Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.169
Filter
1.
J Mol Model ; 30(8): 257, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976043

ABSTRACT

CONTEXT: The paper considers the features of the structure and dipole moments of several amino acids and their dipeptides which play an important role in the formation of the peptide nanotubes based on them. The influence of the features of their chirality (left L and right D) and the alpha-helix conformations of amino acids are taken into account. In particular, amino acids with aromatic rings, such as phenylalanine (Phe/F), and branched-chain amino acids (BCAAs)-leucine (Leu/L) and isoleucine (Ile/I)-as well as corresponding dipeptides (diphenylalanine (FF), dileucine (LL), and diisoleucine (II)) are considered. The main features and properties of these dipeptide structures and peptide nanotubes (PNTs), based on them, are investigated using computational molecular modeling and quantum-chemical semi-empirical calculations. Their polar, piezoelectric, and photoelectronic properties and features are studied in detail. The results of calculations of dipole moments and polarization, as well as piezoelectric coefficients and band gap width, for different types of helical peptide nanotubes are presented. The calculated values of the chirality indices of various nanotubes are given, depending on the chirality of the initial dipeptides-the results obtained are consistent with the law of changes in the type of chirality as the hierarchy of molecular structures becomes more complex. The influence of water molecules in the internal cavity of nanotubes on their physical properties is estimated. A comparison of the results of these calculations by various computational methods with the available experimental data is presented and discussed. METHOD: The main tool for molecular modeling of all studied nanostructures in this work was the HyperChem 8.01 software package. The main approach used here is the Hartree-Fock (HF) self-consistent field (SCF) with various quantum-chemical semi-empirical methods (AM1, PM3, RM1) in the restricted Hartree-Fock (RHF) and in the unrestricted Hartree-Fock (UHF) approximations. Optimization of molecular systems and the search for their optimal geometry is carried out in this work using the Polak-Ribeire algorithm (conjugate gradient method), which determines the optimized geometry at the point of their minimum total energy. For such optimized structures, dipole moments D and electronic energy levels (such as EHOMO and ELUMO), as well as the band gap Eg = ELUMO - EHOMO, were then calculated. For each optimized molecular structure, the volume was calculated using the QSAR program implemented also in the HyperChem software package.


Subject(s)
Amino Acids , Dipeptides , Models, Molecular , Nanotubes, Peptide , Dipeptides/chemistry , Nanotubes, Peptide/chemistry , Amino Acids/chemistry
2.
Mar Drugs ; 22(6)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38921582

ABSTRACT

Cyclic glycine-proline (cGP), a prevalent marine cyclic dipeptide, possesses a distinct pyrrolidine-2,5-dione scaffold, which contributes to the chemical diversity and broad bioactivities of cGP. The diverse sources from marine-related, endogenous biological, and synthetic pathways and the in vitro and in vivo activities of cGP are reviewed. The potential applications for cGP are also explored. In particular, the pivotal roles of cGP in regulating insulin-like growth factor-1 homeostasis, enhancing neuroprotective effects, and improving neurotrophic function in central nervous system diseases are described. The potential roles of this endogenous cyclic peptide in drug development and healthcare initiatives are also highlighted. This review underscores the significance of cGP as a fundamental building block in drug discovery with exceptional drug-like properties and safety. By elucidating the considerable value of cGP, this review aims to reignite interest in cGP-related research within marine medicinal chemistry and synthetic biology.


Subject(s)
Aquatic Organisms , Dipeptides , Peptides, Cyclic , Animals , Dipeptides/pharmacology , Dipeptides/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Humans , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Drug Discovery/methods , Glycine/pharmacology , Glycine/analogs & derivatives
3.
Chem Pharm Bull (Tokyo) ; 72(6): 596-599, 2024.
Article in English | MEDLINE | ID: mdl-38945948

ABSTRACT

Alkene dipeptide isosteres (ADIs) are promising surrogates of peptide bonds that enhance the bioactive peptide resistance to enzymatic hydrolysis in medicinal chemistry. In this study, we investigated the substitution effects of an ADI on the energy barrier of cis-trans isomerization in the acetyl proline methyl ester (Ac-Pro-OMe) model. The (E)-alkene-type proline analog, which favors a cis-amide conformation, exhibits a lower rotational barrier than native Ac-Pro-OMe. A van't Hoff analysis suggests that the energy barrier is primarily reduced by enthalpic repulsion. It was concluded that although carbon-carbon double bonds and pyrrolidine rings individually increase the rigidity of the incorporation site, their combination can provide structural flexibility and disrupt bioactive conformations. This work provides new insights into ADI-based drug design.


Subject(s)
Alkenes , Dipeptides , Dipeptides/chemistry , Alkenes/chemistry , Proline/chemistry , Molecular Structure , Thermodynamics , Rotation
4.
Molecules ; 29(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38893467

ABSTRACT

The investigation of collagen hydrolysates (CHs) is essential due to their widespread use in health, cosmetic, and therapeutic industries, attributing to the presence of bioactive dipeptides (DPs) and tripeptides (TPs). This study developed a novel targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with propyl chloroformate (PCF) derivatization to measure three bioactive peptides-Hydroxyprolyl-glycine (Hyp-Gly), Glycyl-prolyl-hydroxyproline (Gly-Pro-Hyp), and Prolyl-hydroxyproline (Pro-Hyp)-in CHs, with strong correlation coefficients (0.992, 1.000, and 0.995, respectively) and low limits of detection (LODs) of 1.40, 0.14, and 1.16 µM, respectively. Untargeted data-dependent acquisition (DDA) analyses measured peptide size distribution, while amino acid analysis assessed nutritional content. The analysis of ten commercial CHs revealed similar amino acid profiles but varied peptide lengths, indicating diverse hydrolysis conditions. Products with higher proportions of smaller peptides showed elevated levels of the targeted bioactive peptides, suggesting that a smaller peptide size may increase bioactivity. These findings can inform the optimization of CH supplements, providing consumers with detailed peptide content for more informed choices. Data are available via ProteomeXchange with the identifier PXD051699.


Subject(s)
Collagen , Peptides , Protein Hydrolysates , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Collagen/analysis , Collagen/chemistry , Chromatography, Liquid/methods , Protein Hydrolysates/chemistry , Protein Hydrolysates/analysis , Peptides/chemistry , Peptides/analysis , Hydrolysis , Dipeptides/chemistry , Dipeptides/analysis , Amino Acids/analysis , Amino Acids/chemistry , Oligopeptides/chemistry , Oligopeptides/analysis
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124587, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-38850816

ABSTRACT

Phosphorylated peptides are instrumental in studying protein phosphorylation events. In the present study, Raman optical activity (ROA) is employed to elucidate the structure of a dipeptide, L-alanyl-L-glutamine (L-Ala-L-Gln) and its two differently alkylated N-phosphorylated derivatives. Theoretical simulations were conducted to aid the interpretation of peptide conformation variations upon phosphorylation, and of the measured Raman and ROA spectra. Induced circularly polarized luminescence (CPL) was also recorded in solution, in the presence of a simple europium aqua ion. As the spectra are peptide specific, this type of stereochemical analysis is expected to aid identification of the phosphorylation sites also in other peptides and possibly proteins.


Subject(s)
Dipeptides , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Dipeptides/chemistry , Phosphorylation , Models, Molecular
6.
J Chem Theory Comput ; 20(10): 4065-4075, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38742922

ABSTRACT

Conformational dynamics play a crucial role in determining the behavior of the biomolecules. Polarizable force fields, such as AMOEBA, can accurately capture electrostatic interactions underlying the conformational space. However, applying a polarizable force field in molecular dynamics (MD) simulations can be computationally expensive, especially in studying long-time-scale dynamics. To overcome this challenge, we incorporated the AMOEBA potential with Milestoning, an enhanced sampling method in this work. This integration allows us to efficiently sample the rare and important conformational states of a biomolecule by using many short and independent molecular dynamics trajectories with the AMOEBA force field. We applied this method to investigate the conformational dynamics of alanine dipeptide, DNA, and RNA A-B form conversion. Well-converged thermodynamic and kinetic properties were obtained, including the free energy difference, mean first passage time, and critical transitions between states. Our results demonstrate the power of integrating polarizable force fields with enhanced sampling methods in quantifying the thermodynamic and kinetic properties of biomolecules at the atomic level.


Subject(s)
DNA , Molecular Dynamics Simulation , RNA , Thermodynamics , DNA/chemistry , RNA/chemistry , Dipeptides/chemistry , Kinetics , Static Electricity
7.
Phys Chem Chem Phys ; 26(22): 15968-15977, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38775038

ABSTRACT

Relaxation times of nuclear spins often serve as a valuable source of information on the dynamics of various biochemical processes. Measuring relaxation as a function of the external magnetic field turned out to be extremely useful for the studies of weak ligand-protein interactions. We demonstrate that observing the relaxation of the long-lived spin order instead of longitudinal magnetization extends the capability of this approach. We studied the field-dependent relaxation of the longitudinal magnetization and the singlet order (SO) of methylene protons in alanine-glycine dipeptide and citrate in the presence of human serum albumin (HSA). As a result, SO relaxation proved to be more sensitive to ligand-protein interaction, providing higher relaxation contrast for various HSA concentrations. To assess the parameters of the binding process in more details, we utilized a simple analytical relaxation model to fit the experimental field dependences for both SO and T1 relaxation. We also tested the validity of our approach in the experiments with trimethylsilylpropanoic acid (TSP) used as a competitor in ligand binding with HSA.


Subject(s)
Protein Binding , Serum Albumin, Human , Ligands , Humans , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Dipeptides/chemistry , Dipeptides/metabolism , Citric Acid/chemistry
8.
J Chem Phys ; 160(17)2024 May 07.
Article in English | MEDLINE | ID: mdl-38748013

ABSTRACT

Several enhanced sampling techniques rely on the definition of collective variables to effectively explore free energy landscapes. The existing variables that describe the progression along a reactive pathway offer an elegant solution but face a number of limitations. In this paper, we address these challenges by introducing a new path-like collective variable called the "deep-locally non-linear-embedding," which is inspired by principles of the locally linear embedding technique and is trained on a reactive trajectory. The variable mimics the ideal reaction coordinate by automatically generating a non-linear combination of features through a differentiable generalized autoencoder that combines a neural network with a continuous k-nearest neighbor selection. Among the key advantages of this method is its capability to automatically choose the metric for searching neighbors and to learn the path from state A to state B without the need to handpick landmarks a priori. We demonstrate the effectiveness of DeepLNE by showing that the progression along the path variable closely approximates the ideal reaction coordinate in toy models, such as the Müller-Brown potential and alanine dipeptide. Then, we use it in the molecular dynamics simulations of an RNA tetraloop, where we highlight its capability to accelerate transitions and estimate the free energy of folding.


Subject(s)
Deep Learning , Molecular Dynamics Simulation , RNA/chemistry , Thermodynamics , Dipeptides/chemistry
9.
AAPS PharmSciTech ; 25(5): 116, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769223

ABSTRACT

Oral dispersible films have received broad interest due to fast drug absorption and no first-path metabolism, leading to high bioavailability and better patient compliance. Saxagliptin (SXG) is an antidiabetic drug that undergoes first-path metabolism, resulting in a less active metabolite, so the development of SXG oral dispersible films (SXG-ODFs) improves SXG bioavailability. The formula optimisation included a response surface experimental design and the impact of three formulation factors, the type and concentration of polymer and plasticiser concentration on in-vitro disintegration time and folding endurance. Two optimised SXG-ODFs prepared using either polyvinyl alcohol (PVA) or hydroxypropyl methylcellulose were investigated. SXG-ODFs prepared with PVA demonstrated a superior rapid disintegration time, ranging from 17 to 890 s, with the fastest disintegration time recorded at 17 s. These short durations can be attributed to the hydrophilic nature of PVA, facilitating rapid hydration and disintegration upon contact with saliva. Additionally, PVA-based films displayed remarkable folding endurance, surpassing 200 folds without rupture, indicating flexibility and stability. The high tensile strength of PVA-based films further underscores their robust mechanical properties, with tensile strength values reaching up to 4.53 MPa. SXG exhibits a UV absorption wavelength of around 212 nm, posing challenges for traditional quantitative spectrophotometric analysis, so a polyaniline nanoparticles-based solid-contact screen-printed ion-selective electrode (SP-ISE) was employed for the determination of SXG release profile effectively in comparison to HPLC. SP-ISE showed a better real-time release profile of SXG-ODFs, and the optimised formula showed lower blood glucose levels than commercial tablets.


Subject(s)
Adamantane , Aniline Compounds , Dipeptides , Drug Liberation , Nanoparticles , Polyvinyl Alcohol , Adamantane/chemistry , Adamantane/analogs & derivatives , Dipeptides/chemistry , Dipeptides/pharmacokinetics , Dipeptides/administration & dosage , Aniline Compounds/chemistry , Nanoparticles/chemistry , Administration, Oral , Polyvinyl Alcohol/chemistry , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacokinetics , Humans , Hypromellose Derivatives/chemistry , Tensile Strength , Chemistry, Pharmaceutical/methods , Biological Availability , Solubility , Electrodes
10.
J Chromatogr A ; 1726: 464966, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38735116

ABSTRACT

Chromatographic behavior of novel chiral stationary phases with bonded selectors based on Cinchona alkaloids modified with dipeptides was studied using dipeptides as probe molecules. Buffer-free and salt containing hydro-organic solutions were used as the mobile phases. The selectors exhibit pseudoenantiomeric behavior with respect to the L/D or LL/DD enantiomers and do not behave so with respect to the LD/DL enantiomers. The alkaloid part of the selectors is the driver of enantioselectivity, while the dipeptide substituent plays a modulating role. The quinidine-based selectors demonstrate stronger adsorption affinity and higher enantioselectivity as compared to the quinine-based selectors. The dipeptide analytes containing a glycyl fragment are weaker retained and their enantiomers are worse separated comparing to dipeptides with both units being larger amino acids. Moreover, a phenyl group in the structure of a dipeptide analyte facilitates enantioseparation. The effect of the mobile phase composition on retention depends on the hydrophobicity of an analyte. Hydrophobic dipeptides are better eluted by methanol-rich solvents, hydrophilic dipeptides are better eluted with water-rich solvents, and dipeptides with an intermediate hydrophobicity demonstrate a U-shaped or more complicated dependence of the retention factor on the percentage of methanol. Even a small buffer addition to the mobile phase decreases retention, but the ion-exchange mechanism was not confirmed. The effect of an electrolyte is rather due to the shielding of the charged groups of the selector reducing thereby electrostatic interaction between the selector and analyte. Efficiency of the novel columns is comparable to that of other brush-type chiral columns, the highest achieved number of the theoretical plates per 1 m varying between 30,000 and 40,000.


Subject(s)
Chromatography, Reverse-Phase , Cinchona Alkaloids , Dipeptides , Hydrophobic and Hydrophilic Interactions , Cinchona Alkaloids/chemistry , Dipeptides/chemistry , Dipeptides/isolation & purification , Stereoisomerism , Chromatography, Reverse-Phase/methods , Chromatography, High Pressure Liquid/methods , Quinine/chemistry , Quinine/isolation & purification
11.
J Med Chem ; 67(10): 8247-8260, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38716576

ABSTRACT

Prostate-specific membrane antigen (PSMA)-targeted radio ligand therapeutics (RLTs), such as [177Lu]Lu-PSMA-617 (Pluvicto), have been shown to accumulate in salivary glands and kidneys, potentially leading to undesired side effects. As unwanted accumulation in normal organs may derive from the cross-reactivity of PSMA ligands to glutamate carboxypeptidase III (GCPIII), it may be convenient to block this interaction with GCPIII-selective ligands. Parallel screening of a DNA-encoded chemical library (DEL) against GCPIII and PSMA allowed the identification of GCPIII binders. Structure-activity relationship (SAR) studies resulted in the identification of nanomolar GCPIII ligands with up to 1000-fold selectivity over PSMA. We studied the ability of GCPIII ligands to counteract the binding of [177Lu]Lu-PSMA-617 to human salivary glands by autoradiography and could demonstrate a partial radioprotection.


Subject(s)
Dipeptides , Heterocyclic Compounds, 1-Ring , Lutetium , Humans , Antigens, Surface , Autoradiography , Dipeptides/chemistry , Dipeptides/metabolism , Glutamate Carboxypeptidase II , Heterocyclic Compounds, 1-Ring/chemistry , Heterocyclic Compounds, 1-Ring/metabolism , Ligands , Lutetium/chemistry , Lutetium/metabolism , Prostate-Specific Antigen , Radioisotopes/chemistry , Radioisotopes/metabolism , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/metabolism , Radiopharmaceuticals/pharmacokinetics , Salivary Glands/metabolism , Structure-Activity Relationship , Tissue Distribution
12.
Nat Commun ; 15(1): 4386, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782953

ABSTRACT

Sialin, a member of the solute carrier 17 (SLC17) transporter family, is unique in its ability to transport not only sialic acid using a pH-driven mechanism, but also transport mono and diacidic neurotransmitters, such as glutamate and N-acetylaspartylglutamate (NAAG), into synaptic vesicles via a membrane potential-driven mechanism. While most transporters utilize one of these mechanisms, the structural basis of how Sialin transports substrates using both remains unclear. Here, we present the cryogenic electron-microscopy structures of human Sialin: apo cytosol-open, apo lumen-open, NAAG-bound, and inhibitor-bound. Our structures show that a positively charged cytosol-open vestibule accommodates either NAAG or the Sialin inhibitor Fmoc-Leu-OH, while its luminal cavity potentially binds sialic acid. Moreover, functional analyses along with molecular dynamics simulations identify key residues in binding sialic acid and NAAG. Thus, our findings uncover the essential conformational states in NAAG and sialic acid transport, demonstrating a working model of SLC17 transporters.


Subject(s)
Cryoelectron Microscopy , Molecular Dynamics Simulation , Humans , N-Acetylneuraminic Acid/metabolism , N-Acetylneuraminic Acid/chemistry , Lysosomes/metabolism , HEK293 Cells , Protein Conformation , Organic Anion Transporters/metabolism , Organic Anion Transporters/chemistry , Organic Anion Transporters/antagonists & inhibitors , Dipeptides/chemistry , Dipeptides/metabolism , Dipeptides/pharmacology , Symporters
13.
J Antibiot (Tokyo) ; 77(7): 403-411, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750250

ABSTRACT

Two new cyclic dipeptides, paranazzamides A (1) and B (2) containing a C7-prenylated tryptophan, were isolated from a culture broth of snake fungal disease-isolate Paranannizziopsis sp. UH-21. This is the first report on the new secondary metabolites from Paranannizziopsis sp. The planar structures of 1 and 2 were elucidated using various spectroscopic techniques including MS and 1D/2D NMR. The absolute configuration of 1 was assigned by comparison with the synthesized compound. Compounds 1 and 2 exhibited no antifungal activity, no antibacterial activity, and no cytotoxic activity even at a concentration of 128 µg ml-1, whereas 1 and 2 exhibited amphotericin B potentiating activity against Candida auris in combination treatment.


Subject(s)
Dipeptides , Peptides, Cyclic , Tryptophan , Tryptophan/chemistry , Tryptophan/metabolism , Dipeptides/chemistry , Dipeptides/isolation & purification , Dipeptides/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/isolation & purification , Animals , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Candida/drug effects , Prenylation , Amphotericin B/pharmacology , Molecular Structure , Humans
14.
Ann Nucl Med ; 38(7): 574-583, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38676906

ABSTRACT

OBJECTIVE: The marked success of prostate-specific membrane antigen (PSMA)-targeting radioligands with albumin binder (ALB) is attributed to the improvement of blood retention and tumor accumulation. [111In]In-PNT-DA1, our PSMA-targeting radioligand with ALB, also achieved improved tumor accumulation due to its prolonged blood retention. Although the advantage of ALBs is related to their reversible binding to albumin, the relationship between albumin-binding and tumor accumulation of PSMA-targeting radioligands remains unclear because of the lack of information about radioligands with stronger albumin-binding than ALBs. In this study, we designed and synthesized [111In]In-PNT-DM-HSA, a new radioligand that consists of a PSMA-targeting radioligand covalently bound to albumin. The pharmacokinetics of [111In]In-PNT-DM-HSA was compared with those of [111In]In-PNT-DA1 and [111In]In-PSMA-617, a non-ALB-conjugated radioligand, to evaluate the relationship between albumin-binding and tumor accumulation. METHOD: The [111In]In-PNT-DM-HSA was prepared by incubation of [111In]In-PNT-DM, a PSMA-targeting radioligand including a maleimide group, and human serum albumin (HSA). The ability of [111In]In-PNT-DM-HSA was evaluated by in vitro assays. A biodistribution study using LNCaP tumor-bearing mice was conducted to compare the pharmacokinetics of [111In]In-PNT-DM-HSA, [111In]In-PNT-DA1, and [111In]In-PSMA-617. RESULTS: The [111In]In-PNT-DM-HSA was obtained at a favorable radiochemical yield and high radiochemical purity. In vitro assays revealed that [111In]In-PNT-DM-HSA had fundamental characteristics as a PSMA-targeting radioligand interacting with albumin covalently. In a biodistribution study, [111In]In-PNT-DM-HSA and [111In]In-PNT-DA1 showed higher blood retention than [111In]In-PSMA-617. On the other hand, the tumor accumulation of [111In]In-PNT-DA1 was much higher than [111In]In-PNT-DM-HSA and [111In]In-PSMA-617. CONCLUSIONS: These results indicate that the moderate reversible binding of ALB with albumin, not covalent binding, may play a critical role in enhancing the tumor accumulation of PSMA-targeting radioligands.


Subject(s)
Antigens, Surface , Glutamate Carboxypeptidase II , Animals , Mice , Glutamate Carboxypeptidase II/metabolism , Antigens, Surface/metabolism , Humans , Male , Ligands , Cell Line, Tumor , Tissue Distribution , Protein Binding , Albumins/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/diagnostic imaging , Serum Albumin/metabolism , Serum Albumin/chemistry , Dipeptides/pharmacokinetics , Dipeptides/chemistry , Dipeptides/metabolism , Indium Radioisotopes
15.
Eur J Nucl Med Mol Imaging ; 51(9): 2819-2832, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38683349

ABSTRACT

PURPOSE: A series of new 68Ga-labeled tracers based on [68Ga]Ga-PSMA-617 were developed to augment the tumor-to-kidney ratio and reduce the activity accumulation in bladder, ultimately minimize radiation toxicity to the urinary system. METHODS: We introduced quinoline group, phenylalanine and decanoic acid into different tracers to enhance their lipophilicity, strategically limiting their metabolic pathway through the urinary system. Their binding affinity onto LNCaP cells was determined through in vitro saturation assays and competition binding assays. In vivo metabolic study, PET imaging and biodistribution experiment were performed in LNCaP tumor-bearing B-NSG male mice. The most promising tracer was selected for first-in-human study. RESULTS: Four radiotracers were synthesized with radiochemical purity (RCP) > 95% and molar activity in a range of 20.0-25.5 GBq/µmol. The binding affinities (Ki) of TWS01, TWS02 to PSMA were in the low nanomolar range (< 10 nM), while TWS03 and TWS04 exhibited binding affinities with Ki > 20 nM (59.42 nM for TWS03 and 37.14 nM for TWS04). All radiotracers exhibited high stability in vivo except [68Ga]Ga-TWS03. Micro PET/CT imaging and biodistribution analysis revealed that [68Ga]Ga-TWS02 enabled clear tumor visualization in PET images at 1.5 h post-injection, with higher tumor-to-kidney ratio (T/K, 0.93) and tumor-to-muscle ratio (T/M, 107.62) compared with [68Ga]Ga-PSMA-617 (T/K: 0.39, T/M: 15.01) and [68Ga]Ga-PSMA-11 (T/K: 0.15, T/M: 24.00). In first-in-human study, [68Ga]Ga-TWS02 effectively detected PCa-associated lesions including primary and metastatic lesions, with lower accumulation in urinary system, suggesting that [68Ga]Ga-TWS02 might be applied in the detection of bladder invasion, with minimized radiation toxicity to the urinary system. CONCLUSION: Introduction of quinoline group, phenylalanine and decanoic acid into different tracers can modulate the binding affinity and pharmacokinetics of PSMA in vivo. [68Ga]Ga-TWS02 showed high binding affinity to PSMA, excellent pharmacokinetic properties and clear imaging of PCa-associated lesions, making it a promising radiotracer for the clinical diagnosis of PCa. Moreover, TWS02 with a chelator DOTA could also label 177Lu and 225Ac, which could be used for PCa treatment without significant side effects. TRIAL REGISTRATION: The clinical evaluation of this study was registered On October 30, 2021 at https://www.chictr.org.cn/ (No: ChiCTR2100052545).


Subject(s)
Glutamate Carboxypeptidase II , Positron-Emission Tomography , Humans , Male , Mice , Animals , Tissue Distribution , Cell Line, Tumor , Glutamate Carboxypeptidase II/metabolism , Positron-Emission Tomography/methods , Radioactive Tracers , Gallium Radioisotopes/pharmacokinetics , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/radiotherapy , Antigens, Surface/metabolism , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/chemistry , Radiochemistry , Dipeptides/pharmacokinetics , Dipeptides/chemistry , Heterocyclic Compounds, 1-Ring/chemistry , Heterocyclic Compounds, 1-Ring/pharmacokinetics , Positron Emission Tomography Computed Tomography/methods
16.
Chembiochem ; 25(11): e202300854, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38613434

ABSTRACT

The utilization of the glycated amino acids formyline and pyrraline as well as their peptide-bound derivatives by 14 Saccharomyces yeasts, including 6 beer yeasts (bottom and top fermenting), one wine yeast, 6 strains isolated from natural habitats and one laboratory reference yeast strain (wild type) was investigated. All yeasts were able to metabolize glycated amino acids via the Ehrlich pathway to the corresponding Ehrlich metabolites. While formyline and small amounts of pyrraline entered the yeast cells via passive diffusion, the amounts of dipeptide-bound MRPs, especially the dipeptides glycated at the C-terminus, decreased much faster, indicating an uptake into the yeast cells. Furthermore, the glycation-mediated hydrophobization in general leads to an faster degradation rate compared to the native lysine dipeptides. While the utilization of free formyline is yeast-specific, the amounts of (glycated) dipeptides decreased faster in the presence of brewer's yeasts, which also showed a higher formation rate of Ehrlich metabolites compared to naturally isolated strains. Due to rapid uptake of alanyl dipeptides, it can be assumed that the Ehrlich enzyme system of naturally isolated yeasts is overloaded and the intracellularly released MRP is primarily excreted from the cell. This indicates adaptation of technologically used yeasts to (glycated) dipeptides as a nitrogen source.


Subject(s)
Dipeptides , Norleucine , Dipeptides/metabolism , Dipeptides/chemistry , Norleucine/metabolism , Norleucine/analogs & derivatives , Norleucine/chemistry , Saccharomyces/metabolism , Saccharomyces cerevisiae/metabolism , Glycosylation , Pyrroles
17.
Biomacromolecules ; 25(5): 3169-3177, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38684138

ABSTRACT

Achieving precise control over gelator alignment and morphology is crucial for crafting tailored materials and supramolecular structures with distinct properties. We successfully aligned the self-assembled micelles formed by a functionalized dipeptide 2NapFF into long 1-D "gel noodles" by cross-linking with divalent metal chlorides. We identify the most effective cross-linker for alignment, enhancing mechanical stability, and imparting functional properties. Our study shows that Group 2 metal ions are particularly suited for creating mechanically robust yet flexible gel noodles because of their ionic and nondirectional bonding with carboxylate groups. In contrast, the covalent nature and high directional bonds of d-block metal ions with carboxylates tend to disrupt the self-assembly of 2NapFF. Furthermore, the 2NapFF-Cu noodles demonstrated selective antibacterial activity, indicating that the potent antibacterial property of the copper(II) ion is preserved within the cross-linked system. By merging insights into molecular alignment, gel extrusion processing, and integrating specific functionalities, we illustrate how the versatility of dipeptide-based gels can be utilized in creating next-generation soft materials.


Subject(s)
Anti-Bacterial Agents , Copper , Gels , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Copper/chemistry , Copper/pharmacology , Gels/chemistry , Cross-Linking Reagents/chemistry , Dipeptides/chemistry , Dipeptides/pharmacology , Micelles , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects , Escherichia coli/drug effects
18.
Nitric Oxide ; 147: 42-50, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38631610

ABSTRACT

Nitric oxide (NO) donating drugs such as organic nitrates have been used to treat cardiovascular diseases for more than a century. These donors primarily produce NO systemically. It is however sometimes desirable to control the amount, location, and time of NO delivery. We present the design of a novel pH-sensitive NO release system that is achieved by the synthesis of dipeptide diphenylalanine (FF) and graphene oxide (GO) co-assembled hybrid nanosheets (termed as FF@GO) through weak molecular interactions. These hybrid nanosheets were characterised by using X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, zeta potential measurements, X-ray photoelectron spectroscopy, scanning and transmission electron microscopies. The weak molecular interactions, which include electrostatic, hydrogen bonding and π-π stacking, are pH sensitive due to the presence of carboxylic acid and amine functionalities on GO and the dipeptide building blocks. Herein, we demonstrate that this formulation can be loaded with NO gas with the dipeptide acting as an arresting agent to inhibit NO burst release at neutral pH; however, at acidic pH it is capable of releasing NO at the rate of up to 0.6 µM per minute, comparable to the amount of NO produced by healthy endothelium. In conclusion, the innovative conjugation of dipeptide with graphene can store and release NO gas under physiologically relevant concentrations in a pH-responsive manner. pH responsive NO-releasing organic-inorganic nanohybrids may prove useful for the treatment of cardiovascular diseases and other pathologies.


Subject(s)
Graphite , Nanostructures , Nitric Oxide , Graphite/chemistry , Hydrogen-Ion Concentration , Nitric Oxide/chemistry , Nitric Oxide/metabolism , Nanostructures/chemistry , Humans , Dipeptides/chemistry , Phenylalanine/chemistry , Phenylalanine/analogs & derivatives
19.
Langmuir ; 40(17): 8971-8980, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38629792

ABSTRACT

Cells require oligonucleotides and polypeptides with specific, homochiral sequences to perform essential functions, but it is unclear how such oligomers were selected from random sequences at the origin of life. Cells were probably preceded by simple compartments such as fatty acid vesicles, and oligomers that increased the stability, growth, or division of vesicles could have thereby increased in frequency. We therefore tested whether prebiotic peptides alter the stability or growth of vesicles composed of a prebiotic fatty acid. We find that three of 15 dipeptides tested reduce salt-induced flocculation of vesicles. All three contain leucine, and increasing their length increases the efficacy. Also, leucine-leucine but not alanine-alanine increases the size of vesicles grown by multiple additions of micelles. In a molecular simulation, leucine-leucine docks to the membrane, with the side chains inserted into the hydrophobic core of the bilayer, while alanine-alanine fails to dock. Finally, the heterochiral forms of leucine-leucine, at a high concentration, rapidly shrink the vesicles and make them leakier and less stable to high pH than the homochiral forms do. Thus, prebiotic peptide-membrane interactions influence the flocculation, growth, size, leakiness, and pH stability of prebiotic vesicles, with differential effects due to sequence, length, and chirality. These differences could lead to a population of vesicles enriched for peptides with beneficial sequence and chirality, beginning selection for the functional oligomers that underpin life.


Subject(s)
Peptides , Peptides/chemistry , Alanine/chemistry , Stereoisomerism , Artificial Cells/chemistry , Leucine/chemistry , Origin of Life , Dipeptides/chemistry
20.
J Chem Theory Comput ; 20(9): 3492-3502, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38662196

ABSTRACT

Quantifying the conformational ensembles of biomolecules is fundamental to describing mechanisms of processes such as protein folding, interconversion between folded states, ligand binding, and allosteric regulation. Accurate quantification of these ensembles remains a challenge for conventional molecular simulations of all but the simplest molecules due to insufficient sampling. Enhanced sampling approaches, such as metadynamics, were designed to overcome this challenge; however, the nonuniform frame weights that result from many of these approaches present an additional challenge to ensemble quantification techniques such as Markov State Modeling or structural clustering. Here, we present rigorous inclusion of nonuniform frame weights into a structural clustering method entitled shapeGMM. The result of frame-weighted shapeGMM is a high dimensional probability density and generative model for the unbiased system from which we can compute important thermodynamic properties such as relative free energies and configurational entropy. The accuracy of this approach is demonstrated by the quantitative agreement between GMMs computed by Hamiltonian reweighting and direct simulation of a coarse-grained helix model system. Furthermore, the relative free energy computed from a shapeGMM probability density of alanine dipeptide reweighted from a metadynamics simulation quantitatively reproduces the underlying free energy in the basins. Finally, the method identifies hidden structures along the actin globular to filamentous-like structural transition from a metadynamics simulation on a linear discriminant analysis coordinate trained on GMM states, illustrating how structural clustering of biased data can lead to biophysical insight. Combined, these results demonstrate that frame-weighted shapeGMM is a powerful approach to quantifying biomolecular ensembles from biased simulations.


Subject(s)
Molecular Dynamics Simulation , Thermodynamics , Dipeptides/chemistry , Protein Conformation , Protein Folding
SELECTION OF CITATIONS
SEARCH DETAIL
...