Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.593
Filter
1.
Euro Surveill ; 29(26)2024 Jun.
Article in English | MEDLINE | ID: mdl-38940004

ABSTRACT

In 2022, an outbreak with severe bloodstream infections caused by Serratia marcescens occurred in an adult intensive care unit (ICU) in Hungary. Eight cases, five of whom died, were detected. Initial control measures could not stop the outbreak. We conducted a matched case-control study. In univariable analysis, the cases were more likely to be located around one sink in the ICU and had more medical procedures and medications than the controls, however, the multivariable analysis was not conclusive. Isolates from blood cultures of the cases and the ICU environment were closely related by whole genome sequencing and resistant or tolerant against the quaternary ammonium compound surface disinfectant used in the ICU. Thus, S. marcescens was able to survive in the environment despite regular cleaning and disinfection. The hospital replaced the disinfectant with another one, tightened the cleaning protocol and strengthened hand hygiene compliance among the healthcare workers. Together, these control measures have proved effective to prevent new cases. Our results highlight the importance of multidisciplinary outbreak investigations, including environmental sampling, molecular typing and testing for disinfectant resistance.


Subject(s)
Cross Infection , Disease Outbreaks , Disinfectants , Intensive Care Units , Serratia Infections , Serratia marcescens , Humans , Serratia marcescens/drug effects , Serratia marcescens/genetics , Serratia marcescens/isolation & purification , Cross Infection/epidemiology , Cross Infection/microbiology , Hungary/epidemiology , Serratia Infections/epidemiology , Serratia Infections/microbiology , Disinfectants/pharmacology , Case-Control Studies , Male , Female , Adult , Middle Aged , Whole Genome Sequencing , Disinfection/methods , Aged , Infection Control/methods , Drug Resistance, Bacterial
2.
Environ Monit Assess ; 196(7): 670, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940882

ABSTRACT

Compounds originating from animal husbandry can pollute surface water through the application of manure to soil. Typically, grab sampling is employed to detect these residues, which only provides information on the concentration at the time of sampling. To better understand the emission patterns of these compounds, we utilized passive samplers in surface water to collect data at eight locations in a Dutch agricultural region, during different time intervals. As a passive sampler, we chose the integrative-based Speedisk® hydrophilic DVB. In total, we targeted 46 compounds, among which 25 antibiotics, three hormones, nine antiparasitics, and nine disinfectants. From these 46 compounds, 22 compounds accumulated in passive samplers in amounts above the limit of quantification in at least one sampling location. Over the 12-week deployment period, a time integrative uptake pattern was identified in 53% of the examined cases, with the remaining 47% not displaying this behavior. The occurrences without this behavior were primarily associated with specific location, particularly the most upstream location, or specific compounds. Our findings suggest that the proposed use of passive samplers, when compared in this limited context to traditional grab sampling, may provide enhanced efficiency and potentially enable the detection of a wider array of compounds. In fact, a number of compounds originating from animal husbandry activities were quantified for the first time in Dutch surface waters, such as flubendazole, florfenicol, and tilmicosine. The set-up of the sampling campaign also allowed to distinguish between different pollution levels during sampling intervals on the same location. This aspect gains particular significance when considering the utilization of different compounds on various occasions, hence, it has the potential to strengthen ongoing monitoring and mitigation efforts.


Subject(s)
Animal Husbandry , Environmental Monitoring , Water Pollutants, Chemical , Environmental Monitoring/methods , Netherlands , Water Pollutants, Chemical/analysis , Animals , Agriculture , Anti-Bacterial Agents/analysis , Manure/analysis , Disinfectants/analysis
3.
Biofouling ; 40(5-6): 366-376, 2024.
Article in English | MEDLINE | ID: mdl-38855912

ABSTRACT

This research introduces an Artificial Intelligence (AI) based model designed to concurrently optimize energy supply management, biocide dosing, and maintenance scheduling for heat exchangers. This optimization considers energetic, technical, economic, and environmental considerations. The impact of biofilm on heat exchangers is assessed, revealing a 41% reduction in thermal efficiency and a 113% increase in flow frictional resistance of the fluid compared to the initial state. Consequently, the pump's power consumption, required to maintain hydraulic conditions, rises by 9%. The newly developed AI model detects the point at which the heat exchanger's performance begins to decline due to accumulating dirt, marking day 44 of experimentation as the threshold to commence the antifouling biocide dosing. Leveraging this AI model to monitor heat exchanger efficiency represents an innovative approach to optimizing antifouling biocide dosing and reduce the environmental impact stemming from industrial plants.


Subject(s)
Artificial Intelligence , Biofilms , Biofouling , Disinfectants , Seawater , Seawater/chemistry , Biofilms/drug effects , Biofouling/prevention & control , Models, Theoretical
4.
PLoS Negl Trop Dis ; 18(6): e0012264, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38900788

ABSTRACT

Despite continued outbreaks of yellow fever virus (YFV) in endemic regions, data on its environmental stability or guidelines for its effective inactivation is limited. Here, we evaluated the susceptibility of the YFV 17D vaccine strain to inactivation by ethanol, 2-propanol, World Health Organization (WHO)-recommended hand rub formulations I and II, as well as surface disinfectants. In addition, two pathogenic strains were tested to compare inactivation kinetics by WHO-recommended hand rub formulations I and II. Furthermore, environmental stability of the vaccine strain was assessed. YFV 17D particles displayed infectivity half-life decay profiles of ~13 days at room temperature. Despite this extended environmental stability, YFV was efficiently inactivated by alcohols, WHO-recommended hand formulations, and four out of five tested surface disinfectants. These results are useful in defining disinfection protocols to prevent non-vector borne YFV transmission.


Subject(s)
Disinfectants , Virus Inactivation , World Health Organization , Yellow fever virus , Yellow fever virus/drug effects , Disinfectants/pharmacology , Virus Inactivation/drug effects , Humans , Yellow Fever/prevention & control , Yellow Fever/transmission , Yellow Fever/virology , Hand Disinfection/methods , Animals , Chlorocebus aethiops
5.
Trop Biomed ; 41(1): 45-51, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38852133

ABSTRACT

Water pollution in developing countries continues to be a major health problem due to various anthropological activities that contribute to the spread of many parasitic diseases, including those caused by helminths. The aim of this study is to explore the ability of ozone and peroxone to disinfect drinking water contaminated samples with Toxocara canis eggs. The oxidants used were ozone and ozone-hydrogen peroxide combination. The treatment of Toxocara canis eggs was carried out in a 50 ml reactor with an operating volume of 10 ml. The pH conditions (5, 7 and 10) were varied for each treatment. The treatment effect was calculated by counting eggs and examining the condition of the larvae larval condition (whole, broken and hatched larvae) using an optical microscope. The experiment was carried out by exposing the eggs for 60 and 120 minutes to ozone and peroxone. The best results were obtained for helminths treated with the ozone/hydrogen peroxide combination at pH 10, with an inactivation of 79.2%. The synergistic effect of ozone combined with hydrogen peroxide allows higher helminth egg inactivation rates, demonstrating that advanced oxidation processes are a real alternative to apply in the inactivation of Toxocara canis eggs. The results obtained in this study show that the ozone and peroxone treatment could be a useful disinfection process to destroy or inactivate Toxocara canis eggs in processes commonly applied in water treatment.


Subject(s)
Disinfectants , Disinfection , Ozone , Toxocara canis , Animals , Ozone/pharmacology , Toxocara canis/drug effects , Disinfection/methods , Disinfectants/pharmacology , Hydrogen-Ion Concentration , Hydrogen Peroxide/pharmacology , Ovum/drug effects , Water Purification/methods , Peroxides/pharmacology , Larva/drug effects , Drinking Water/parasitology
6.
Sci Rep ; 14(1): 12651, 2024 06 02.
Article in English | MEDLINE | ID: mdl-38825618

ABSTRACT

Effective disinfection methods are crucial in the cold chain transportation process of food due to the specificity of temperature and the diversity of contaminated flora. The objective of this study was to investigate the sanitizing effect of different disinfectants on various fungi at - 20 °C to achieve accurate disinfection of diverse bacterial populations. Peracetic acid, hydrogen peroxide, and potassium bisulfate were selected as low-temperature disinfectants and were combined with antifreeze. The sanitizing effect of these cryogenic disinfectants on pathogens such as Bacillus subtilis black variant spores (ATCC9372), Staphylococcus aureus (ATCC 6538), Candida albicans (ATCC 10231), Escherichia coli (8099), and poliovirus (PV-1) was sequentially verified by bactericidal and virus inactivation experiments. After a specified time of disinfection, a neutralizing agent was used to halt the sanitizing process. The study demonstrates that different disinfectants exhibit selective effects during the low-temperature disinfection process. Peracetic acid, hydrogen peroxide, and potassium monopersulfate are suitable for the low-temperature environmental disinfection of bacterial propagules, viruses, and fungal contaminants. However, for microorganisms with strong resistance to spores, a low-temperature disinfectant based on peracetic acid should be chosen for effective disinfection treatment. Our results provide a valuable reference for selecting appropriate disinfectants to sanitize various potential pathogens in the future.


Subject(s)
Cold Temperature , Disinfectants , Disinfection , Hydrogen Peroxide , Peracetic Acid , Disinfectants/pharmacology , Disinfection/methods , Hydrogen Peroxide/pharmacology , Peracetic Acid/pharmacology , Sulfates/pharmacology , Bacillus subtilis/drug effects , Potassium Compounds/pharmacology , Staphylococcus aureus/drug effects , Candida albicans/drug effects , Escherichia coli/drug effects , Poliovirus/drug effects
7.
PLoS One ; 19(6): e0304603, 2024.
Article in English | MEDLINE | ID: mdl-38870196

ABSTRACT

Iatrogenic transmission of prions, the infectious agents of fatal Creutzfeldt-Jakob disease, through inefficiently decontaminated medical instruments remains a critical issue. Harsh chemical treatments are effective, but not suited for routine reprocessing of reusable surgical instruments in medical cleaning and disinfection processes due to material incompatibilities. The identification of mild detergents with activity against prions is therefore of high interest but laborious due to the low throughput of traditional assays measuring prion infectivity. Here, we report the establishment of TESSA (sTainlESs steel-bead Seed Amplification assay), a modified real-time quaking induced cyclic amplification (RT-QuIC) assay that explores the propagation activity of prions with stainless steel beads. TESSA was applied for the screening of about 70 different commercially available and novel formulations and conditions for their prion inactivation efficacy. One hypochlorite-based formulation, two commercially available alkaline formulations and a manual alkaline pre-cleaner were found to be highly effective in inactivating prions under conditions simulating automated washer-disinfector cleaning processes. The efficacy of these formulations was confirmed in vivo in a murine prion infectivity bioassay, yielding a reduction of the prion titer for bead surface adsorbed prions below detectability. Our data suggest that TESSA represents an effective method for a rapid screening of prion-inactivating detergents, and that alkaline and oxidative formulations are promising in reducing the risk of potential iatrogenic prion transmission through insufficiently decontaminated instrument surfaces.


Subject(s)
Prions , Stainless Steel , Surgical Instruments , Animals , Mice , Stainless Steel/chemistry , Decontamination/methods , Creutzfeldt-Jakob Syndrome/transmission , Creutzfeldt-Jakob Syndrome/prevention & control , Disinfection/methods , Detergents/chemistry , Detergents/pharmacology , Humans , Disinfectants/pharmacology , Oxidation-Reduction
8.
J Microorg Control ; 29(2): 75-80, 2024.
Article in English | MEDLINE | ID: mdl-38880619

ABSTRACT

When a hypochlorite solution is ultrasonically fogged in a room, free chlorine, i.e., HOCl and OCl-, reaches various positions in two forms: fine fog droplets and gaseous hypochlorous acid(HOCl(g)). In this study, the cumulative amount of free chlorine reaching various positions on the floor away from the fogger was measured in a 90-m3 room, using a sulfamate-carrying glass-fiber filter indicator. The fine droplets were blown out from the fogger into the spaces at different discharge port angles of 30 - 90°. Free chlorine was successfully trapped by sulfamate, forming monochlorosulfamate, which was stably retained on the indicator. The cumulative amount of free chlorine( ng/indicator) increased with fogging time at each position and depended on the blow angle and distance from the fogger. Minor differences in the HOCl(g) concentration near the floor at all positions were observed. The disinfection efficacy of the fogging treatment against Staphylococcus aureus on wet surfaces was relatively higher at positions near the fogger and lower at positions far from the fogger. At each discharge port angle, a strong correlation between the logarithmic reduction in relative viable cells and the cumulative amount of free chlorine reaching S. aureus plates was observed. The slopes of the regression lines of correlation diagrams as a function of the cumulative amount of free chlorine were between -0.0362 and -0.0413 ng-1. This study demonstrated that the cumulative amount of free chlorine measured using the filter indicator could reflect the sum of the free chlorine of both fine droplets and HOCl(g), and that the disinfection efficiency depended on the cumulative amount of free chlorine reaching different areas.


Subject(s)
Chlorine , Disinfectants , Disinfection , Hypochlorous Acid , Staphylococcus aureus , Chlorine/pharmacology , Chlorine/chemistry , Disinfection/methods , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Hypochlorous Acid/pharmacology , Hypochlorous Acid/chemistry , Disinfectants/pharmacology , Disinfectants/chemistry , Ultrasonics
9.
J Microorg Control ; 29(2): 91-97, 2024.
Article in English | MEDLINE | ID: mdl-38880621

ABSTRACT

Campylobacter jejuni causes gastroenteritis in humans and is a major concern in food safety. Commercially prepared chicken meats are frequently contaminated with C. jejuni, which is closely associated with the diffusion of intestinal contents in poultry processing plants. Sodium hypochlorite (NaClO) is commonly used during chicken processing to prevent food poisoning; however, its antimicrobial activity is not effective in the organic-rich solutions. In this study, we investigated the potential of a new photo-disinfection system, UVA-LED, for the disinfection of C. jejuni-contaminated chicken surfaces. The data indicated that UVA irradiation significantly killed C. jejuni and that its killing ability was significantly facilitated in NaClO-treated chickens. Effective inactivation of C. jejuni was achieved using a combination of UVA and NaClO, even in the organic-rich condition. The results of this study show that synergistic disinfection using a combination of UVA and NaClO has potential beneficial effects in chicken processing systems.


Subject(s)
Campylobacter jejuni , Chickens , Disinfection , Meat , Sodium Hypochlorite , Ultraviolet Rays , Campylobacter jejuni/drug effects , Campylobacter jejuni/radiation effects , Animals , Sodium Hypochlorite/pharmacology , Ultraviolet Rays/adverse effects , Disinfection/methods , Meat/microbiology , Disinfectants/pharmacology , Microbial Viability/drug effects , Microbial Viability/radiation effects , Food Microbiology , Food Contamination/prevention & control
10.
Environ Int ; 189: 108812, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38878503

ABSTRACT

The linkage between biocides and antibiotic resistance has been widely suggested in laboratories and various environments. However, the action mechanism of biocides on antibiotic resistance genes (ARGs) spread is still unclear. Thus, 6 quaternary ammonium biocides (QACs) with different bonded substituents or alkyl chain lengths were selected to assess their effects on the conjugation transfer of ARGs in this study. Two conjugation models with the same donor (E. coli DH5α (RP4)) into two receptors, E. coli MG1655 and pathogenic S. sonnei SE6-1, were constructed. All QACs were found to significantly promote intra- and inter-genus conjugative transfer of ARGs, and the frequency was highly impacted by their structure and receptors. At the same environmental exposure level (4 × 10-1 mg/L), didecyl dimethyl ammonium chloride (DDAC (C10)) promoted the most frequency of conjugative transfer, while benzathine chloride (BEC) promoted the least. With the same donor, the enhanced frequency of QACs of intra-transfer is higher than inter-transfer. Then, the acquisition mechanisms of two receptors were further determined using biochemical combined with transcriptome analysis. For the recipient E. coli, the promotion of the intragenus conjugative transfer may be associated with increased cell membrane permeability, reactive oxygen species (ROS) production and proton motive force (PMF)-induced enhancement of flagellar motility. Whereas, the increase of cell membrane permeability and decreased flagellar motility due to PMF disruption but encouraged biofilm formation, maybe the main reasons for promoting intergenus conjugative transfer in the recipient S. sonnei. As one pathogenic bacterium, S. sonnei was first found to acquire ARGs by biocide exposure.


Subject(s)
Conjugation, Genetic , Disinfectants , Escherichia coli , Quaternary Ammonium Compounds , Disinfectants/pharmacology , Quaternary Ammonium Compounds/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Gene Transfer, Horizontal
11.
Birth Defects Res ; 116(6): e2370, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38888449

ABSTRACT

BACKGROUND: Associations between maternal periconceptional exposure to disinfection by-products (DBPs) in drinking water and neural tube defects (NTDs) in offspring are inconclusive, limited in part by exposure misclassification. METHODS: Maternal interview reports of drinking water sources and consumption from the National Birth Defects Prevention Study were linked with DBP concentrations in public water system monitoring data for case children with an NTD and control children delivered during 2000-2005. DBPs analyzed were total trihalomethanes, the five most common haloacetic acids combined, and individual species. Associations were estimated for all NTDs combined and selected subtypes (spina bifida, anencephaly) with maternal periconceptional exposure to DBPs in public water systems and with average daily periconceptional ingestion of DBPs accounting for individual-level consumption and filtration information. Mixed effects logistic regression models with maternal race/ethnicity and educational attainment at delivery as fixed effects and study site as a random intercept were applied. RESULTS: Overall, 111 case and 649 control children were eligible for analyses. Adjusted odds ratios for maternal exposure to DBPs in public water systems ranged from 0.8-1.5 for all NTDs combined, 0.6-2.0 for spina bifida, and 0.7-1.9 for anencephaly; respective ranges for average daily maternal ingestion of DBPs were 0.7-1.1, 0.5-1.5, and 0.6-1.8. Several positive estimates (≥1.2) were observed, but all confidence intervals included the null. CONCLUSIONS: Using community- and individual-level data from a large, US, population-based, case-control study, we observed statistically nonsignificant associations between maternal periconceptional exposure to total and individual DBP species in drinking water and NTDs and subtypes.


Subject(s)
Disinfection , Drinking Water , Maternal Exposure , Neural Tube Defects , Humans , Female , Drinking Water/adverse effects , Neural Tube Defects/etiology , Neural Tube Defects/epidemiology , Pregnancy , Maternal Exposure/adverse effects , Maternal Exposure/statistics & numerical data , Disinfection/methods , Adult , Case-Control Studies , Disinfectants/adverse effects , Disinfectants/analysis , Water Purification/methods , Trihalomethanes/analysis , Trihalomethanes/adverse effects , Male , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/adverse effects , Prenatal Exposure Delayed Effects , Spinal Dysraphism/etiology , Spinal Dysraphism/epidemiology
12.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892197

ABSTRACT

Viral pathogens pose a substantial threat to public health and necessitate the development of effective remediation and antiviral strategies. This short communication aimed to investigate the antiviral efficacy of disinfectants on the surface proteins of human pathogenic viruses. Using in silico modeling, the ligand-binding energies (LBEs) of selected disinfectants were predicted and combined with their environmental impacts and costs through an eco-pharmaco-economic analysis (EPEA). The results revealed that the binding affinities of chemical disinfectants to viral proteins varied significantly (p < 0.005). Rutin demonstrated promising broad-spectrum antiviral efficacy with an LBE of -8.49 ± 0.92 kcal/mol across all tested proteins. Additionally, rutin showed a superior eco-pharmaco-economic profile compared to the other chemicals, effectively balancing high antiviral effectiveness, moderate environmental impact, and affordability. These findings highlight rutin as a key phytochemical for use in remediating viral contaminants.


Subject(s)
Antiviral Agents , Disinfectants , Rutin , Disinfectants/pharmacology , Disinfectants/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Rutin/chemistry , Rutin/pharmacology , Humans , Computer Simulation , Viruses/drug effects , Viral Proteins/chemistry , Viral Proteins/metabolism , Molecular Docking Simulation , Membrane Proteins/metabolism , Membrane Proteins/chemistry , Protein Binding
13.
BMC Oral Health ; 24(1): 648, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824549

ABSTRACT

BACKGROUND: Ensuring the safety of dental unit waterlines (DUWLs) has become a pivotal issue in dental care practices, focusing on the health implications for both patients and healthcare providers. The inherent structure and usage conditions of DUWLs contribute to the risk of biofilm formation and bacterial growth, highlighting the need for effective disinfection solutions.The quest for a disinfection method that is both safe for clinical use and effective against pathogens such as Staphylococcus aureus and Escherichia coli in DUWLs underscores the urgency of this research. MATERIALS: Chlorine dioxide disinfectants at concentrations of 5, 20, and 80 mg/L were used to treat biofilms of S. aureus and E. coli cultured in DUWLs. The disinfection effectiveness was assessed through bacterial counts and culturing. Simultaneously, human skin fibroblast cells were treated with the disinfectant to observe changes in cell morphology and cytotoxicity. Additionally, the study included corrosion tests on various metals (carbon steel, brass, stainless steel, aluminum, etc.). RESULTS: Experimental results showed that chlorine dioxide disinfectants at concentrations of 20 mg/L and 80 mg/L significantly reduced the bacterial count of S. aureus and E. coli, indicating effective disinfection. In terms of cytotoxicity, higher concentrations were more harmful to cellular safety, but even at 80 mg/L, the cytotoxicity of chlorine dioxide remained within controllable limits. Corrosion tests revealed that chlorine dioxide disinfectants had a certain corrosive effect on carbon steel and brass, and the degree of corrosion increased with the concentration of the disinfectant. CONCLUSION: After thorough research, we recommend using chlorine dioxide disinfectant at a concentration of 20 mg/L for significantly reducing bacterial biofilms in dental unit waterlines (DUWLs). This concentration also ensures satisfactory cell safety and metal corrosion resistance.


Subject(s)
Biofilms , Chlorine Compounds , Dental Equipment , Disinfection , Escherichia coli , Oxides , Staphylococcus aureus , Chlorine Compounds/pharmacology , Oxides/pharmacology , Biofilms/drug effects , Escherichia coli/drug effects , Humans , Staphylococcus aureus/drug effects , Disinfection/methods , Dental Equipment/microbiology , Disinfectants/pharmacology , Dental Disinfectants/pharmacology , Fibroblasts/drug effects , Bacterial Load/drug effects , In Vitro Techniques
14.
BMC Infect Dis ; 24(1): 563, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840257

ABSTRACT

BACKGROUND: The World Health Organization recommended the use of chemical-based disinfectants as an effective prevention of the COVID-19 pandemic. However, calls for poisoning were reported in several medical centers. The widespread use of chemical-based disinfectants as a preventive measure during the COVID-19 pandemic has underscored potential gaps in community awareness and performance, posing health risks. This study evaluates and compares levels of awareness and performance regarding the safe use of disinfectants in Jordan and UAE. METHODS: The study was conducted between October 2022 and June 2023 via an online questionnaire. Data of respondents from Jordan (n = 828) and UAE (n = 619) were analyzed using SPSS. ANOVA, Mann-Whitney, and Kruskal-Wallis tests evaluated significant differences in awareness and performance levels across different demographic groups in Jordan/UAE and between them. Spearman's correlation test examined the correlation between awareness and performance among respondents. Multinomial logistic regression analysis explored associations between various variables and awareness/performance levels within each population. RESULTS: Findings reveal weak awareness (72.4% and 9.03% in UAE and Jordan, respectively) and moderate performance level (98.8% in UAE and Jordan), with a weak correlation (UAE, rho = 0.093; Jordan, rho = 0.164) observed between the two countries (P < 0.05). Multinomial logistic regression analysis indicates gender-related associations with awareness levels and education-related associations with performance levels. CONCLUSIONS: The study emphasizes the urgent need for awareness campaigns and workshops to promote safer disinfectant practices to develop effective interventions aligning with sustainable development goals.


Subject(s)
COVID-19 , Disinfectants , Health Knowledge, Attitudes, Practice , SARS-CoV-2 , Humans , Jordan/epidemiology , COVID-19/prevention & control , COVID-19/epidemiology , Male , Female , United Arab Emirates/epidemiology , Adult , Middle Aged , Surveys and Questionnaires , Young Adult , Adolescent , Aged
15.
Front Public Health ; 12: 1382368, 2024.
Article in English | MEDLINE | ID: mdl-38846609

ABSTRACT

Introduction: The COVID-19 pandemic has globally influenced the exposure of populations to chemical substances through various channels. This study aims to evaluate the tendencies of the use of chemical products in Latvia amidst the pandemic. Answers from 597 respondents (26.6% male, 73.4% female, mean age 46.0 ± 12.2) which were gathered as part of the HBM4EU (Human Biomonitoring Initiative) citizen survey and 8 focus group participants were used. Methods: The study utilized data from the HBM4EU citizen survey and conducted focus group discussions to understand the impact of the COVID-19 pandemic on chemical product usage in Latvia. Survey responses were analyzed to identify changes in exposure to chemicals, particularly in relation to disinfection agents and household products. Results: More than two-thirds of survey participants reported increased exposure to chemicals during the COVID-19 pandemic, mainly related to the use of disinfection agents and household products. About 2-in-5 (39.8%) of survey respondents considered that the COVID-19 pandemic has increased their interest in exposure to chemicals. The excessive use of disinfectant products is the main concern of citizens (mentioned by 66.7%, n = 389). Also, two focus group participants noted that the use of disinfectant products is too widespread and should be minimized. Discussion: The findings suggest that the COVID-19 pandemic has not only increased the use of chemical products in Latvia but also promoted an interest in safe and healthy use of chemicals which could be useful to raise the awareness of the general public.


Subject(s)
COVID-19 , Focus Groups , Humans , Latvia/epidemiology , Female , Male , COVID-19/epidemiology , Middle Aged , Adult , Surveys and Questionnaires , Environmental Exposure/statistics & numerical data , Disinfectants , SARS-CoV-2 , Household Products , Pandemics
16.
Arch Microbiol ; 206(7): 295, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856934

ABSTRACT

Microbial community biofilm exists in the household drinking water system and would pose threat to water quality. This paper explored biofilm formation and chlorination resistance of ten dual-species biofilms in three typical household pipes (stainless steel (SS), polypropylene random (PPR), and copper), and investigated the role of interspecific interaction. Biofilm biomass was lowest in copper pipes and highest in PPR pipes. A synergistic or neutralistic relationship between bacteria was evident in most biofilms formed in SS pipes, whereas four groups displayed a competitive relationship in biofilms formed in copper pipe. Chlorine resistance of biofilms was better in SS pipes and worse in copper pipes. It may be helped by interspecific relationships, but was more dependent on bacteria and resistance mechanisms such as more stable extracellular polymeric substance. The corrosion sites may also protect bacteria from chlorination. The findings provide useful insights for microbial control strategies in household drinking water systems.


Subject(s)
Bacteria , Biofilms , Chlorine , Drinking Water , Biofilms/drug effects , Biofilms/growth & development , Chlorine/pharmacology , Bacteria/drug effects , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Drinking Water/microbiology , Copper/pharmacology , Water Microbiology , Stainless Steel , Polypropylenes , Water Supply , Halogenation , Corrosion , Disinfectants/pharmacology
17.
J Korean Med Sci ; 39(21): e178, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38832480

ABSTRACT

BACKGROUND: Lessons learned from the Household Humidifier Disinfectant Tragedy (HHDT) in Korea, which poisoned thousands of citizens over a period of years, necessitated an examination of national poison prevention and surveillance systems. The objectives of this study are to identify essential changes needed in chemical poisoning prevention regulations and surveillance systems for effective poison control by comparing recent trends in international poison control center (PCC) operations, and to delineate the critical elements for establishing a state-of-the-art poison control surveillance system in Korea based on recent advances in PCCs with toxicovigilance. METHODS: A comprehensive review of Korea's regulatory and surveillance systems for chemical health hazards, with a focus on household products under the HHDT, was conducted. A review of toxicovigilance systems in major countries shows that creating an effective national PCC requires key elements: a centralized database of toxic substances and poisoning cases, mandatory or voluntary reporting of poisoning cases, real-time alerts, collaboration among health organizations, and targeted follow-up of poisoned individuals. RESULTS: Significant deficiencies in Korea's legislation, toxicological data management, and poisoning surveillance systems, explained the inadequate response of the Korean government to the HHDT for nearly 17 years until the end of 2011. Based on a review of PCC toxicovigilance systems in major countries, a national framework with five core components is recommended for establishing a modern comprehensive Korea PCC system with toxicovigilance capacity. The core components include establishment of a centralized database of toxic substances information and clinical poisoning cases, implementation of mandatory or permissive reporting of poisoning cases, real-time alert mechanisms, collaborative systems among health-related organizations, and clinical follow-up of poisoned sub-groups. CONCLUSION: A rationale and framework for a state-of-the-art national Korean PCC with toxicovigilance is justified and offered. This proposed system could assist neighboring countries in establishing their own sophisticated, globally integrated PCC networks.


Subject(s)
Disinfectants , Humidifiers , Poisoning , Humans , Republic of Korea/epidemiology , Disinfectants/adverse effects , Poisoning/epidemiology , Poisoning/prevention & control , Poisoning/etiology , Poison Control Centers
18.
Sci Rep ; 14(1): 12836, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834660

ABSTRACT

This study introduces an evaluation methodology tailored for bioreactors, with the aim of assessing the stress experienced by algae due to harmful contaminants released from antifouling (AF) paints. We present an online monitoring system equipped with an ultra-sensitive sensor that conducts non-invasive measurements of algal culture's optical density and physiological stage through chlorophyll fluorescence signals. By coupling the ultra-sensitive sensor with flash-induced chlorophyll fluorescence, we examined the dynamic fluorescence changes in the green microalga Chlamydomonas reinhardtii when exposed to biocides. Over a 24-h observation period, increasing concentrations of biocides led to a decrease in photosynthetic activity. Notably, a substantial reduction in the maximum quantum yield of primary photochemistry (FV/FM) was observed within the first hour of exposure. Subsequently, we detected a partial recovery in FV/FM; however, this recovery remained 50% lower than that of the controls. Integrating the advanced submersible sensor with fluorescence decay kinetics offered a comprehensive perspective on the dynamic alterations in algal cells under the exposure to biocides released from antifouling coatings. The analysis of fluorescence relaxation kinetics revealed a significant shortening of the fast and middle phases,  along with an increase in the duration of the slow phase, for the coating with the highest levels of biocides. Combining automated culturing and measuring methods, this approach has demonstrated its effectiveness as an ultrasensitive and non-invasive tool for monitoring the physiology of photosynthetic cultures. This is particularly valuable in the context of studying microalgae and their early responses to various environmental conditions, as well as the potential to develop an AF system with minimal harm to the environment.


Subject(s)
Bioreactors , Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/drug effects , Chlamydomonas reinhardtii/metabolism , Disinfectants/pharmacology , Fluorescence , Photosynthesis/drug effects , Chlorophyll/metabolism , Water Pollutants, Chemical/analysis
19.
Nat Commun ; 15(1): 4888, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849332

ABSTRACT

Chloroxylenol is a worldwide commonly used disinfectant. The massive consumption and relatively high chemical stability of chloroxylenol have caused eco-toxicological threats in receiving waters. We noticed that chloroxylenol has a chemical structure similar to numerous halo-phenolic disinfection byproducts. Solar detoxification of some halo-phenolic disinfection byproducts intrigued us to select a rapidly degradable chloroxylenol alternative from them. In investigating antimicrobial activities of disinfection byproducts, we found that 2,6-dichlorobenzoquinone was 9.0-22 times more efficient than chloroxylenol in inactivating the tested bacteria, fungi and viruses. Also, the developmental toxicity of 2,6-dichlorobenzoquinone to marine polychaete embryos decreased rapidly due to its rapid degradation via hydrolysis in receiving seawater, even without sunlight. Our work shows that 2,6-dichlorobenzoquinone is a promising disinfectant that well addresses human biosecurity and environmental sustainability. More importantly, our work may enlighten scientists to exploit the slightly alkaline nature of seawater and develop other industrial products that can degrade rapidly via hydrolysis in seawater.


Subject(s)
Disinfectants , Disinfection , Seawater , Disinfectants/chemistry , Disinfectants/pharmacology , Disinfection/methods , Seawater/chemistry , Animals , Hydrolysis , Polychaeta/drug effects , Fungi/drug effects , Bacteria/drug effects , Chlorophenols/chemistry , Viruses/drug effects , Humans , Xylenes
20.
Water Res ; 259: 121844, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38824795

ABSTRACT

Trace iron ions (Fe(III)) are commonly found in water and wastewater, where free chlorine is very likely to coexist with Fe(III) affecting the disinfectant's stability and N-DBPs' fate during UV/chlorine disinfection, and yet current understanding of these mechanisms is limited. This study investigates the effects of Fe(III) on the formation and toxicity alteration of halonitromethanes (HNMs), dichloroacetonitrile (DCAN), and dichloroacetamide (DCAcAm) from polyethyleneimine (PEI) during UV/chlorine disinfection. Results reveal that the maxima concentrations of HNMs, DCAN, and DCAcAm during UV/chlorine disinfection with additional Fe(III) were 1.39, 1.38, and 1.29 times higher than those without additional Fe(III), instead of being similar to those of Fe(III) inhibited the formation of HNMs, DCAN and DCAcAm during chlorination disinfection. Meanwhile, higher Fe(III) concentration, acidic pH, and higher chlorine dose were more favorable for forming HNMs, DCAN, and DCAcAm during UV/chlorine disinfection, which were highly dependent on the involvement of HO· and Cl·. Fe(III) in the aquatic environment partially hydrolyzed to the photoactive Fe(III)­hydroxyl complexes Fe(OH)2+ and [Fe(H2O)6]3+, which undergone UV photoactivation and coupling reactions with HOCl to achieve effective Fe(III)/Fe(II) interconversion, a process that facilitated the sustainable production of HO·. Extensive product analysis and comparison verified that the HO· production enhanced by the Fe(III)/Fe(II) internal cycle played a primary role in increasing HNMs, DCAN, and DCAcAm productions during UV/chlorine disinfection. Note that the incorporation of Fe(III) increased the cytotoxicity and genotoxicity of HNMs, DCAN, and DCAcAm formed during UV/chlorine disinfection, and yet Fe(III) did not have a significant effect on the acute toxicity of water samples before, during, and after UV/chlorine disinfection. The new findings broaden the knowledge of Fe(III) affecting HNMs, DCAN, and DCAcAm formation and toxicity alteration during UV/chlorine disinfection.


Subject(s)
Disinfection , Disinfection/methods , Ultraviolet Rays , Chlorine/chemistry , Polyethyleneimine/chemistry , Acetonitriles/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity , Iron/chemistry , Water Purification/methods , Acetamides/chemistry , Acetamides/toxicity , Disinfectants/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...