Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22.467
Filter
1.
Open Biol ; 14(7): 230437, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38955221

ABSTRACT

Toxorhynchites mosquitoes have an exclusively phytophagous feeding habit as adults, which leads to significant differences in their morphophysiology compared with haematophagous mosquitoes. However, the molecular mechanisms of digestion in this mosquito are not well understood. In this study, RNA sequencing of the posterior midgut (PMG) of the mosquito Toxorhynchites theobaldi was undertaken, highlighting its significance in mosquito digestion. Subsequently, a comparison was made between the differential gene expression of the PMG and that of the anterior midgut. It was found that the most abundant proteases in the PMG were trypsin and chymotrypsin, and the level of gene expression for enzymes essential for digestion (such as serine protease, α-amylase and pancreatic triacylglycerol lipase) and innate immune response (including catalase, cecropin-A2 and superoxide dismutase) was like that of haematophagous mosquitoes. Peritrophin-1 was detected in the entire midgut, with an elevated expression level in the PMG. Based on our findings, it is hypothesized that a non-haematophagic habit might have been exhibited by the ancestor of Tx. theobaldi, and this trait may have been retained. This study represents a pioneering investigation at the molecular level of midgut contents in a non-haematophagous mosquito. The findings offer valuable insights into the evolutionary aspects of feeding habits in culicids.


Subject(s)
Culicidae , Animals , Culicidae/physiology , Culicidae/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Transcriptome , Gene Expression Profiling , Digestive System/metabolism , Digestion , Gastrointestinal Tract/metabolism , Phylogeny , Feeding Behavior
2.
Vet Q ; 44(1): 1-8, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38946435

ABSTRACT

This study aimed to evaluate the effect of varying levels of sorghum-based diets as an alternative to maize in broiler nutrition. A total of 320 one-day-old male Ross 708 broiler chickens were randomly allocated to four treatment groups (5 pens per treatment and 16 birds per pen), comprising a control group with a basal diet and groups receiving sorghum-based diets with 20%, 40%, and 100% maize replacement. The overall weight gain was significantly (p < 0.0001) higher in the control group, followed by 20%, 40%, and 100% sorghum replacement. Additionally, overall feed intake was significantly (p < 0.01) higher in the 20% sorghum replacement group compared to the control and other groups. Broilers fed sorghum-based diets exhibited a significantly (p < 0.01) increased feed conversion ratio. Carcass characteristics showed no significant differences between broilers fed corn and sorghum; however, the digestibility of crude protein and apparent metabolizable energy significantly (p < 0.01) increased in the 20% sorghum-corn replacement compared to the 40% and 100% replacement levels. Ileal villus height and width did not differ among the corn-sorghum-based diets, regardless of the replacement percentage. Furthermore, among the cecal microbiota, Lactobacillus count was significantly (p < 0.041) higher in the 20% corn-sorghum diet compared to the 40% and 100% replacement levels. These findings suggest that replacing corn up to 20% of corn with sorghum in broiler diet positively impact growth performance, gut health, nutrient digestibility, and cecal microbiota in broilers. However, larger replacements (40% and 100%) may have negative implications for broiler production and health.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Chickens , Diet , Digestion , Gastrointestinal Microbiome , Sorghum , Zea mays , Animals , Chickens/microbiology , Chickens/physiology , Animal Feed/analysis , Male , Diet/veterinary , Digestion/drug effects , Nutrients , Random Allocation
3.
J Food Sci ; 89(7): 4123-4135, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957110

ABSTRACT

Extraction of starch from waste is also an effective way to recover resources and provide new sources of starch. In this study, starch was isolated from white kidney bean residue, chickpea residue, and tiger nut meal after protein or oil extraction, and the morphology of starch particles was observed to determine their physicochemical properties and in vitro digestibility. All these isolated starches had unique properties, among which white kidney bean starch (KBS) had a high amylose content (43.48%), and its structure was better ordered. Scanning electron microscopy revealed distinct granular morphologies for the three starches. KBS and chickpea starch (CHS) were medium-granular starches, whereas tiger nut starch was a small granular starch. Fourier transform infrared spectroscopy analysis confirmed the absence of significant differences in functional groups and chemical bonds among the three starch molecules. In vitro digestibility studies showed that CHS is more resistant to enzymatic degradation. Overall, these results will facilitate the development of products based on the separation of nonconventional starches from waste.


Subject(s)
Cicer , Digestion , Starch , Starch/chemistry , Cicer/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Amylose/chemistry , Phaseolus/chemistry , Microscopy, Electron, Scanning
4.
Anim Sci J ; 95(1): e13976, 2024.
Article in English | MEDLINE | ID: mdl-38967066

ABSTRACT

We investigated the effects of regrowth interval and first-cut timing on the dietary characteristics of second-cut orchardgrass silage and feed intake and milk production in dairy cows fed second-cut orchardgrass silage. The second-cut grasses were harvested 7w after the first-cut at the early stage (E7w) or at the heading stage (H7w), or harvested 6w after the first-cut at the early stage (E6w) from orchardgrass sward, and then ensiled. We evaluated the effect of regrowth interval by comparing E7w and E6w, and the effect of first-cut timing by comparing E7w and H7w. Six multiparous Holstein cows were used in a replicated 3 × 3 Latin square design, with three dietary treatments: diets containing E7w, E6w, or H7w silage at 30% dietary dry matter. We observed that feeding E6w silage instead of E7w silage increased fiber digestibility, dry matter intake, and milk production; however, the first-cut timing (E7w vs. H7w) did not affect nutrient content and digestibility, feed intake, or lactation performance. These results show that harvesting at short regrowth intervals for second-cut orchardgrass can be an effective strategy for improving feed utilization and milk yield; however, the first-cut timing for second-cut orchardgrass has little impact.


Subject(s)
Dactylis , Diet , Digestion , Eating , Lactation , Milk , Silage , Animals , Cattle/physiology , Cattle/metabolism , Female , Lactation/physiology , Digestion/physiology , Eating/physiology , Milk/metabolism , Diet/veterinary , Animal Nutritional Physiological Phenomena/physiology , Dietary Fiber , Dairying/methods , Time Factors
5.
Crit Rev Food Sci Nutr ; 64(20): 7149-7171, 2024.
Article in English | MEDLINE | ID: mdl-38975868

ABSTRACT

Microalgae are booming as a sustainable protein source for human nutrition and animal feed. Nevertheless, certain strains were reported to have robust cell walls limiting protein digestibility. There are several disruption approaches to break down the cell integrity and increase digestive enzyme accessibility. This review's intent is to discuss the digestibility of microalgae proteins in intact cells and after their disruption. In intact single cells, the extent of protein digestibility is chiefly related to cell wall structural properties (differing among strains) as well as digestion method and when added to food or feed protein digestibility changes depending on the matrix's composition. The degree of effectiveness of the disruption method varies among studies, and it is complicated to compare them due to variabilities in digestibility models, strains, disruption method/conditions and their consequent impact on the microalgae cell structure. More exhaustive studies are still required to fill knowledge gaps on the structure of microalgal cell walls and to find efficient and cost-effective disruption technologies to increase proteins availability without hindering their quality.


Subject(s)
Cell Wall , Digestion , Microalgae , Microalgae/chemistry , Microalgae/metabolism , Digestion/physiology , Humans , Cell Wall/chemistry , Cell Wall/metabolism , Animal Feed/analysis , Animals , Dietary Proteins/metabolism
6.
Food Res Int ; 190: 114565, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945564

ABSTRACT

In cereal products, the use of flour containing clusters of intact cells has been indicated as a potential strategy to decrease starch digestion. Rye possesses more uniform and thicker cell walls than wheat but its protective effect against starch digestion has not been elucidated. In this study, rye flours with three different particle sizes, large (LF) (∼1700 µm), medium (MF) (∼1200 µm), and small (SF) (∼350 µm), were used to produce model bread. The textural properties of these breads were analysed using Textural Profile Analysis (TPA). The starch digestibility of both the flour and the bread was measured using Englyst's method, while the presence of intact cell clusters was examined using Confocal Laser Scanning Microscopy (CLSM). Additionally, the disintegration of bread digesta during simulated digestion was assessed through image analysis. CLSM micrographs revealed that bread made with MF and LF retained clusters of intact cells after processing, whereas bread made with SF showed damaged cell walls. Starch digestibility in LF and MF was lower (p ≤ 0.05) than that in SF. Bread produced with MF and LF exhibited the least (p ≤ 0.05) cohesive and resilient texture, disintegrated more during digestion, and exhibited higher starch digestibility (p ≤ 0.05) than bread made with SF. These results highlight the central role of bread texture on in vitro starch digestibility.


Subject(s)
Bread , Digestion , Flour , Particle Size , Secale , Starch , Bread/analysis , Starch/chemistry , Starch/metabolism , Secale/chemistry , Flour/analysis , Food Handling/methods , Microscopy, Confocal , Cell Wall/chemistry
7.
Food Res Int ; 190: 114605, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945573

ABSTRACT

Some amino acids are known to mediate immune responses through gut microbiota metabolism in both humans and monogastric animals. However, through the diet, most free amino acids are absorbed in the small intestine and only a small quantity reaches the microbiota-rich colon. To enhance microbial metabolism of amino acids and their potential health benefits, encapsulation strategies are developed for their protection and delivery to the colon. So far, the main encapsulation systems for amino acids are based on solid lipid particles, but their fate within the digestive tract has never been fully clarified. In this study, we investigated the release of various amino acids (branched-chain amino acid mixture, or lysine, or tryptophan) loaded in solid lipid particles during in vitro oro-gastrointestinal digestion mimicking the piglet. The loaded solid lipid particles were fully characterized for their composition, thermal behavior, molecular structure, crystalline state, surface morphology, and particle size distribution. Moreover, we investigated the effect of particle size by sieving solid lipid particles into two non-overlapping size fractions. We found that amino acid release was high during the gastric phase of digestion, mainly controlled by physical parameters, namely particle size and crystalline state including surface morphology. Large particle size and/or smooth ordered particle indeed led to slower and lower release. Although lipid hydrolysis was significant during the intestinal phase of digestion, the impact of the crystalline state and surface morphology was also observed in the absence of enzymes, pointing to a dominant water/solute diffusion mechanism through these porous solid lipid particles.


Subject(s)
Amino Acids , Digestion , Lipids , Particle Size , Lipids/chemistry , Amino Acids/metabolism , Amino Acids/chemistry , Animals , Lysine/metabolism , Lysine/chemistry , Swine , Gastrointestinal Tract/metabolism , Amino Acids, Branched-Chain/metabolism , Tryptophan/metabolism , Tryptophan/chemistry
8.
Food Res Int ; 190: 114606, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945574

ABSTRACT

To meet the high consumer demand, butter production has increased over the last few years. As a result, the buttermilk (BM) co-produced volumes require new ways of adding value, such as in cheese manufacturing. However, BM use in cheese milk negatively influences the cheesemaking process (e.g., altered coagulation properties) and the product's final quality (e.g., high moisture content). The concentration of BM by ultrafiltration (UF) could potentially facilitate its use in cheese manufacturing through an increased protein content while maintaining the milk salt balance. Simultaneously, little is known about the digestion of UF BM cheese. Therefore, this study aimed to characterize the impact of UF BM on cheese manufacture, its structure, and its behavior during in vitro digestion. A 2-fold UF concentrated BM was used for cheese manufacture (skim milk [SM] - control). Compositional, textural, and microstructural analyses of cheeses were first conducted. In a second step, the cheeses were fed into an in vitro TNO gastrointestinal digestion model (TIM-1) of the stomach and small intestine and protein and phospholipid (PL) bioaccessibility was studied. The results showed that UF BM cheese significantly differed from SM cheese regarding its composition, hardness (p < 0.05) and microstructure. However, in TIM-1, UF BM and SM cheeses showed similar digestion behavior as a percentage of protein and PL intake. Despite relatively more non-digested and non-absorbed PL in the ileum efflux of UF BM cheese, the initially higher PL concentration contributes to an enhanced nutritional value compared to SM cheese. To our knowledge, this study is the first to compare the bioaccessibility of proteins and PL from UF BM and SM cheeses.


Subject(s)
Buttermilk , Cheese , Digestion , Phospholipids , Ultrafiltration , Cheese/analysis , Phospholipids/analysis , Phospholipids/metabolism , Phospholipids/chemistry , Buttermilk/analysis , Food Handling/methods , Animals , Milk Proteins/metabolism , Milk Proteins/analysis , Gastrointestinal Tract/metabolism , Biological Availability
9.
Food Res Int ; 190: 114621, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945576

ABSTRACT

Ageing leads to changes in the functionality of the digestive tract but the effect of age on digestion and absorption of nutrients remains unclear. The objective of this study was to investigate in vitro the digestion of two high-protein dairy products similar to cream cheese (24 % w/w proteins, 20 % w/w lipids) with opposite casein to whey protein ratios, 80:20 (WP-20), and 20:80 (WP-80). The new static digestion model adapted to the general older adult population (≥65 y.) proposed by INFOGEST was used, as well as the standard version of the protocol. Kinetics of proteolysis and lipolysis were compared between both models for each product, in the gastric and intestinal phases of digestion. In both cream cheeses, the degree of protein hydrolysis (DH-P) was significantly lower for older adults than for young adults at the end of the gastric phase (-19 % for WP-20, and -44 % for WP-80), and at the end of the intestinal phase (-16 % for WP-20, and -20 % for WP-80). The degree of lipid hydrolysis (DH-L) was also significantly lower for older adults than for young adults at the end of the digestion for WP-20 (-30 %), but interestingly it was not the case for WP-80 (similar DH-L were measured). Free fatty acids were also released faster from WP-80 than from WP-20 in both digestion conditions: after 5 min of intestinal digestion DH-L was already ≈32 % for WP-80 against 14 % for WP-20. This was attributed to the opposite casein to whey protein ratios, leading to the formation of different gel structures resulting in different patterns of deconstruction in the gastrointestinal tract. This study highlights the fact that it is essential to carefully consider the composition, structure, and digestibility of foods to develop products adapted to the specific needs of the older adult population.


Subject(s)
Caseins , Cheese , Digestion , Proteolysis , Whey Proteins , Cheese/analysis , Whey Proteins/metabolism , Whey Proteins/chemistry , Caseins/metabolism , Humans , Aged , Hydrolysis , Adult , Lipolysis , Young Adult , Age Factors , Models, Biological , Kinetics
10.
Food Res Int ; 190: 114624, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945578

ABSTRACT

The present work evaluated how a native pea protein isolate (PPI) affects the key roles carried out by bile salts (BS) in lipid digestion by means of the in vitro static INFOGEST protocol. Two gastric residence times were evaluated (10 and 60 min), and then the peptides obtained (GPPP) were mixed with BS at physiological concentration in simulated intestinal fluid to understand how they interact with BS both at the bulk and at the interface. Both GPPP give rise to a film with a predominant viscous character that does not constitute a barrier to the penetration of BS, but interact with BS in the bulk duodenal fluid. When the peptides flushing from the stomach after the different gastric residence times undergo duodenal digestion, it was found that for the longer gastric residence time the percentage of soluble fraction in the duodenal phase, that perform synergistically with BS micelles, was twice that of the lower residence time, leading to an increase in the solubilization of oleic acid. These results finally lead to a greater extent of lipolysis of olive oil emulsions. This work demonstrates the usefulness of in vitro models as a starting point to study the influence of gastric residence time of pea protein on its interaction with BS, affecting lipolysis. Pea proteins were shown to be effective emulsifiers that synergistically perform with BS improving the release and bioaccessibility of bioactive lipids as olive oil.


Subject(s)
Bile Acids and Salts , Digestion , Lipolysis , Pea Proteins , Bile Acids and Salts/metabolism , Bile Acids and Salts/chemistry , Pea Proteins/chemistry , Pea Proteins/metabolism , Pisum sativum/chemistry , Pisum sativum/metabolism , Peptides/metabolism , Peptides/chemistry , Duodenum/metabolism , Humans
11.
Food Res Int ; 190: 114631, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945582

ABSTRACT

Plant-based meat analogs have increasingly attracted the attention of the food industry in recent years. However, the digestion behavior of this innovative solid food in human stomach is poorly understood. In this study, plant-based meat analogs with different internal structures were prepared with/without high-moisture extrusion technology and at different temperatures. A semi-dynamic gastric digestion system which involves the mimic processes of the secretion of gastric juice and the gastric emptying was applied. After extrusion treatment at high temperature (150 ℃), the EHT had the highest anisotropic index (H⊥/H∥=1.90) and an ideal meat-like structure. It was found that particle disintegration and swelling simultaneously occurred in the bolus of the EHT but not in the sample without extrusion treatment (the HLT) in the early stage of gastric digestion. This difference might be attributed to the compact and well-arranged anisotropic structure of the EHT resulting from the extrusion, and leads to difficult enzymatic hydrolyzation unless the particles swell and unfold the polymer chains. The difficulty in particle disintegration in the EHT during gastric digestion is the consequence of the relatively slow gastric emptying rate and the decrease of protein degradation. As a result, the EHT which underwent extrusion treatment at high temperature and possessed the best anisotropic fibrous structure exhibited the slowest gastric digestion. This novel solid food shows good potential as a desired nutritional food for people on diet.


Subject(s)
Digestion , Gastric Emptying , Digestion/physiology , Humans , Anisotropy , Stomach/physiology , Food Handling/methods , Temperature , Models, Biological , Meat Substitutes
12.
Food Res Int ; 190: 114630, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945583

ABSTRACT

Food bolus is the major outcome of oral processing of foods. Its structure and properties are crucial for safe swallowing and subsequent gastric digestion. However, collecting the ready-to-swallow bolus for further analysis in either normal or deficient human subjects is difficult, regulatorily or practically. Here, a novel in vitro bio-inspired oral mastication simulator (iBOMS-Ⅲ) was developed to be capable of replicating food boluses comparable to those in vivo. Cooked rice and roasted peanuts were used as the model foods (soft and hard) respectively. Particle size distribution, moisture content and rheology of the food boluses produced in the iBOMS-Ⅲ were assessed. A conventional food blender was also employed as a non-consequential comparation. Eighteen healthy young volunteers of the ages from 20-30 years (10 male and 8 female) were invited to provide the in vivo data. For cooked rice boluses produced by the iBOMS-Ⅲ with 10, 12, 14, and 20 chewing number of cycles, the moisture content exhibited minimal variation (68.3-68.8 wt%), aligning closely with values obtained from the average value of the human subjects (67.5 wt%). Similarly, the boluses from roasted peanut displayed similar moisture contents across masticatory number of cycles (36, 40, and 44 number of cycles), averaging at 35.3 %, mirroring the average in vivo results (33.8 wt%). Furthermore, the shear viscosity of both cooked rice and roasted peanut boluses exhibited minimal variations with iBOMS-Ⅲ chewing number of cycles. The particle size distributions of the boluses produced with 14 and 44 chewing number of cycles matched well with the in vivo data for cooked rice and roasted peanuts, with median particle size (d50) being 1.07 and 0.78 mm, respectively. The physical properties of the food boluses collected from the food blender, with varying grinding times, differed significantly. This study demonstrates the value of the iBOMS-Ⅲ in achieving realistic boluses with two very different food textures.


Subject(s)
Arachis , Cooking , Mastication , Oryza , Particle Size , Mastication/physiology , Oryza/chemistry , Humans , Male , Adult , Young Adult , Female , Arachis/chemistry , Cooking/methods , Rheology , Deglutition/physiology , Digestion/physiology
13.
Food Res Int ; 190: 114560, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945596

ABSTRACT

Obesity, a global health crisis, is fueled by shifts in behavior and environmental factors, notably increased consumption of energy-dense processed foods and inadequate dietary fiber. Traditional weight loss methods pose safety challenges. Sodium carboxymethylcellulose (CMC), a promising dietary fiber supplement, aids weight management. However, CMC-based hydrogels have mechanical weaknesses and poor gastrointestinal retention. A new dual-network structured hydrogel here was introduced to address these issues, maintaining volume and elasticity in the digestive system without adding calories, reducing caloric density, and enhancing food elasticity for prolonged satiety. The study assessed four distinct hydrogels, analyzing their mechanical characteristics under simulated gastrointestinal conditions and biomimetic digestion to identify promising options for clinical development. This dual-network hydrogel exhibits a mechanical strength up to 100 times that of the original gel, while its swelling rate throughout the digestion process is approximately twice that of the original gel. This offers a potential solution for obesity management, providing sustained satiety and addressing the mechanical deficiencies of current hydrogels within the digestive system.


Subject(s)
Carboxymethylcellulose Sodium , Hydrogels , Obesity , Hydrogels/chemistry , Carboxymethylcellulose Sodium/chemistry , Digestion , Humans , Dietary Fiber , Weight Loss , Elasticity
14.
Food Res Int ; 190: 114604, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945616

ABSTRACT

Sheep's milk (SM) is known to differ from cow's milk (CM) in nutritional composition and physicochemical properties, which may lead to different digestion behaviours. This work aimed to investigate the impact of the species (cow vs sheep) and the structure (milk vs yogurt) on the digestion of dairy products. Using an in vitro static gastrointestinal digestion model, CM, SM, cow's milk yogurt (CY) and sheep's milk yogurt (SY) were compared on particle size evolution, microscopic observations, degree of lipolysis, degree of proteolysis, specific protein degradation and calcium bioaccessibility. Species and structure affected particle size evolution during the gastric phase resulting in smaller particles for yogurts compared to milks as well as for CM products compared to SM products. Species impacted lipid composition and lipolysis, with SM products presenting higher short/medium-chain fatty acids content and higher intestinal degree of lipolysis. Proteolysis was influenced by structure, with milks showing higher intestinal degree of proteolysis compared to yogurts. Caseins were digested faster in CM, ⍺-lactalbumin was digested faster in SM despite its higher concentration, and during gastric digestion ß-lactoglobulin was more degraded in CM products compared to SM products and more in yogurts compared to milks. Lastly, SM products released more bioaccessible calcium than CM products. In conclusion, species (cow vs sheep) impacted more the digestion compared to the structure (milk vs yogurt). In fact, SM was different from CM mainly due to a denser protein network that might slow down the accessibility of the enzyme to its substrate which induce a delay of gastric disaggregation and thus lead to slower the digestion of the nutrients.


Subject(s)
Digestion , Lipolysis , Milk , Particle Size , Proteolysis , Yogurt , Animals , Digestion/physiology , Cattle , Yogurt/analysis , Sheep , Milk/chemistry , Lactoglobulins/metabolism , Gastrointestinal Tract/metabolism , Dairy Products/analysis , Lactalbumin/metabolism , Caseins/metabolism , Caseins/analysis , Species Specificity , Milk Proteins/analysis , Milk Proteins/metabolism
15.
Food Res Int ; 190: 114612, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945620

ABSTRACT

Iron deficiency is widespread throughout the world, supplementing sufficient iron or improving the bioavailability of iron is the fundamental strategy to solve the problem of iron scarcity. Herein, we explored a new form of iron supplement, iron chelates of silver carp scales (SCSCP-Fe) were prepared from collagen peptide of silver carp scales (SCSCP) and FeCl2·4H2O, the effects of external environment and simulated gastrointestinal digestive environment on the stability of SCSCP-Fe and the structural changes of peptide iron chelates during digestion were investigated. The results of in vitro iron absorption promotion showed that the iron bioavailability of SCSCP-Fe was higher than that of FeSO4. Two potential high iron chelating peptides DTSGGYDEY (DY) and LQGSNEIEIR (LR) were screened and synthesized from the SCSCP sequence by molecular dynamics and LC-MS/MS techniques. The FTIR results displayed that the binding sites of DY and LR for Fe2+ were the carboxyl group, the amino group, and the nitrogen atom on the amide group on the peptide. ITC results indicated that the chelation reactions of DY and LR with Fe2+ were mainly dominated by electrostatic interactions, forming chelates in stoichiometric ratios of 1:2 and 1:1, respectively. Both DY and LR had a certain ability to promote iron absorption. The transport of DY-Fe chelate may be a combination of the three pathways: PepT1 vector pathway, cell bypass, and endocytosis, while LR-Fe chelate was dominated by bivalent metal ion transporters. This study is expected to provide theoretical reference and technical support for the high-value utilization of silver carp scales and the development of novel iron supplements.


Subject(s)
Carps , Collagen , Digestion , Iron Chelating Agents , Carps/metabolism , Animals , Iron Chelating Agents/chemistry , Collagen/chemistry , Collagen/metabolism , Iron/chemistry , Iron/metabolism , Animal Scales/chemistry , Animal Scales/metabolism , Biological Availability , Peptides/chemistry , Peptides/metabolism , Intestinal Absorption , Humans , Fish Proteins/metabolism , Fish Proteins/chemistry , Ferrous Compounds/chemistry , Ferrous Compounds/metabolism , Tandem Mass Spectrometry
16.
Food Res Int ; 190: 114629, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945621

ABSTRACT

This study aims to investigate the effects of ultrasound coupled with alkali cycling on the structural properties, digestion characteristics, biological activity, and peptide profiling of flaxseed protein isolates (FPI). The digestibility of FPI obtained by ultrasound coupled with pH 10/12 cycling (UFPI-10/12) (74.56 % and 79.12 %) was significantly higher than that of native FPI (64.40 %), and UFPI-10 showed higher hydrolysis degree (35.76 %) than FPI (30.65 %) after intestinal digestion. The combined treatment induced transition from α-helix to ß-sheet with an orderly structure. Large FPI aggregates broke down into small-sized FPI particles, which induced the increase of specific surface area of particles. This might expose more cutting sites and contact area with enzymes. Furthermore, UFPI-10 showed high antioxidant activity (29.18 %) and lipid-lowering activity (70.52 %). Peptide profiling revealed that UFPI-10 exhibited a higher proportion of 300-600 Da peptides and significantly higher abundance of antioxidant peptides than native FPI, which might promote its antioxidant activity. Those results suggest that the combined treatment is a promising modification method to improve the digestion characteristics and biological activity of FPI. This work provides new ideas for widespread use of FPI as an active stabilizer in food systems.


Subject(s)
Alkalies , Antioxidants , Digestion , Flax , Peptides , Plant Proteins , Flax/chemistry , Peptides/metabolism , Peptides/chemistry , Antioxidants/chemistry , Antioxidants/analysis , Plant Proteins/metabolism , Alkalies/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Seeds/chemistry , Food Handling/methods , Ultrasonic Waves
17.
J Agric Food Chem ; 72(25): 14302-14314, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38865607

ABSTRACT

In this work, lactoferrin (LF)-chitosan (CS) composite hydrogels with good loading capacity of thermosensitive bioactive substances were successfully obtained by microbial transglutaminase (MTG)-induced cross-linking. We evaluated the rheological, textural, and microstructural characteristics of the composite hydrogels under different conditions. The results demonstrated that the concentrations of LF and CS as well as the amount of MTG could regulate the textural properties, rheological properties, and water holding capability. The results of FTIR and fluorescence spectroscopy indicated that the main interactions within the composite gel were hydrogen and isopeptide bonds. Additionally, in vitro digestion simulation results verified that riboflavin kept stable in stomach due to the protection of LF-CS composite hydrogels and was released in small intestine. These results suggested that thermosensitive bioactive substance could be encapsulated and delivered by the LF-CS composite hydrogel, which could be applied in lots of potential applications in functional food as a new material.


Subject(s)
Chitosan , Hydrogels , Lactoferrin , Rheology , Transglutaminases , Transglutaminases/chemistry , Transglutaminases/metabolism , Hydrogels/chemistry , Chitosan/chemistry , Lactoferrin/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Drug Delivery Systems , Drug Carriers/chemistry , Digestion
18.
ACS Appl Mater Interfaces ; 16(25): 32578-32586, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38865685

ABSTRACT

Monitoring the gastric digestive function is important for the diagnosis of gastric disorders and drug development. However, there is no report on the in situ and real-time monitoring of digestive functions. Herein, we report a flexible fully organic sensor to effectively monitor protein digestion in situ in a simulated gastric environment for the first time. The sensors are made of a blend of gluten that is a protein and poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) that is a conducting polymer. During the protein digestion, the breakdown of the polypeptides increases the level of separation among the PEDOT chains, thereby increasing the resistance. The resistance variation is sensitive to various conditions, including the concentration of pepsin that is the enzyme for protein digestion, temperature, pH value, and digestive drugs. Hence, these sensors can provide real-time information about the digestion and efficacy of digestive drugs. In addition, the signals can be collected via a convenient wireless communication manner.


Subject(s)
Polystyrenes , Humans , Polystyrenes/chemistry , Digestion , Polymers/chemistry , Pepsin A/metabolism , Pepsin A/chemistry , Hydrogen-Ion Concentration , Temperature , Thiophenes
19.
J Agric Food Chem ; 72(25): 14364-14374, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38867641

ABSTRACT

Cypermethrin (CP) is a neurotoxic insecticide found accumulated in oysters, one of the most commonly consumed seafoods, posing potential health risks to the human body. We designed a gastrointestinal tracing method allowing for accurate quantification of the propulsion of chyme and further established the mouse in vivo digestion model to explore the behavior of CP in the digestion of raw, steamed, and roasted oysters. The results showed that bioaccumulation of CP in oysters may be accompanied by the biotransformation of CP. Thermal processing decreased both the CP content in oysters and its bioaccessibility. The small intestine is the main site for CP digestion and absorption. The cis-isomers of CP might finally accumulate in the body at a higher ratio and further become the predominant configuration for toxic effects. Taken together, the study contributes to the risk assessment of the dietary exposure of CP from aquatic products.


Subject(s)
Crassostrea , Digestion , Gastrointestinal Tract , Insecticides , Pyrethrins , Animals , Pyrethrins/metabolism , Pyrethrins/analysis , Crassostrea/metabolism , Crassostrea/chemistry , Gastrointestinal Tract/metabolism , Mice , Insecticides/metabolism , Insecticides/chemistry , Isomerism , Shellfish/analysis , Food Contamination/analysis , Humans , Male , Food Handling/methods
20.
J Food Sci ; 89(7): 3894-3916, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38865250

ABSTRACT

Food digestion is important for human health. Advances have been made using in vitro models to study food digestion, but there is considerable potential for numerical approaches in stomach modeling, as they can provide a comprehensive understanding of the complex flow and chemistry in the stomach. The focus of this study is to provide a concise review of the developed numerical stomach models over the past two decades. The gastric physiological parameters that are required for a computational model to represent the human gastric digestion process are discussed, including the stomach geometry, gastric motility, gastric emptying, and gastric secretions. Computational methods used to model gastric digestion are introduced and compared, including different computational fluid dynamics as well as solid mechanics methods. The challenges and limitations of current studies are discussed, as well as the areas for future research that need to be addressed. There has been progress in simulating gastric fluid flow with stomach wall motion, but much work remains to be done. The complex food breakdown mechanisms and a comprehensive chemical digestion process have not been implemented in any developed models. Numerical method that was once computationally expensive will be revolutionized as computing power continues to improve. Ultimately, the advancement of modeling of gastric food digestion will allow for additional hypothesis testing to streamline the development of food products that are beneficial to human health.


Subject(s)
Digestion , Gastric Emptying , Models, Biological , Stomach , Digestion/physiology , Humans , Stomach/physiology , Gastric Emptying/physiology , Computer Simulation , Hydrodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...