased the levels of MDA as compared with diabetic rats. Neutralizing the RyR2 activity significantly decreased in diabetes from control, and increased in Rb1 treatment group from diabetic group. The expression of phosphorylation of RyR2 Ser2808 was increased in diabetic rats from control, and were attenuated with insulin and Rb1 treatment. Diabetes increased the apoptosis rate, and Rb1 treatment decreased the apoptosis rate. Rb1 and insulin ameliorated myocardial injury in diabetic rats. CONCLUSIONS: These data indicate that Rb1 could be useful for mitigating oxidative damage, reduced phosphorylation of RyR2 Ser2808 and decreased the apoptosis rate of cardiomyocytes in diabetic cardiomyopathy.


Subject(s)
Antioxidants , Apoptosis , Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Ginsenosides , Myocytes, Cardiac , Oxidative Stress , Rats, Sprague-Dawley , Ryanodine Receptor Calcium Release Channel , Streptozocin , Animals , Diabetes Mellitus, Experimental/drug therapy , Male , Oxidative Stress/drug effects , Ryanodine Receptor Calcium Release Channel/metabolism , Ryanodine Receptor Calcium Release Channel/drug effects , Ginsenosides/pharmacology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/physiopathology , Diabetic Cardiomyopathies/etiology , Apoptosis/drug effects , Antioxidants/pharmacology , Phosphorylation , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Myocardium/pathology , Myocardium/metabolism , Insulin , Malondialdehyde/metabolism
4.
Physiol Res ; 73(3): 351-367, 2024 07 17.
Article in English | MEDLINE | ID: mdl-39027953

ABSTRACT

Diabetic cardiomyopathy may result from the overproduction of ROS, TRPM2 and TRPV2. Moreover, the therapeutic role of ginger, omega-3 fatty acids, and their combinations on the expression of TRPM2 and TRPV2 and their relationship with apoptosis, inflammation, and oxidative damage in heart tissue of rats with type 2 diabetes have not yet been determined. Therefore, this study aimed to investigate the therapeutic effects of ginger and omega-3 fatty acids on diabetic cardiomyopathy by evaluating the cardiac gene expression of TRPM2 and TRPV2, oxidative damage, inflammation, and apoptosis in male rats. Ninety adult male Wistar rats were equally divided into nine control, diabetes, and treated diabetes groups. Ginger extract (100 mg/kg) and omega-3 fatty acids (50, 100, and 150 mg/kg) were orally administrated in diabetic rats for 6 weeks. Type 2 diabetes was induced by feeding a high-fat diet and a single dose of STZ (40 mg/kg). Glucose, cardiac troponin I (cTnI), lipid profile, insulin in serum, and TNF-alpha IL-6, SOD, MDA, and CAT in the left ventricle of the heart were measured. The cardiac expression of TRPM2, TRPV2, NF-kappaB, Bcl2, Bax, Cas-3, and Nrf-2 genes was also measured in the left ventricle of the heart. An electrocardiogram (ECG) was continuously recorded to monitor arrhythmia at the end of the course. The serum levels of cTnI, glucose, insulin, and lipid profile, and the cardiac levels of MDA, IL-6, and TNF-alpha increased in the diabetic group compared to the control group (p<0.05). Moreover, the cardiac levels of SOD and CAT decreased in the diabetic group compared to the control group (p<0.05). The cardiac expression of TRPM2, TRPV2, NF-kappaB, Bax, and Cas-3 increased and Bcl2 and Nrf-2 expression decreased in the diabetic group compared to the control group (p<0.05). However, simultaneous and separate treatment with ginger extract and omega-3 fatty acids (50, 100, and 150 mg/kg) could significantly moderate these changes (p<0.05). The results also showed that the simultaneous treatment of ginger extract and different doses of omega-3 fatty acids have improved therapeutic effects than their individual treatments (p<0.05). It can be concluded that ginger and omega-3 fatty acids showed protective effects against diabetic cardiomyopathy by inhibiting inflammation, apoptosis and oxidative damage of the heart and reducing blood glucose and cardiac expression of TRPM2 and TRPV2. Combining ginger and omega-3 in the diet may provide a natural approach to reducing the risk or progression of diabetic cardiomyopathy while preserving heart structure and function.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Fatty Acids, Omega-3 , Plant Extracts , Rats, Wistar , Zingiber officinale , Animals , Male , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/administration & dosage , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-3/therapeutic use , Zingiber officinale/chemistry , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/prevention & control , Rats , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Dietary Supplements , Oxidative Stress/drug effects , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/complications , TRPM Cation Channels/metabolism , TRPM Cation Channels/genetics
5.
Cardiovasc Diabetol ; 23(1): 261, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026280

ABSTRACT

Mitochondria play a central role in cellular energy metabolism, and their dysfunction is increasingly recognized as a critical factor in the pathogenesis of diabetes-related cardiac pathophysiology, including vulnerability to ischemic events that culminate in myocardial infarction on the one hand and ventricular arrhythmias on the other. In diabetes, hyperglycemia and altered metabolic substrates lead to excessive production of reactive oxygen species (ROS) by mitochondria, initiating a cascade of oxidative stress that damages mitochondrial DNA, proteins, and lipids. This mitochondrial injury compromises the efficiency of oxidative phosphorylation, leading to impaired ATP production. The resulting energy deficit and oxidative damage contribute to functional abnormalities in cardiac cells, placing the heart at an increased risk of electromechanical dysfunction and irreversible cell death in response to ischemic insults. While cardiac mitochondria are often considered to be relatively autonomous entities in their capacity to produce energy and ROS, their highly dynamic nature within an elaborate network of closely-coupled organelles that occupies 30-40% of the cardiomyocyte volume is fundamental to their ability to exert intricate regulation over global cardiac function. In this article, we review evidence linking the dynamic properties of the mitochondrial network to overall cardiac function and its response to injury. We then highlight select studies linking mitochondrial ultrastructural alterations driven by changes in mitochondrial fission, fusion and mitophagy in promoting cardiac ischemic injury to the diabetic heart.


Subject(s)
Diabetic Cardiomyopathies , Energy Metabolism , Mitochondria, Heart , Myocardial Ischemia , Oxidative Stress , Humans , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Animals , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/physiopathology , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/etiology , Myocardial Ischemia/metabolism , Myocardial Ischemia/physiopathology , Myocardial Ischemia/pathology , Mitochondrial Dynamics , Mitophagy , Reactive Oxygen Species/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Signal Transduction
6.
PLoS One ; 19(7): e0302772, 2024.
Article in English | MEDLINE | ID: mdl-39042659

ABSTRACT

Noncoding RNAs play a part in many chronic diseases and interact with each other to regulate gene expression. MicroRNA-9-5p (miR9) has been thought to be a potential inhibitor of diabetic cardiomyopathy. Here we examined the role of miR9 in regulating cardiac fibrosis in the context of diabetic cardiomyopathy. We further expanded our studies through investigation of a regulatory circularRNA, circRNA_012164, on the action of miR9. We showed at both the in vivo and in vitro level that glucose induced downregulation of miR9 and upregulation of circRNA_012164 resulted in the subsequent upregulation of downstream fibrotic genes. Further, knockdown of circRNA_012164 shows protective effects in cardiac endothelial cells and reverses increased transcription of genes associated with fibrosis and fibroblast proliferation through a regulatory axis with miR9. This study presents a novel regulatory axis involving noncoding RNA that is evidently important in the development of cardiac fibrosis in diabetic cardiomyopathy.


Subject(s)
Diabetic Cardiomyopathies , Fibrosis , MicroRNAs , RNA, Circular , MicroRNAs/genetics , MicroRNAs/metabolism , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/pathology , Animals , RNA, Circular/genetics , RNA, Circular/metabolism , Mice , Male , Myocardium/metabolism , Myocardium/pathology , RNA/genetics , RNA/metabolism , Glucose/metabolism , Gene Expression Regulation , Cell Proliferation/genetics , Endothelial Cells/metabolism , Endothelial Cells/pathology , Rats , Mice, Inbred C57BL
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(7): 1306-1314, 2024 Jul 20.
Article in Chinese | MEDLINE | ID: mdl-39051076

ABSTRACT

OBJECTIVE: To explore the therapeutic mechanism of compound Yuye Decoction against diabetic cardiomyopathy (DCM). METHODS: Drugbank, Gene Cards, OMIM and PharmGKb databases were used to obtain DCM-related targets, and the core targets were identified and functionally annotated by protein-protein interaction network analysis followed by GO and KEGG enrichment analysis. The "Traditional Chinese Medicine-Key Component-Key Target-Key Pathway" network was constructed using Cytoscape 3.9.1, and molecular docking was carried out for the key components and the core targets. In the animal experiment, Wistar rat models of DCM were treated with normal saline or Yuye Decoction by gavage at low (0.29 g/kg) and high (1.15 g/kg) doses for 8 weeks, and the changes in cardiac electrophysiology and histopathology were evaluated. The changes in serum levels of LDH, CK, and CK-MB were examined, and myocardial expressions of PI3K, P-PI3K, Akt, P-AKT, BAX, IL-6, and TNF-α were detected using Western blotting. RESULTS: We identified 61 active compounds in Yuye Decoction with 1057 targets, 3682 DCM-related disease targets, and 551 common targets between them. Enrichment of the core targets suggested that apoptosis, inflammation and the PI3K/Akt pathways were the key signaling pathways for DCM treatment. Molecular docking studies showed that the active components in Yuye Decoction including gold amidohydroxyethyl ester and kaempferol had strong binding activities with AKT1 and PIK3R1. In DCM rat models, treatment with Yuye Decoction significantly alleviated myocardial pathologies, reduced serum levels of LDH, CK and CK-MB, lowered myocardial expressions of BAX, IL-6 and TNF-α, and increased the expressions of P-PI3K and P-AKT. CONCLUSION: The therapeutic effect of compound Yuye Decoction against DCM is mediated by its multiple active components that act on multiple targets and pathways to inhibit cardiomyocyte apoptosis and inflammatory response by regulating the PI3K/Akt signaling pathway.


Subject(s)
Apoptosis , Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Drugs, Chinese Herbal , Inflammation , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats, Wistar , Signal Transduction , Animals , Rats , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Signal Transduction/drug effects , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/drug therapy , Apoptosis/drug effects , Diabetes Mellitus, Experimental/metabolism , Inflammation/metabolism , Myocardium/metabolism , Myocardium/pathology , Male , Interleukin-6/metabolism
8.
Cells ; 13(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39056777

ABSTRACT

The incidence of cardiovascular disorders is continuously rising, and there are no effective drugs to treat diabetes-associated heart failure. Thus, there is an urgent need to explore alternate approaches, including natural plant extracts, which have been successfully exploited for therapeutic purposes. The current study aimed to explore the cardioprotective potential of Phoenix dactylifera (PD) extract in experimental diabetic cardiomyopathy (DCM). Following in vitro phytochemical analyses, Wistar albino rats (N = 16, male; age 2-3 weeks) were fed with a high-fat or standard diet prior to injection of streptozotocin (35 mg/kg i.p.) after 2 months and separation into the following four treatment groups: healthy control, DCM control, DCM metformin (200 mg/kg/day, as the reference control), and DCM PD treatment (5 mg/kg/day). After 25 days, glucolipid and myocardial blood and serum markers were assessed along with histopathology and gene expression of both heart and pancreatic tissues. The PD treatment improved glucolipid balance (FBG 110 ± 5.5 mg/dL; insulin 17 ± 3.4 ng/mL; total cholesterol 75 ± 8.5 mg/dL) and oxidative stress (TOS 50 ± 7.8 H2O2equiv./L) in the DCM rats, which was associated with preserved structural integrity of both the pancreas and heart compared to the DCM control (FBG 301 ± 10 mg/dL; insulin 27 ± 3.4 ng/mL; total cholesterol 126 ± 10 mg/dL; TOS 165 ± 12 H2O2equiv./L). Gene expression analyses revealed that PD treatment upregulated the expression of insulin signaling genes in pancreatic tissue (INS-I 1.69 ± 0.02; INS-II 1.3 ± 0.02) and downregulated profibrotic gene expression in ventricular tissue (TGF-ß 1.49 ± 0.04) compared to the DCM control (INS-I 0.6 ± 0.02; INS-II 0.49 ± 0.03; TGF-ß 5.7 ± 0.34). Taken together, these data indicate that Phoenix dactylifera may offer cardioprotection in DCM by regulating glucolipid balance and metabolic signaling.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Lipid Metabolism , Phoeniceae , Plant Extracts , Rats, Wistar , Animals , Phoeniceae/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Male , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/prevention & control , Rats , Lipid Metabolism/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/pathology , Methanol/chemistry , Oxidative Stress/drug effects , Ventricular Remodeling/drug effects , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use , Myocardium/metabolism , Myocardium/pathology
9.
Sci Rep ; 14(1): 15324, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961143

ABSTRACT

Diabetic cardiomyopathy (DCM) is a common cardiovascular complication of diabetes, which may threaten the quality of life and shorten life expectancy in the diabetic population. However, the molecular mechanisms underlying the diabetes cardiomyopathy are not fully elucidated. We analyzed two datasets from Gene Expression Omnibus (GEO). Differentially expressed and weighted gene correlation network analysis (WGCNA) was used to screen key genes and molecules. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interaction (PPI) network analysis were constructed to identify hub genes. The diagnostic value of the hub gene was evaluated using the receiver operating characteristic (ROC). Quantitative real-time PCR (RT-qPCR) was used to validate the hub genes. A total of 13 differentially co-expressed modules were selected by WGCNA and differential expression analysis. KEGG and GO analysis showed these DEGs were mainly enriched in lipid metabolism and myocardial hypertrophy pathway, cytomembrane, and mitochondrion. As a result, six genes were identified as hub genes. Finally, five genes (Pdk4, Lipe, Serpine1, Igf1r, and Bcl2l1) were found significantly changed in both the validation dataset and experimental mice with DCM. In conclusion, the present study identified five genes that may help provide novel targets for diagnosing and treating DCM.


Subject(s)
Computational Biology , Diabetic Cardiomyopathies , Gene Regulatory Networks , Protein Interaction Maps , Diabetic Cardiomyopathies/genetics , Computational Biology/methods , Animals , Mice , Protein Interaction Maps/genetics , Humans , Plasminogen Activator Inhibitor 1/genetics , Gene Expression Profiling , Receptor, IGF Type 1/genetics , Gene Ontology , Gene Expression Regulation
10.
Circ Res ; 135(3): 416-433, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38946541

ABSTRACT

BACKGROUND: Exercise intolerance is an independent predictor of poor prognosis in diabetes. The underlying mechanism of the association between hyperglycemia and exercise intolerance remains undefined. We recently demonstrated that the interaction between ARRDC4 (arrestin domain-containing protein 4) and GLUT1 (glucose transporter 1) regulates cardiac metabolism. METHODS: To determine whether this mechanism broadly impacts diabetic complications, we investigated the role of ARRDC4 in the pathogenesis of diabetic cardiac/skeletal myopathy using cellular and animal models. RESULTS: High glucose promoted translocation of MondoA into the nucleus, which upregulated Arrdc4 transcriptional expression, increased lysosomal GLUT1 trafficking, and blocked glucose transport in cardiomyocytes, forming a feedback mechanism. This role of ARRDC4 was confirmed in human muscular cells from type 2 diabetic patients. Prolonged hyperglycemia upregulated myocardial Arrdc4 expression in multiple types of mouse models of diabetes. We analyzed hyperglycemia-induced cardiac and skeletal muscle abnormalities in insulin-deficient mice. Hyperglycemia increased advanced glycation end-products and elicited oxidative and endoplasmic reticulum stress leading to apoptosis in the heart and peripheral muscle. Deletion of Arrdc4 augmented tissue glucose transport and mitochondrial respiration, protecting the heart and muscle from tissue damage. Stress hemodynamic analysis and treadmill exhaustion test uncovered that Arrdc4-knockout mice had greater cardiac inotropic/chronotropic reserve with higher exercise endurance than wild-type animals under diabetes. While multiple organs were involved in the mechanism, cardiac-specific overexpression using an adenoassociated virus suggests that high levels of myocardial ARRDC4 have the potential to contribute to exercise intolerance by interfering with cardiac metabolism through its interaction with GLUT1 in diabetes. Importantly, the ARRDC4 mutation mouse line exhibited greater exercise tolerance, showing the potential therapeutic impact on diabetic cardiomyopathy by disrupting the interaction between ARRDC4 and GLUT1. CONCLUSIONS: ARRDC4 regulates hyperglycemia-induced toxicities toward cardiac and skeletal muscle, revealing a new molecular framework that connects hyperglycemia to cardiac/skeletal myopathy to exercise intolerance.


Subject(s)
Exercise Tolerance , Glucose Transporter Type 1 , Mice, Knockout , Animals , Mice , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Humans , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Male , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/physiopathology , Diabetic Cardiomyopathies/etiology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/genetics , Muscle, Skeletal/metabolism , Hyperglycemia/metabolism , Hyperglycemia/genetics , Cells, Cultured
12.
BMC Cardiovasc Disord ; 24(1): 351, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987672

ABSTRACT

Diabetic cardiomyopathy (DCM) is a chronic disease caused by diabetes mellitus, which is recognized as a worldwide challenging disease. This study aimed to investigate the role and the potential mechanism of knocking down the NACHT-, LRR- and PYD domains-containing protein 3 (NLRP3), an inflammasome associated with onset and progression of various diseases, on high glucose or diabetes -induced cardiac cells pyroptosis and ferroptosis, two regulated non-necrosis cell death modalities discovered recent years. In the present study, both in vivo and in vitro studies were conducted simultaneously. Diabetic rats were induced by 55 mg/kg intraperitoneal injection of streptozotocin (STZ). Following the intraperitoneal injection of MCC950 (10 mg/kg), On the other hand, the DCM model in H9C2 cardiac cells was simulated with 35 mmol/L glucose and a short hairpin RNA vector of NLRP3 were transfected to cells. The results showed that in vivo study, myocardial fibers were loosely arranged and showed inflammatory cell infiltration, mitochondrial cristae were broken and the GSDMD-NT expression was found notably increased in the DM group, while the protein expressions of xCT and GPX4 was significantly decreased, both of which were reversed by MCC950. High glucose reduced the cell viability and ATP level in vitro, accompanied by an increase in LDH release. All of the above indicators were reversed after NLRP3 knockdown compared with the HG treated alone. Moreover, the protein expressions of pyroptosis- and ferroptosis-related fators were significantly decreased or increased, consistent with the results shown by immunofluorescence. Furthermore, the protective effects of NLRP3 knockdown against HG were reversed following the mtROS agonist rotenone (ROT) treatment. In conclusion, inhibition of NLRP3 suppressed DM-induced myocardial injury. Promotion of mitochondrial ROS abolished the protective effect of knockdown NLRP3, and induced the happening of pyroptosis and ferroptosis. These findings may present a novel therapeutic underlying mechanism for clinical diabetes-induced myocardial injury treatment.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Ferroptosis , Gene Knockdown Techniques , Myocytes, Cardiac , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Animals , Ferroptosis/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/physiopathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Male , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Cell Line , Rats, Sprague-Dawley , Rats , Signal Transduction , Reactive Oxygen Species/metabolism , Inflammasomes/metabolism , Sulfonamides/pharmacology , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Gasdermins
13.
J Am Coll Cardiol ; 84(3): 233-243, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38986667

ABSTRACT

BACKGROUND: Diabetic cardiomyopathy (DbCM) increases risk of overt heart failure in individuals with diabetes mellitus. Racial and ethnic differences in DbCM remain unexplored. OBJECTIVES: The authors sought to identify racial and ethnic differences among individuals with type 2 diabetes mellitus, structural heart disease, and impaired exercise capacity. METHODS: The ARISE-HF (Aldolase Reductase Inhibitor for Stabilization of Exercise Capacity in Heart Failure) trial is assessing the efficacy of an aldose reductase inhibitor for exercise capacity preservation in 691 persons with DbCM. Baseline characteristics, echocardiographic parameters, and functional capacity were analyzed and stratified by race and ethnicity. RESULTS: The mean age of the study participants was 67.4 years; 50% were women. Black and Hispanic patients had lower use of diabetes mellitus treatments. Black patients had poorer baseline ventricular function and more impaired global longitudinal strain. Overall, health status was preserved, based on Kansas City Cardiomyopathy Questionnaire scores, but reduced exercise capacity was present as evidenced by reduced Physical Activity Scale for the Elderly (PASE) scores. When stratified by race and ethnicity and compared with the entire cohort, Black patients had poorer health status, more reduced physical activity, and a greater impairment in exercise capacity during cardiopulmonary exercise testing, whereas Hispanic patients also displayed compromised cardiopulmonary exercise testing functional capacity. White patients demonstrated higher physical activity and functional capacity. CONCLUSIONS: Racial and ethnic differences exist in baseline characteristics of persons affected by DbCM, with Black and Hispanic study participants demonstrating higher risk features. These insights inform the need to address differences in the population with DbCM. (Safety and Efficacy of AT-001 in Patients With Diabetic Cardiomyopathy [ARISE-HF]; NCT04083339).


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Cardiomyopathies , Humans , Female , Male , Diabetic Cardiomyopathies/ethnology , Diabetic Cardiomyopathies/epidemiology , Aged , Middle Aged , Diabetes Mellitus, Type 2/ethnology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Exercise Tolerance/physiology , Hispanic or Latino/statistics & numerical data , Black or African American , Echocardiography , Exercise Test , Heart Failure/ethnology , Heart Failure/physiopathology , Heart Failure/drug therapy
15.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000117

ABSTRACT

Diabetic cardiomyopathy (DCM) is a major determinant of mortality in diabetic populations, and the potential strategies are insufficient. Canagliflozin has emerged as a potential cardioprotective agent in diabetes, yet its underlying molecular mechanisms remain unclear. We employed a high-glucose challenge (60 mM for 48 h) in vitro to rat cardiomyocytes (H9C2), with or without canagliflozin treatment (20 µM). In vivo, male C57BL/6J mice were subjected to streptozotocin and a high-fat diet to induce diabetes, followed by canagliflozin administration (10, 30 mg·kg-1·d-1) for 12 weeks. Proteomics and echocardiography were used to assess the heart. Histopathological alterations were assessed by the use of Oil Red O and Masson's trichrome staining. Additionally, mitochondrial morphology and mitophagy were analyzed through biochemical and imaging techniques. A proteomic analysis highlighted alterations in mitochondrial and autophagy-related proteins after the treatment with canagliflozin. Diabetic conditions impaired mitochondrial respiration and ATP production, alongside decreasing the related expression of the PINK1-Parkin pathway. High-glucose conditions also reduced PGC-1α-TFAM signaling, which is responsible for mitochondrial biogenesis. Canagliflozin significantly alleviated cardiac dysfunction and improved mitochondrial function both in vitro and in vivo. Specifically, canagliflozin suppressed mitochondrial oxidative stress, enhancing ATP levels and sustaining mitochondrial respiratory capacity. It activated PINK1-Parkin-dependent mitophagy and improved mitochondrial function via increased phosphorylation of adenosine monophosphate-activated protein kinase (AMPK). Notably, PINK1 knockdown negated the beneficial effects of canagliflozin on mitochondrial integrity, underscoring the critical role of PINK1 in mediating these protective effects. Canagliflozin fosters PINK1-Parkin mitophagy and mitochondrial function, highlighting its potential as an effective treatment for DCM.


Subject(s)
Canagliflozin , Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Mice, Inbred C57BL , Mitophagy , Protein Kinases , Ubiquitin-Protein Ligases , Animals , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Mitophagy/drug effects , Male , Mice , Protein Kinases/metabolism , Protein Kinases/genetics , Rats , Canagliflozin/pharmacology , Canagliflozin/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Oxidative Stress/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line , Signal Transduction/drug effects , Diet, High-Fat/adverse effects
16.
Cardiovasc Diabetol ; 23(1): 273, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39049086

ABSTRACT

BACKGROUND: Extracellular matrix (ECM) stiffness is closely related to the progress of diabetic cardiomyopathy (DCM) and the response of treatment of DCM to anti-diabetic drugs. Dapagliflozin (Dapa) has been proven to have cardio-protective efficacy for diabetes and listed as the first-line drug to treat heart failure. But the regulatory relationship between ECM stiffness and treatment efficacy of Dapa remains elusive. MATERIALS AND METHODS: This work investigated the effect of ECM stiffness on DCM progression and Dapa efficacy using both in vivo DCM rat model and in vitro myocardial cell model with high glucose injury. First, through DCM rat models with various levels of myocardial injury and administration with Dapa treatment for four weeks, the levels of myocardial injury, myocardial oxidative stress, expressions of AT1R (a mechanical signal protein) and the stiffness of myocardial tissues were obtained. Then for mimicking the stiffness of myocardial tissues at early and late stages of DCM, we constructed cell models through culturing H9c2 myocardial cells on the polyacrylamide gels with two stiffness and exposed to a high glucose level and without/with Dapa intervention. The cell viability, reactive oxygen species (ROS) levels and expressions of mechanical signal sensitive proteins were obtained. RESULTS: The DCM progression is accompanied by the increased myocardial tissue stiffness, which can synergistically exacerbate myocardial cell injury with high glucose. Dapa can improve the ECM stiffness-induced DCM progression and its efficacy on DCM is more pronounced on the soft ECM, which is related to the regulation pathway of AT1R-FAK-NOX2. Besides, Dapa can inhibit the expression of the ECM-induced integrin ß1, but without significant impact on piezo 1. CONCLUSIONS: Our study found the regulation and effect of biomechanics in the DCM progression and on the Dapa efficacy on DCM, providing the new insights for the DCM treatment. Additionally, our work showed the better clinical prognosis of DCM under early Dapa intervention.


Subject(s)
Benzhydryl Compounds , Diabetic Cardiomyopathies , Extracellular Matrix , Glucosides , Myocytes, Cardiac , Oxidative Stress , Rats, Sprague-Dawley , Sodium-Glucose Transporter 2 Inhibitors , Animals , Diabetic Cardiomyopathies/physiopathology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/pathology , Glucosides/pharmacology , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Extracellular Matrix/pathology , Benzhydryl Compounds/pharmacology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Male , Oxidative Stress/drug effects , Cell Line , Disease Models, Animal , Reactive Oxygen Species/metabolism , Rats , Focal Adhesion Kinase 1/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications
17.
J Diabetes Complications ; 38(8): 108802, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971002

ABSTRACT

This systematic review aimed to explore the relationship between diabetic peripheral neuropathy (DPN) and cardiac autonomic neuropathy (CAN) in individuals with type 1 and 2 diabetes mellitus (DM). METHODS: The systematic review follow the protocol registered in Prospero (CRD42020182899). Two authors independently searched the PubMed, Scopus, Embase, Cochrane, and Web of Science databases. Discrepancies were resolved by a third author. The review included observational studies investigating the relationship between CAN and DPN in individuals with DM. RESULTS: Initially, out of 1165 studies, only 16 were selected, with 42.8 % involving volunteers with one type of diabetes, 14.3 % with both types of diabetes and 14.3 % not specify the type. The total number of volunteers was 2582, mostly with type 2 DM. It was analyzed that there is a relationship between CAN and DPN. It was observed that more severe levels of DPN are associated with worse outcomes in autonomic tests. Some studies suggested that the techniques for evaluating DPN might serve as risk factors for CAN. CONCLUSION: The review presents a possible relationship between DPN and CAN, such as in their severity.


Subject(s)
Autonomic Nervous System Diseases , Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Diabetic Neuropathies/epidemiology , Diabetic Neuropathies/diagnosis , Diabetic Neuropathies/physiopathology , Humans , Diabetes Mellitus, Type 2/complications , Autonomic Nervous System Diseases/epidemiology , Autonomic Nervous System Diseases/complications , Autonomic Nervous System Diseases/etiology , Autonomic Nervous System Diseases/diagnosis , Diabetes Mellitus, Type 1/complications , Diabetic Cardiomyopathies/epidemiology , Diabetic Cardiomyopathies/complications , Diabetic Cardiomyopathies/diagnosis , Autonomic Nervous System/physiopathology , Risk Factors
18.
Cardiovasc Diabetol ; 23(1): 227, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951895

ABSTRACT

In recent years, the incidence of diabetes has been increasing rapidly, posing a serious threat to human health. Diabetic cardiomyopathy (DCM) is characterized by cardiomyocyte hypertrophy, myocardial fibrosis, apoptosis, ventricular remodeling, and cardiac dysfunction in individuals with diabetes, ultimately leading to heart failure and mortality. However, the underlying mechanisms contributing to DCM remain incompletely understood. With advancements in molecular biology technology, accumulating evidence has shown that numerous non-coding RNAs (ncRNAs) crucial roles in the development and progression of DCM. This review aims to summarize recent studies on the involvement of three types of ncRNAs (micro RNA, long ncRNA and circular RNA) in the pathophysiology of DCM, with the goal of providing innovative strategies for the prevention and treatment of DCM.


Subject(s)
Diabetic Cardiomyopathies , RNA, Circular , RNA, Long Noncoding , Humans , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/physiopathology , Diabetic Cardiomyopathies/metabolism , Animals , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Signal Transduction , Myocardium/pathology , Myocardium/metabolism
19.
Crit Rev Eukaryot Gene Expr ; 34(5): 45-57, 2024.
Article in English | MEDLINE | ID: mdl-38842203

ABSTRACT

Inflammation-mediated dysfunction of cardiomyocytes is the main cause of diabetic cardiomyopathy (DCM). The present study aimed to investigate the roles of siah E3 ubiquitin protein ligase 1 (SIAH1) in DCM. The online dataset GSE4172 was used to analyze the differentially expressed genes in myocardial inflammation of DCM patients. RT-qPCR was conducted to detect mRNA levels. Enzyme-Linked Immunosorbent Assay (ELISA) was performed to detect cytokine release. Western blot was used to detect protein expression. Lactate dehydrogenase (LDH) assay was used to determine cytotoxicity. In vitro ubiquitination assay was applied to determine the ubiquitination of nuclear factor kappa B inhibitor alpha (1κВ-α). Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay was used to detect the death of cardiomyocytes. Flow cytometry was applied for determining cardiomyocyte pyroptosis. The results showed that SIAH1 was overexpressed in human inflammatory cardiomyopathy. High expression of SIAH1 was associated with inflammatory response. SIAH1 was also overexpressed lipopolysaccharide (LPS)-induced inflammatory cardiomyopathy model in vitro. However, SIAH1 knockdown suppressed the inflammatory-related pyroptosis of cardiomyocytes. SIAH1 promoted the ubiquitination of 1κВ-α and activated nuclear factor kappa В (NF-κВ) signaling, which promoted the pyroptosis of cardiomyocytes. In conclusion, SIAH1 exacerbated the progression of human inflammatory cardiomyopathy via inducing the ubiquitination of 1κВ-α and activation of NF-κВ signaling. Therefore, SIAHI/IκB-α/NF-κB signaling may be a potential target for human inflammatory cardiomyopathy.


Subject(s)
Diabetic Cardiomyopathies , Myocytes, Cardiac , NF-kappa B , Pyroptosis , Signal Transduction , Ubiquitin-Protein Ligases , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Humans , NF-kappa B/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , NF-KappaB Inhibitor alpha/metabolism , NF-KappaB Inhibitor alpha/genetics , Ubiquitination , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics
20.
Front Endocrinol (Lausanne) ; 15: 1370387, 2024.
Article in English | MEDLINE | ID: mdl-38883603

ABSTRACT

Background: Diabetes mellitus is an independent risk factor for heart failure, and diabetes-induced heart failure severely affects patients' health and quality of life. Cuproptosis is a newly defined type of programmed cell death that is thought to be involved in the pathogenesis and progression of cardiovascular disease, but the molecular mechanisms involved are not well understood. Therefore, we aimed to identify biomarkers associated with cuproptosis in diabetes mellitus-associated heart failure and the potential pathological mechanisms in cardiomyocytes. Materials: Cuproptosis-associated genes were identified from the previous publication. The GSE26887 dataset was downloaded from the GEO database. Methods: The consistency clustering was performed according to the cuproptosis gene expression. Differentially expressed genes were identified using the limma package, key genes were identified using the weighted gene co-expression network analysis(WGCNA) method, and these were subjected to immune infiltration analysis, enrichment analysis, and prediction of the key associated transcription factors. Consistency clustering identified three cuproptosis clusters. The differentially expressed genes for each were identified using limma and the most critical MEantiquewhite4 module was obtained using WGCNA. We then evaluated the intersection of the MEantiquewhite4 output with the three clusters, and obtained the key genes. Results: There were four key genes: HSDL2, BCO2, CORIN, and SNORA80E. HSDL2, BCO2, and CORIN were negatively associated with multiple immune factors, while SNORA80E was positively associated, and T-cells accounted for a major proportion of this relationship with the immune system. Four enriched pathways were found to be associated: arachidonic acid metabolism, peroxisomes, fatty acid metabolism, and dorsoventral axis formation, which may be regulated by the transcription factor MECOM, through a change in protein structure. Conclusion: HSDL2, BCO2, CORIN, and SNORA80E may regulate cardiomyocyte cuproptosis in patients with diabetes mellitus-associated heart failure through effects on the immune system. The product of the cuproptosis-associated gene LOXL2 is probably involved in myocardial fibrosis in patients with diabetes, which leads to the development of cardiac insufficiency.


Subject(s)
Computational Biology , Heart Failure , Myocytes, Cardiac , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Humans , Heart Failure/genetics , Heart Failure/pathology , Heart Failure/metabolism , Computational Biology/methods , Gene Expression Profiling , Gene Regulatory Networks , Ferroptosis/genetics , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology
SELECTION OF CITATIONS
SEARCH DETAIL