Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.449
Filter
1.
PLoS Pathog ; 20(9): e1012471, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39236038

ABSTRACT

Bats are natural reservoirs for zoonotic pathogens, yet the determinants of microbial persistence as well as the specific functionality of their immune system remain largely enigmatic. Their propensity to harbor viruses lethal to humans and/or livestock, mostly in absence of clinical disease, makes bats stand out among mammals. Defending against pathogens relies on avoidance, resistance, and/or tolerance strategies. In bats, disease tolerance has recently gained increasing attention as a prevailing host defense paradigm. We here summarize the current knowledge on immune responses in bats in the context of infection with zoonotic agents and discuss concepts related to disease tolerance. Acknowledging the wide diversity of bats, the broad spectrum of bat-associated microbial species, and immune-related knowledge gaps, we identify research priorities necessary to provide evidence-based proofs for disease tolerance in bats. Since disease tolerance relies on networks of biological processes, we emphasize that investigations beyond the immune system, using novel technologies and computational biology, could jointly advance our knowledge about mechanisms conferring bats reservoir abilities. Although disease tolerance may not be the "one fit all" defense strategy, deciphering disease tolerance in bats could translate into novel therapies and inform prevention of spillover infections to humans and livestock.


Subject(s)
Chiroptera , Immune Tolerance , Animals , Chiroptera/immunology , Chiroptera/virology , Immune Tolerance/immunology , Disease Reservoirs/virology , Zoonoses/immunology , Humans
2.
NPJ Biofilms Microbiomes ; 10(1): 68, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117662

ABSTRACT

Shrews being insectivores, serve as natural reservoirs for a wide array of zoonotic viruses, including the recently discovered Langya henipavirus (LayV) in China in 2018. It is crucial to understand the shrew-associated virome, viral diversity, and new viruses. In the current study, we conducted high-throughput sequencing on lung samples obtained from 398 shrews captured along the eastern coast of China, and characterized the high-depth virome of 6 common shrew species (Anourosorex squamipes, Crocidura lasiura, Crocidura shantungensis, Crocidura tanakae, Sorex caecutiens, and Suncus murinus). Our analysis revealed numerous shrew-associated viruses comprising 54 known viruses and 72 new viruses that significantly enhance our understanding of mammalian viruses. Notably, 34 identified viruses possess spillover-risk potential and six were human pathogenic viruses: LayV, influenza A virus (H5N6), rotavirus A, rabies virus, avian paramyxovirus 1, and rat hepatitis E virus. Moreover, ten previously unreported viruses in China were discovered, six among them have spillover-risk potential. Additionally, all 54 known viruses and 12 new viruses had the ability to cross species boundaries. Our data underscore the diversity of shrew-associated viruses and provide a foundation for further studies into tracing and predicting emerging infectious diseases originated from shrews.


Subject(s)
High-Throughput Nucleotide Sequencing , Lung , Shrews , Virome , Animals , Shrews/virology , China , Lung/virology , Virome/genetics , Phylogeny , RNA Viruses/genetics , RNA Viruses/classification , RNA Viruses/isolation & purification , RNA, Viral/genetics , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Rabies virus/genetics , Rabies virus/classification , Rabies virus/isolation & purification , Disease Reservoirs/virology
3.
Nutrients ; 16(16)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39203869

ABSTRACT

Age-stratified path analyses modeled associations between enteric pathogen reservoirs, transmission pathways and height-for-age z-scores (HAZ) to identify determinants of childhood growth in the Kolkata, India site of the Global Enteric Multicenter Study (GEMS). Models tested direct associations of potential pathogen reservoirs with HAZ at 60-day follow-up in separate moderate and severe diarrhea (MSD) case and control cohorts or indirectly when mediated by enteric infections. In the MSD cohort, rotavirus and typical EPEC (tEPEC) infections among children 0-11 months of age and ST-ETEC infections among children 12-23 months of age were associated with lower HAZ. Handwashing after defecating and before cooking reduced impaired growth through reductions in rotavirus and tEPEC infections. Water storage increased rotavirus and ST-ETEC infection risks, resulting in increased impaired growth, but was reduced with reported child feces disposal. The GII norovirus variant was inversely associated with HAZ among children 12-59 months of age in the control cohort. Reported handwashing before the handling of children reduced GII infections and impaired growth. Boiling water and the disposal of children's feces mediated by stored water were positively associated with HAZ. The targeting of pathogen-specific reservoirs and transmission pathways may more effectively improve childhood linear growth in South Asian urban communities.


Subject(s)
Diarrhea , Humans , India/epidemiology , Infant , Male , Child, Preschool , Female , Diarrhea/virology , Diarrhea/epidemiology , Infant, Newborn , Growth Disorders/epidemiology , Growth Disorders/virology , Body Height , Case-Control Studies , Rotavirus Infections/transmission , Rotavirus Infections/prevention & control , Rotavirus Infections/epidemiology , Feces/virology , Feces/microbiology , Hand Disinfection , Rotavirus/isolation & purification , Disease Reservoirs/virology
4.
Viruses ; 16(8)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39205171

ABSTRACT

Egyptian rousette bats (ERBs) are implicated as reservoir hosts for Marburg virus (MARV), but natural mechanisms involved in maintenance of MARV in ERB populations remain undefined. A number of hematophagous ectoparasites, including fleas, parasitize bats. Subcutaneous (SC) inoculation of ERBs with MARV consistently results in viremia, suggesting that infectious MARV could be ingested by blood-sucking ectoparasites during feeding. In our study, MARV RNA was detected in fleas that took a blood meal during feeding on viremic bats on days 3, 7, and 11 after SC inoculation. Virus concentration in individual ectoparasites was consistent with detectable levels of viremia in the blood of infected host bats. There was neither seroconversion nor viremia in control bats kept in close contact with MARV-infected bats infested with fleas for up to 40 days post-exposure. In fleas inoculated intracoelomically, MARV was detected up to 14 days after intracoelomic (IC) inoculation, but the virus concentration was lower than that delivered in the inoculum. All bats that had been infested with inoculated, viremic fleas remained virologically and serologically negative up to 38 days after infestation. Of 493 fleas collected from a wild ERB colony in Matlapitsi Cave, South Africa, where the enzootic transmission of MARV occurs, all tested negative for MARV RNA. While our findings seem to demonstrate that bat fleas lack vectorial capacity to transmit MARV biologically, their role in mechanical transmission should not be discounted. Regular blood-feeds, intra- and interhost mobility, direct feeding on blood vessels resulting in venous damage, and roosting behaviour of ERBs provide a potential physical bridge for MARV dissemination in densely populated cave-dwelling bats by fleas. The virus transfer might take place through inoculation of skin, mucosal membranes, and wounds when contaminated fleas are squashed during auto- and allogrooming, eating, biting, or fighting.


Subject(s)
Chiroptera , Marburg Virus Disease , Marburgvirus , Siphonaptera , Animals , Chiroptera/virology , Marburgvirus/genetics , Marburgvirus/physiology , Siphonaptera/virology , Marburg Virus Disease/virology , Marburg Virus Disease/transmission , Disease Reservoirs/virology , Viremia , Flea Infestations/veterinary , Flea Infestations/transmission , Flea Infestations/virology , RNA, Viral/genetics , Egypt
5.
Viruses ; 16(8)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39205276

ABSTRACT

The rabies virus (RABV) is the exclusive lyssavirus affecting both wild and domestic mammalian hosts in the Americas, including humans. Additionally, the Americas stand out as the sole region where bat rabies occurs. While carnivore rabies is being increasingly managed across the region, bats are emerging as significant reservoirs of RABV infection for humans and domestic animals. Knowledge of the bat species maintaining rabies and comprehending cross-species transmission (CST) and host shift processes are pivotal for directing surveillance as well as ecological research involving wildlife reservoir hosts. Prior research indicates that bat RABV CST is influenced by host genetic similarity and geographic overlap, reflecting host adaptation. In this study, we compiled and analyzed a comprehensive nucleoprotein gene dataset representing bat-borne RABV diversity in Argentina and the broader Americas using Bayesian phylogenetics. We examined the association between host genus and geography, finding both factors shaping the global phylogenetic structure. Utilizing a phylogeographic approach, we inferred CST and identified key bat hosts driving transmission. Consistent with CST determinants, we observed monophyletic/paraphyletic clustering of most bat genera in the RABV phylogeny, with stronger CST evidence between host genera of the same family. We further discuss Myotis as a potential ancestral spreader of much of RABV diversity.


Subject(s)
Chiroptera , Phylogeny , Phylogeography , Rabies virus , Rabies , Chiroptera/virology , Rabies/transmission , Rabies/epidemiology , Rabies/virology , Rabies/veterinary , Animals , Rabies virus/genetics , Rabies virus/classification , Rabies virus/isolation & purification , Americas/epidemiology , Disease Reservoirs/virology , Bayes Theorem , Humans , Argentina/epidemiology
6.
Vopr Virusol ; 69(3): 255-265, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38996374

ABSTRACT

INTRODUCTION: Bats are natural reservoirs of coronaviruses (Coronaviridae), which have caused three outbreaks of human disease SARS, MERS and COVID-19 or SARS-2 over the past decade. The purpose of the work is to study the diversity of coronaviruses among bats inhabiting the foothills and mountainous areas of the Republics of Dagestan, Altai and the Kemerovo region. MATERIALS AND METHODS: Samples of bat oral swabs and feces were tested for the presence of coronavirus RNA by reverse transcription-polymerase chain reaction (RT-PCR). RESULTS: It has been shown that the greater horseshoe bats (Rhinolophus ferrumequinum), inhabiting the Republic of Dagestan, are carriers of two different coronaviruses. One of the two coronaviruses is a member of the Sarbecovius subgenus of the Betacoronavirus genus, which includes the causative agents of SARS and COVID-19. The second coronavirus is assigned to the Decacovirus subgenus of the Alphacoronavirus genus and is most similar to viruses identified among Rhinolophus spp. from European and Middle Eastern countries. In the Altai Republic and Kemerovo region, coronaviruses belonging to the genus Alphacoronavirus, subgenus Pedacovirus, were found in the smooth-nosed bats: Ikonnikov`s bat (Myotis ikonnikovi) and the eastern bat (Myotis petax). The virus from the Altai Republic from M. ikonnikovi is close to viruses from Japan and Korea, as well as viruses from Myotis spp. from European countries. The virus from the Kemerovo region from M. petax groups with coronaviruses from Myotis spp. from Asian countries and is significantly different from coronaviruses previously discovered in the same natural host.


Subject(s)
Chiroptera , Animals , Chiroptera/virology , Siberia/epidemiology , Phylogeny , Disease Reservoirs/virology , Coronavirus/genetics , Coronavirus/isolation & purification , Coronavirus/classification , Humans , Feces/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , COVID-19/virology , COVID-19/epidemiology , COVID-19/veterinary , Coronavirus Infections/virology , Coronavirus Infections/veterinary , Coronavirus Infections/epidemiology
7.
Emerg Infect Dis ; 30(8): 1609-1620, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39043403

ABSTRACT

SARS-CoV-2 can infect wildlife, and SARS-CoV-2 variants of concern might expand into novel animal reservoirs, potentially by reverse zoonosis. White-tailed deer and mule deer of North America are the only deer species in which SARS-CoV-2 has been documented, raising the question of whether other reservoir species exist. We report cases of SARS-CoV-2 seropositivity in a fallow deer population located in Dublin, Ireland. Sampled deer were seronegative in 2020 when the Alpha variant was circulating in humans, 1 deer was seropositive for the Delta variant in 2021, and 12/21 (57%) sampled deer were seropositive for the Omicron variant in 2022, suggesting host tropism expansion as new variants emerged in humans. Omicron BA.1 was capable of infecting fallow deer lung type-2 pneumocytes and type-1-like pneumocytes or endothelial cells ex vivo. Ongoing surveillance to identify novel SARS-CoV-2 reservoirs is needed to prevent public health risks during human-animal interactions in periurban settings.


Subject(s)
COVID-19 , Deer , SARS-CoV-2 , Animals , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/veterinary , Humans , Deer/virology , Ireland/epidemiology , Seroepidemiologic Studies , Urban Population , Disease Reservoirs/virology , Disease Reservoirs/veterinary , Animals, Wild/virology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Female , Male
8.
J R Soc Interface ; 21(216): 20240106, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39045680

ABSTRACT

Lassa fever is a West African rodent-borne viral haemorrhagic fever that kills thousands of people a year, with 100 000 to 300 000 people a year probably infected by Lassa virus (LASV). The main reservoir of LASV is the Natal multimammate mouse, Mastomys natalensis. There is reported asynchrony between peak infection in the rodent population and peak Lassa fever risk among people, probably owing to differing seasonal contact rates. Here, we developed a susceptible-infected-recovered ([Formula: see text])-based model of LASV dynamics in its rodent host, M. natalensis, with a persistently infected class and seasonal birthing to test the impact of changes to seasonal birthing in the future owing to climate and land use change. Our simulations suggest shifting rodent birthing timing and synchrony will alter the peak of viral prevalence, changing risk to people, with viral dynamics mainly stable in adults and varying in the young, but with more infected individuals. We calculate the time-average basic reproductive number, [Formula: see text], for this infectious disease system with periodic changes to population sizes owing to birthing using a time-average method and with a sensitivity analysis show four key parameters: carrying capacity, adult mortality, the transmission parameter among adults and additional disease-induced mortality impact the maintenance of LASV in M. natalensis most, with carrying capacity and adult mortality potentially changeable owing to human activities and interventions.


Subject(s)
Lassa Fever , Lassa virus , Murinae , Animals , Lassa Fever/epidemiology , Lassa Fever/transmission , Lassa Fever/virology , Lassa virus/physiology , Murinae/virology , Humans , Models, Biological , Disease Reservoirs/virology , Africa, Western/epidemiology , Seasons , Female
9.
Viruses ; 16(7)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39066204

ABSTRACT

In recent years, the transmission of viruses from wildlife to humans has raised significant public health concerns, exemplified by the COVID-19 pandemic caused by the betacoronavirus SARS-CoV-2. Human activities play a substantial role in increasing the risk of zoonotic virus transmission from wildlife to humans. Rats and mice are prevalent in urban environments and may act as reservoirs for various pathogens. This study aimed to evaluate the presence of zoonotic viruses in wild rats and mice in both urban and rural areas, focusing on well-known zoonotic viruses such as betacoronavirus, hantavirus, arenavirus, kobuvirus, and monkeypox virus, along with other viruses occasionally detected in rats and mice, including rotavirus, norovirus, and astrovirus, which are known to infect humans at a high rate. A total of 128 animals were captured, including 70 brown rats (Rattus norvegicus), 45 black rats (Rattus rattus), and 13 house mice (Mus musculus), and feces, lung, and liver were collected. Among brown rats, one fecal sample tested positive for astrovirus RNA. Nucleotide sequencing revealed high sequence similarity to both human and rat astrovirus, suggesting co-presence of these viruses in the feces. Murine kobuvirus (MuKV) was detected in fecal samples from both black (n = 7) and brown (n = 6) rats, primarily from urban areas, as confirmed by sequence analysis. These findings highlight the importance of surveillance and research to understand and mitigate the risks associated with the potential transmission of pathogens by rodents.


Subject(s)
Feces , Zoonoses , Animals , Humans , Mice , Rats/virology , Feces/virology , Zoonoses/virology , Zoonoses/transmission , Phylogeny , COVID-19/virology , COVID-19/transmission , COVID-19/epidemiology , Viral Zoonoses/transmission , Viral Zoonoses/virology , Animals, Wild/virology , Disease Reservoirs/virology , Muridae/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Viruses/classification , Viruses/isolation & purification , Viruses/genetics
10.
Viruses ; 16(7)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39066316

ABSTRACT

Hantaviruses are zoonotic agents responsible for causing Hantavirus Cardiopulmonary Syndrome (HCPS) in the Americas, with Brazil ranking first in number of confirmed HCPS cases in South America. In this study, we simulate the monthly spread of highly lethal hantavirus in natural hosts by conjugating a Kermack-McCormick SIR model with a cellular automata model (CA), therefore simultaneously evaluating both in-cell and between-cell infection dynamics in host populations, using recently compiled data on main host species abundances and confirmed deaths by hantavirus infection. For both host species, our models predict an increase in the area of infection, with 22 municipalities where no cases have been confirmed to date expected to have at least one case in the next decade, and a reduction in infection in 11 municipalities. Our findings support existing research and reveal new areas where hantavirus is likely to spread within recognized epicenters. Highlighting spatial-temporal trends and potential expansion, we emphasize the increased risk due to pervasive habitat fragmentation and agricultural expansion. Consistent prevention efforts and One Health actions are crucial, especially in newly identified high-risk municipalities.


Subject(s)
Hantavirus Infections , Orthohantavirus , Brazil/epidemiology , Animals , Hantavirus Infections/epidemiology , Hantavirus Infections/virology , Humans , Disease Reservoirs/virology , Hantavirus Pulmonary Syndrome/epidemiology , Hantavirus Pulmonary Syndrome/virology , Zoonoses/epidemiology , Zoonoses/virology
11.
Virol J ; 21(1): 146, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918816

ABSTRACT

The genus Jeilongvirus comprises non-segmented negative-stranded RNA viruses that are classified within the Paramyxoviridae family by phylogeny. Jeilongviruses are found in various reservoirs, including rodents and bats. Rodents are typical viral reservoirs with diverse spectra and zoonotic potential. Little is currently known about jeilongviruses in rodents from central China. The study utilized high-throughput and Sanger sequencing to obtain jeilongvirus genomes, including those of two novel strains (HBJZ120/CHN/2021 (17,468 nt) and HBJZ157/CHN/2021 (19,143 nt)) and three known viruses (HBXN18/CHN/2021 (19,212 nt), HBJZ10/CHN/2021 (19,700 nt), HBJM106/CHN/2021 (18,871 nt)), which were characterized by genome structure, identity matrix, and phylogenetic analysis. Jeilongviruses were classified into three subclades based on their topology, phylogeny, and hosts. Based on the amino acid sequence identities and phylogenetic analysis of the L protein, HBJZ120/CHN/2021 and HBJZ157/CHN/2021 were found to be strains rather than novel species. Additionally, according to specific polymerase chain reaction screening, the positive percentage of Beilong virus in Hubei was 6.38%, suggesting that Beilong virus, belonging to the Jeilongvirus genus, is likely to be widespread in wild rodents. The identification of novel strains further elucidated the genomic diversity of jeilongviruses. Additionally, the prevalence of jeilongviruses in Hubei, China, was profiled, establishing a foundation for the surveillance and early warning of emerging paramyxoviruses.


Subject(s)
Genome, Viral , Phylogeny , Rodentia , Animals , China , Rodentia/virology , Animals, Wild/virology , Paramyxovirinae/genetics , Paramyxovirinae/classification , Paramyxovirinae/isolation & purification , RNA, Viral/genetics , Paramyxoviridae Infections/veterinary , Paramyxoviridae Infections/virology , Paramyxoviridae Infections/epidemiology , High-Throughput Nucleotide Sequencing , Disease Reservoirs/virology , Sequence Analysis, DNA
12.
Emerg Infect Dis ; 30(7): 1454-1458, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38916725

ABSTRACT

Few cases of hantavirus pulmonary syndrome have been reported in northeastern Argentina. However, neighboring areas show a higher incidence, suggesting underreporting. We evaluated the presence of antibodies against orthohantavirus in small rodents throughout Misiones province. Infected Akodon affinis montensis and Oligoryzomys nigripes native rodents were found in protected areas of Misiones.


Subject(s)
Antibodies, Viral , Orthohantavirus , Animals , Argentina/epidemiology , Orthohantavirus/immunology , Orthohantavirus/classification , Orthohantavirus/isolation & purification , Antibodies, Viral/blood , Hantavirus Infections/epidemiology , Hantavirus Infections/veterinary , Hantavirus Infections/virology , Rodentia/virology , Rodent Diseases/epidemiology , Rodent Diseases/virology , Humans , Hantavirus Pulmonary Syndrome/epidemiology , Disease Reservoirs/virology
13.
Int J Infect Dis ; 146: 107106, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38878993

ABSTRACT

OBJECTIVES: Mpox is a neglected viral endemic tropical disease in Central and Western African countries transmitted to humans by an animal. However, the natural reservoir of the virus remains elusive. In this study, we looked for potential reservoirs of the mpox virus (MPXV) in Gabonese wildlife to prevent future outbreaks and enrich the literature with additional data on animal reservoirs. METHODS: DNA was extracted from the livers and spleens from 2549 animals (bats [859], bushmeats [356], rodents [1309], and shrews [25]) collected between 2012 and 2021. DNA was analyzed by real-time and conventional polymerase chain reaction, targeting the 14 kD protein and the rpo subunit RNA polymerase of orthopoxviruses. RESULTS: No MPXV DNA was detected despite the presence of potential host reservoirs such as Critcetomys, Crocidura, Praomys, and Atherurus africanus. This absence could be due to (i) the low number of animals collected for some species, (ii) the acute nature of mpox infection but also (iii) the lack of the potential reservoir Funisciurus anerythrus among collected animals, and (iv) the fact that the samplings are not included in the probable ecological niche of MPXV. CONCLUSION: Longitudinal studies including potential ecological niches of F. anerythrus and MPXV in Gabon may be useful to get more information on MPXV circulation.


Subject(s)
Animals, Wild , Disease Reservoirs , Animals , Gabon/epidemiology , Disease Reservoirs/virology , Animals, Wild/virology , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/virology , Mpox (monkeypox)/transmission , Shrews/virology , DNA, Viral/genetics , Rodentia/virology
14.
Virol Sin ; 39(4): 565-573, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945213

ABSTRACT

Bats are the natural reservoir hosts for SARS-related coronavirus (SARSr-CoV) and other highly pathogenic microorganisms. Therefore, it is conceivable that an individual bat may harbor multiple microbes. However, there is limited knowledge on the overall co-circulation of microorganisms in bats. Here, we conducted a 16-year monitoring of bat viruses in south and central China and identified 238 SARSr-CoV positive samples across nine bat species from ten provinces or administrative districts. Among these, 76 individual samples were selected for further metagenomics analysis. We found a complex microenvironment characterized by the general co-circulation of microbes from two different sources: mammal-associated viruses or environment-associated microbes. The later includes commensal bacteria, enterobacteria-related phages, and insect or fungal viruses of food origin. Results showed that 25% (19/76) of the samples contained at least one another mammal-associated virus, notably alphacoronaviruses (13/76) such as AlphaCoV/YN2012, HKU2-related CoV and AlphaCoV/Rf-HuB2013, along with viruses from other families. Notably, we observed three viruses co-circulating within a single bat, comprising two coronavirus species and one picornavirus. Our analysis also revealed the potential presence of pathogenic bacteria or fungi in bats. Furthermore, we obtained 25 viral genomes from the 76 bat SARSr-CoV positive samples, some of which formed new evolutionary lineages. Collectively, our study reveals the complex microenvironment of bat microbiome, facilitating deeper investigations into their pathogenic potential and the likelihood of cross-species transmission.


Subject(s)
Chiroptera , Coinfection , Metagenomics , Severe acute respiratory syndrome-related coronavirus , Virome , Chiroptera/virology , Animals , China , Coinfection/virology , Coinfection/veterinary , Coinfection/microbiology , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/isolation & purification , Severe acute respiratory syndrome-related coronavirus/classification , Phylogeny , Genome, Viral/genetics , Disease Reservoirs/virology
15.
Poult Sci ; 103(8): 103940, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38909506

ABSTRACT

Migratory wild birds can carry various pathogens, such as influenza A virus, which can spread to globally and cause disease outbreaks and epidemics. Continuous epidemiological surveillance of migratory wild birds is of great significance for the early warning, prevention, and control of epidemics. To investigate the pathogen infection status of migratory wild birds in eastern China, fecal samples were collected from wetlands to conduct pathogen surveillance. The results showed that duck orthoreovirus (DRV) and goose parvovirus (GPV) nucleic acid were detected positive in the fecal samples collected from wild ducks, egrets, and swan. Phylogenetic analysis of the amplified viral genes reveals that the isolates were closely related to the prevalent strains in the regions involved in East Asian-Australasian (EAA) migratory flyway. Phylogenetic analysis of the amplified viral genes confirmed that they were closely related to circulating strains in the regions involved in the EAA migration pathway. The findings of this study have expanded the host range of the orthoreovirus and parvovirus, and revealed possible virus transmission between wild migratory birds and poultry.


Subject(s)
Animals, Wild , Bird Diseases , Orthoreovirus, Avian , Parvoviridae Infections , Parvovirus , Phylogeny , Reoviridae Infections , Animals , Reoviridae Infections/veterinary , Reoviridae Infections/epidemiology , Reoviridae Infections/virology , Orthoreovirus, Avian/isolation & purification , Orthoreovirus, Avian/genetics , Parvoviridae Infections/veterinary , Parvoviridae Infections/virology , Parvoviridae Infections/epidemiology , China/epidemiology , Bird Diseases/virology , Bird Diseases/epidemiology , Animals, Wild/virology , Parvovirus/genetics , Parvovirus/isolation & purification , Feces/virology , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Ducks/virology , Anseriformes/virology , Epidemiological Monitoring/veterinary
16.
Infect Genet Evol ; 121: 105604, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754756

ABSTRACT

Bats are known reservoirs of various emerging pathogens, and have recently been found to host a novel hantavirus, named Brno loanvirus (BRNV), from the Mammantavirinae subfamily (family Hantaviridae, order Bunyavirales). Here we report BRNV detection in bats from the urban area of Brno, Czech Republic in March 2022. Specifically, we uncovered a high prevalence of BRNV (8.8%, 5/57) among hibernating bats (Nyctalus noctula) in urban area, which poses a risk of human exposure. The positive bats included adult females (3/9 positive), a juvenile female (1/32 positive), and an adult male (1/6 positive). All 10 juvenile males were negative. We used RT-qPCR to quantify the BRNV RNA levels in various bat organs, which yielded positive results for viral RNA in organs, including the kidneys, heart, spleen, brain, liver, lung, and gut, and in body cavity fluid. Among all tested organs, the liver showed the highest levels of viral RNA in 4 out of 5 animals examined (average Ct value of 20.8 ± 7.4).


Subject(s)
Chiroptera , Animals , Czech Republic/epidemiology , Chiroptera/virology , Female , Male , Orthohantavirus/genetics , Orthohantavirus/isolation & purification , Orthohantavirus/classification , RNA, Viral/genetics , Phylogeny , Disease Reservoirs/virology , Hantavirus Infections/veterinary , Hantavirus Infections/epidemiology , Hantavirus Infections/virology
17.
Methods Mol Biol ; 2807: 93-110, 2024.
Article in English | MEDLINE | ID: mdl-38743223

ABSTRACT

Correlative light-electron microscopy (CLEM) has evolved in the last decades, especially after significant developments in sample preparation, imaging acquisition, software, spatial resolution, and equipment, including confocal, live-cell, super-resolution, and electron microscopy (scanning, transmission, focused ion beam, and cryo-electron microscopy). However, the recent evolution of different laser-related techniques, such as mass spectrometry imaging (MSI) and laser capture microdissection, could further expand spatial imaging capabilities into high-resolution OMIC approaches such as proteomic, lipidomics, small molecule, and drug discovery. Here, we will describe a protocol to integrate the detection of rare viral reservoirs with imaging mass spectrometry.


Subject(s)
HIV Infections , Humans , HIV Infections/virology , HIV-1/physiology , Mass Spectrometry/methods , Microscopy, Electron/methods , Molecular Imaging/methods , Disease Reservoirs/virology
18.
Sci Rep ; 14(1): 11171, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750049

ABSTRACT

White-tailed deer (Odocoileus virginianus) have emerged as a reservoir host for SARS-CoV-2 given their susceptibility to infection and demonstrated high rates of seroprevalence and infection across the United States. As SARS-CoV-2 circulates within free-ranging white-tailed deer populations, there is the risk of transmission to other wildlife species and even back to the human population. The goal of this study was to determine the susceptibility, shedding, and immune response of North American elk (Cervus elaphus canadensis) to experimental infection with SARS-CoV-2, to determine if another wide-ranging cervid species could potentially serve as a reservoir host for the virus. Here we demonstrate that while North American elk do not develop clinical signs of disease, they do develop a neutralizing antibody response to infection, suggesting the virus is capable of replicating in this mammalian host. Additionally, we demonstrate SARS-CoV-2 RNA presence in the medial retropharyngeal lymph nodes of infected elk three weeks after experimental infection. Consistent with previous observations in humans, these data may highlight a mechanism of viral persistence for SARS-CoV-2 in elk.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Deer , RNA, Viral , SARS-CoV-2 , Animals , Deer/virology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , COVID-19/virology , RNA, Viral/genetics , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Virus Shedding , Disease Reservoirs/virology , Female
19.
Adv Exp Med Biol ; 1451: 75-90, 2024.
Article in English | MEDLINE | ID: mdl-38801572

ABSTRACT

The current multicounty outbreak of monkeypox virus (MPXV) posed an emerging and continued challenge to already strained public healthcare sector, around the globe. Since its first identification, monkeypox disease (mpox) remained enzootic in Central and West African countries where reports of human cases are sporadically described. Recent trends in mpox spread outside the Africa have highlighted increased incidence of spillover of the MPXV from animal to humans. While nature of established animal reservoirs remained undefined, several small mammals including rodents, carnivores, lagomorphs, insectivores, non-human primates, domestic/farm animals, and several species of wildlife are proposed to be carrier of the MPXV infection. There are established records of animal-to-human (zoonotic) spread of MPXV through close interaction of humans with animals by eating bushmeat, contracting bodily fluids or trading possibly infected animals. In contrast, there are reports and increasing possibilities of human-to-animal (zooanthroponotic) spread of the MPXV through petting and close interaction with pet owners and animal care workers. We describe here the rationales and molecular factors which predispose the spread of MPXV not only amongst humans but also from animals to humans. A range of continuing opportunities for the spread and evolution of MPXV are discussed to consider risks beyond the currently identified groups. With the possibility of MPXV establishing itself in animal reservoirs, continued and broad surveillance, investigation into unconventional transmissions, and exploration of spillover events are warranted.


Subject(s)
Monkeypox virus , Mpox (monkeypox) , Zoonoses , Animals , Mpox (monkeypox)/transmission , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/virology , Humans , Monkeypox virus/pathogenicity , Monkeypox virus/genetics , Zoonoses/transmission , Zoonoses/virology , Zoonoses/epidemiology , Disease Reservoirs/virology , Disease Outbreaks , Animals, Wild/virology
20.
Nat Commun ; 15(1): 3589, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678025

ABSTRACT

The black rat (Rattus rattus) is a globally invasive species that has been widely introduced across Africa. Within its invasive range in West Africa, R. rattus may compete with the native rodent Mastomys natalensis, the primary reservoir host of Lassa virus, a zoonotic pathogen that kills thousands annually. Here, we use rodent trapping data from Sierra Leone and Guinea to show that R. rattus presence reduces M. natalensis density within the human dwellings where Lassa virus exposure is most likely to occur. Further, we integrate infection data from M. natalensis to demonstrate that Lassa virus zoonotic spillover risk is lower at sites with R. rattus. While non-native species can have numerous negative effects on ecosystems, our results suggest that R. rattus invasion has the indirect benefit of decreasing zoonotic spillover of an endemic pathogen, with important implications for invasive species control across West Africa.


Subject(s)
Disease Reservoirs , Introduced Species , Lassa Fever , Lassa virus , Murinae , Zoonoses , Animals , Lassa virus/pathogenicity , Lassa virus/physiology , Lassa Fever/transmission , Lassa Fever/epidemiology , Lassa Fever/virology , Lassa Fever/veterinary , Disease Reservoirs/virology , Humans , Rats , Murinae/virology , Zoonoses/virology , Zoonoses/transmission , Zoonoses/epidemiology , Sierra Leone/epidemiology , Guinea/epidemiology , Ecosystem , Rodent Diseases/virology , Rodent Diseases/epidemiology , Rodent Diseases/transmission
SELECTION OF CITATIONS
SEARCH DETAIL