Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.439
Filter
1.
Nat Commun ; 15(1): 6964, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138195

ABSTRACT

Though RNAi and RNA-splicing machineries are involved in regulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, their precise roles in coronavirus disease 2019 (COVID-19) pathogenesis remain unclear. Herein, we show that decreased RNAi component (Dicer and XPO5) and splicing factor (SRSF3 and hnRNPA3) expression correlate with increased COVID-19 severity. SARS-CoV-2 N protein induces the autophagic degradation of Dicer, XPO5, SRSF3, and hnRNPA3, inhibiting miRNA biogenesis and RNA splicing and triggering DNA damage, proteotoxic stress, and pneumonia. Dicer, XPO5, SRSF3, and hnRNPA3 knockdown increases, while their overexpression decreases, N protein-induced pneumonia's severity. Older mice show lower expression of Dicer, XPO5, SRSF3, and hnRNPA3 in their lung tissues and exhibit more severe N protein-induced pneumonia than younger mice. PJ34, a poly(ADP-ribose) polymerase inhibitor, or anastrozole, an aromatase inhibitor, ameliorates N protein- or SARS-CoV-2-induced pneumonia by restoring Dicer, XPO5, SRSF3, and hnRNPA3 expression. These findings will aid in developing improved treatments for SARS-CoV-2-associated pneumonia.


Subject(s)
COVID-19 , Karyopherins , Ribonuclease III , SARS-CoV-2 , Serine-Arginine Splicing Factors , Animals , Serine-Arginine Splicing Factors/metabolism , Serine-Arginine Splicing Factors/genetics , Humans , Ribonuclease III/metabolism , Ribonuclease III/genetics , SARS-CoV-2/genetics , COVID-19/metabolism , COVID-19/virology , COVID-19/genetics , Mice , Karyopherins/metabolism , Karyopherins/genetics , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Down-Regulation , Lung/metabolism , Lung/pathology , Lung/virology , Male , Female , MicroRNAs/genetics , MicroRNAs/metabolism , RNA Splicing , Autophagy/genetics , DNA Damage , Heterogeneous-Nuclear Ribonucleoprotein Group A-B
2.
Mamm Genome ; 35(3): 346-361, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39115562

ABSTRACT

Pyroptosis has been regarded as caspase-1-mediated monocyte death that induces inflammation, showing a critical and detrimental role in the development of cerebral ischemia-reperfusion injury (IRI). MARCH1 is an E3 ubiquitin ligase that exerts potential anti-inflammatory functions. Therefore, the study probed into the significance of MARCH1 in inflammation and pyroptosis elicited by cerebral IRI. Middle cerebral artery occlusion/reperfusion (MCAO/R)-treated mice and oxygen glucose deprivation/reoxygenation (OGD/R)-treated hippocampal neurons were established to simulate cerebral IRI in vivo and in vitro. MARCH1 and PCSK9 expression was tested in MCAO/R-operated mice, and their interaction was identified by means of the cycloheximide assay and co-immunoprecipitation. The functional roles of MARCH1 and PCSK9 in cerebral IRI were subsequently determined by examining the neurological function, brain tissue changes, neuronal viability, inflammation, and pyroptosis through ectopic expression and knockdown experiments. PCSK9 expression was increased in the brain tissues of MCAO/R mice, while PCSK9 knockdown reduced brain damage and neurological deficits. Additionally, inflammation and pyroptosis were inhibited in OGD/R-exposed hippocampal neurons upon PCSK9 knockdown, accompanied by LDLR upregulation and NLRP3 inflammasome inactivation. Mechanistic experiments revealed that MARCH1 mediated ubiquitination and degradation of PCSK9, lowering PCSK9 protein expression. Furthermore, it was demonstrated that MARCH1 suppressed inflammation and pyroptosis after cerebral IRI by downregulating PCSK9 both in vivo and in vitro. Taken together, the present study demonstrate the protective effect of MARCH1 against cerebral IRI through PCSK9 downregulation, which might contribute to the discovery of new therapies for improving cerebral IRI.


Subject(s)
Inflammation , Proprotein Convertase 9 , Pyroptosis , Reperfusion Injury , Ubiquitin-Protein Ligases , Animals , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Pyroptosis/genetics , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Mice , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Neurons/metabolism , Neurons/pathology , Male , Brain Ischemia/genetics , Brain Ischemia/metabolism , Down-Regulation , Infarction, Middle Cerebral Artery/genetics , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Hippocampus/metabolism , Hippocampus/pathology , Disease Models, Animal , Mice, Inbred C57BL
3.
Nat Commun ; 15(1): 6915, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134530

ABSTRACT

Protein post-translational modifications (PTMs) are crucial for cancer cells to adapt to hypoxia; however, the functional significance of lysine crotonylation (Kcr) in hypoxia remains unclear. Herein we report a quantitative proteomics analysis of global crotonylome under normoxia and hypoxia, and demonstrate 128 Kcr site alterations across 101 proteins in MDA-MB231 cells. Specifically, we observe a significant decrease in K131cr, K156cr and K220cr of phosphoglycerate kinase 1 (PGK1) upon hypoxia. Enoyl-CoA hydratase 1 (ECHS1) is upregulated and interacts with PGK1, leading to the downregulation of PGK1 Kcr under hypoxia. Abolishment of PGK1 Kcr promotes glycolysis and suppresses mitochondrial pyruvate metabolism by activating pyruvate dehydrogenase kinase 1 (PDHK1). A low PGK1 K131cr level is correlated with malignancy and poor prognosis of breast cancer. Our findings show that PGK1 Kcr is a signal in coordinating glycolysis and the tricarboxylic acid (TCA) cycle and may serve as a diagnostic indicator for breast cancer.


Subject(s)
Breast Neoplasms , Citric Acid Cycle , Glycolysis , Phosphoglycerate Kinase , Phosphoglycerate Kinase/metabolism , Phosphoglycerate Kinase/genetics , Humans , Glycolysis/genetics , Cell Line, Tumor , Female , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Lysine/metabolism , Protein Processing, Post-Translational , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Down-Regulation , Mice , Proteomics/methods , Mice, Nude , Gene Expression Regulation, Neoplastic , Mitochondria/metabolism , Cell Hypoxia , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics
4.
Front Immunol ; 15: 1437068, 2024.
Article in English | MEDLINE | ID: mdl-39144140

ABSTRACT

Background: Breast cancer ranks as one of the most prevalent malignancies among women globally, with increasing incidence rates. Physical activity, particularly exercise, has emerged as a potentially significant modifier of cancer prognosis, influencing tumor biology and patient outcomes. Methods: Using a murine breast cancer model, we established a control and an exercise group, where the latter was subjected to 21 days of voluntary running. RNA Sequencing, bioinformatics analysis, pan-cancer analysis, and cell experiments were performed to validate the underlying mechanisms. Results: We observed that exercise significantly reduced tumor size and weight, without notable changes in body weight, suggesting that physical activity can modulate tumor dynamics. mRNA sequencing post-exercise revealed substantial downregulation of CD300E in the exercise group, accompanied by alterations in critical pathways such as MicroRNAs in cancers and the Calcium signaling pathway. Expanding our analysis to a broader cancer spectrum, CD300E demonstrated significant expression variability across multiple cancer types, with pronounced upregulation in myeloma, ovarian, lung, and colorectal cancers. This upregulation was correlated with poorer prognostic outcomes, emphasizing CD300E's potential role as a prognostic marker and therapeutic target. Moreover, CD300E expression was associated with cancer cell proliferation and apoptosis. Conclusion: The study highlights the dual role of exercise in modulating gene expression relevant to tumor growth and the potential of CD300E as a target in cancer therapeutics. Further research is encouraged to explore the mechanisms by which exercise and CD300E influence cancer progression and to develop targeted strategies that could enhance patient outcomes in clinical settings.


Subject(s)
Gene Expression Regulation, Neoplastic , Animals , Female , Humans , Mice , Apoptosis/genetics , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Cell Line, Tumor , Cell Proliferation , Down-Regulation , Neoplasms/genetics , Physical Conditioning, Animal , Prognosis , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
5.
J Biochem Mol Toxicol ; 38(9): e23810, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39163614

ABSTRACT

Intestinal ischemia-reperfusion (IR) injury is a common gastrointestinal disease that induces severe intestinal dysfunction. Intestinal myenteric neurons participate in maintaining the intestinal function, which will be severely injured by IR. Macrophages are widely reported to be involved in the pathogenesis of organ IR injury, including intestine, which is activated by NLRP3 signaling. Lonicerin (LCR) is a natural extracted monomer with inhibitory efficacy against the NLRP3 pathway in macrophages. The present study aims to explore the potential protective function of LCR in intestinal IR injury. Myenteric neurons were extracted from mice. RAW 264.7 cells were stimulated by H/R with or without 10 µM and 30 µM LCR. Remarkable increased release of IL-6, MCP-1, and TNF-α were observed in H/R treated RAW 264.7 cells, along with an upregulation of NLRP3, cleaved-caspase-1, IL-1ß, and EZH2, which were sharply repressed by LCR. Myenteric neurons were cultured with the supernatant collected from each group. Markedly decreased neuron number and shortened length of neuron axon were observed in the H/R group, which were signally reversed by LCR. RAW 264.7 cells were stimulated by H/R, followed by incubated with 30 µM LCR with or without pcDNA3.1-EZH2. The inhibition of LCR on NLRP3 signaling in H/R treated RAW 264.7 cells was abolished by EZH2 overexpression. Furthermore, the impact of LCR on neuron number and neuron axon length in myenteric neurons in the H/R group was abated by EZH2 overexpression. Collectively, LCR alleviated intestinal myenteric neuron injury induced by H/R treated macrophages via downregulating EZH2.


Subject(s)
Down-Regulation , Enhancer of Zeste Homolog 2 Protein , Macrophages , Neurons , Reperfusion Injury , Animals , Mice , Enhancer of Zeste Homolog 2 Protein/metabolism , RAW 264.7 Cells , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , Macrophages/metabolism , Macrophages/drug effects , Macrophages/pathology , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Down-Regulation/drug effects , Intestines/pathology , Intestines/drug effects , Myenteric Plexus/metabolism , Myenteric Plexus/pathology , Male , Mice, Inbred C57BL
6.
Commun Biol ; 7(1): 999, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39147860

ABSTRACT

Psoriasis is characterized by keratinocyte (KC) hyperproliferation and inflammatory cell infiltration, but the mechanisms remain unclear. In an imiquimod-induced mouse psoriasiform model, p38 activity is significantly elevated in KCs and p38α specific deletion in KCs ameliorates skin inflammation. p38α signaling promotes KC proliferation and psoriasis-related proinflammatory gene expression during psoriasis development. Mechanistically, p38α enhances KC proliferation and production of inflammatory cytokines and chemokines by activating STAT3. While p38α signaling in KCs does not affect the expression of IL-23 and IL-17, it substantially amplifies the IL-23/IL-17 pathogenic axis in psoriasis. The therapeutic effect of IL-17 neutralization is associated with decreased p38 and STAT3 activities in KCs and targeting the p38α-STAT3 axis in KCs ameliorates the severity of psoriasis. As IL-17 also highly activates p38 and STAT3 in KCs, our findings reveal a sustained signaling circuit important for psoriasis development, highlighting p38α-STAT3 axis as an important target for psoriasis treatment.


Subject(s)
Cell Proliferation , Cytokines , Keratinocytes , Mitogen-Activated Protein Kinase 14 , Psoriasis , STAT3 Transcription Factor , Psoriasis/metabolism , Psoriasis/genetics , Psoriasis/pathology , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Keratinocytes/metabolism , Animals , Mice , Mitogen-Activated Protein Kinase 14/metabolism , Mitogen-Activated Protein Kinase 14/genetics , Cytokines/metabolism , Down-Regulation , Mice, Knockout , Interleukin-17/metabolism , Interleukin-17/genetics , Mice, Inbred C57BL , Disease Models, Animal , Signal Transduction , Humans , Imiquimod
7.
Proc Natl Acad Sci U S A ; 121(34): e2403133121, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39141346

ABSTRACT

Polyomaviruses are small, circular dsDNA viruses that can cause cancer. Alternative splicing of polyomavirus early transcripts generates large and small tumor antigens (LT, ST) that play essential roles in viral replication and tumorigenesis. Some polyomaviruses also express middle tumor antigens (MTs) or alternate LT open reading frames (ALTOs), which are evolutionarily related but have distinct gene structures. MTs are a splice variant of the early transcript whereas ALTOs are overprinted on the second exon of the LT transcript in an alternate reading frame and are translated via an alternative start codon. Merkel cell polyomavirus (MCPyV), the only human polyomavirus that causes cancer, encodes an ALTO but its role in the viral lifecycle and tumorigenesis has remained elusive. Here, we show MCPyV ALTO acts as a tumor suppressor and is silenced in Merkel cell carcinoma (MCC). Rescuing ALTO in MCC cells induces growth arrest and activates NF-κB signaling. ALTO activates NF-κB by binding SQSTM1 and TRAF2&3 via two N-Terminal Activating Regions (NTAR1+2), resembling Epstein-Barr virus (EBV) Latent Membrane Protein 1 (LMP1). Following activation, NF-κB dimers bind the MCPyV noncoding control region (NCCR) and downregulate early transcription. Beyond MCPyV, NTAR motifs are conserved in other polyomavirus ALTOs, which activate NF-κB signaling, but are lacking in MTs that do not. Furthermore, polyomavirus ALTOs downregulate their respective viral early transcription in an NF-κB- and NTAR-dependent manner. Our findings suggest that ALTOs evolved to suppress viral replication and promote viral latency and that MCPyV ALTO must be silenced for MCC to develop.


Subject(s)
Gene Expression Regulation, Viral , NF-kappa B , Signal Transduction , Humans , NF-kappa B/metabolism , Antigens, Viral, Tumor/genetics , Antigens, Viral, Tumor/metabolism , Merkel cell polyomavirus/genetics , Polyomavirus Infections/virology , Polyomavirus Infections/genetics , Polyomavirus Infections/metabolism , Carcinoma, Merkel Cell/virology , Carcinoma, Merkel Cell/genetics , Carcinoma, Merkel Cell/metabolism , Open Reading Frames/genetics , Cell Line, Tumor , Down-Regulation , Alternative Splicing
8.
Mol Biol Rep ; 51(1): 919, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158740

ABSTRACT

BACKGROUND: In addition to primary injury, secondary injuries related to BBB disruption and immune-inflammatory response also play an important role in intracerebral hemorrhage (ICH). And the Golgi apparatus play an important role in the state of ICH. METHODS: ICH model and GM130-silencing ICH model were established in SD rats. The Garcia score was used to score the neurological defects of the rats. Blood-brain barrier (BBB) integrity were assessed by amount of extravasated Evans blue, and tight junction proteins. The expression of PD-L1 and GM130were detected through Western-blot and the subtype of microglia was showing with Immunofluorescence staining. RESULTS: Compared with the ICH group, GM130-silencing ICH rats got a worsened neurological deficit and enlarged volume of the hematoma. Evan's blue extravasation aggravated as well. The expression of GM130 in peri-hematoma tissue was further decreased, and the morphology and structure of the Golgi apparatus were further damaged. Meanwhile, the GM130 deficit resulted in decreased expression of PD-L1 and more polarization of microglia to the M1 subtype. CONCLUSION: We demonstrate that GM130 could influence the integrity of BBB and plays a role in neuroinflammation via regulation of PD-L1 after ICH. The manipulation of GM130 might be a promising therapeutical target in ICH.


Subject(s)
B7-H1 Antigen , Blood-Brain Barrier , Cerebral Hemorrhage , Disease Models, Animal , Membrane Proteins , Microglia , Rats, Sprague-Dawley , Animals , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/genetics , Cerebral Hemorrhage/pathology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Microglia/metabolism , Microglia/pathology , Rats , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Male , Membrane Proteins/metabolism , Membrane Proteins/genetics , Down-Regulation/genetics , Golgi Apparatus/metabolism , Autoantigens
9.
Med Oncol ; 41(9): 232, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167288

ABSTRACT

The clinical studies for breast cancer (BC) are now assessing the efficacy of 2-Methoxyestradiol (2-ME), a naturally occurring derivative of estradiol. Our study aimed to explore the potential of combining the 2-ME and tamoxifen (TAM) on sensitization of TAM-resistant cells using LCC2 the TAM-resistant cells as a model and comparing the results to the sensitive cells MCF-7. Sulphorhodamine-B (SRB) assay is used to examine the 2-ME chemo-sensitizing impact on the cytotoxicity of TAM on LCC2 cells. Colorimetric assay kits were used to assess the level of the apoptosis-related markers caspases 3, Bcl2, and Bax in cell lysate. Hypoxia-inducible factor 1 alpha (HIF-1α) expression was measured using western blotting. Total cholesterol and triglyceride (TG) levels were examined colorimetrically, using the BIOLABO kit. The use of 2-ME enhanced the cytotoxic effects of TAM and effectively reversed TAM resistance. This was achieved by inhibiting the expression of HIF-1α, while concurrently increasing the levels of apoptotic marker caspase-3, as well as the pro-apoptotic protein Bax. Additionally, there was a reduction in the levels of Bcl2, an anti-apoptotic protein. Furthermore, a reduction in TG and cholesterol levels was noted. Our findings show that HIF-1α plays an important role in TAM resistance and that suppression of HIF-1α by 2-ME-mediated sensitization of BC-resistant cells to TAM. Therefore, the concurrent administration of TAM/2-ME might potentially serve as a viable therapeutic approach to address TAM resistance and enhance the overall therapy efficacy for patients with BC.


Subject(s)
2-Methoxyestradiol , Breast Neoplasms , Down-Regulation , Drug Resistance, Neoplasm , Hypoxia-Inducible Factor 1, alpha Subunit , Tamoxifen , Humans , 2-Methoxyestradiol/pharmacology , Tamoxifen/pharmacology , Tamoxifen/analogs & derivatives , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Drug Resistance, Neoplasm/drug effects , MCF-7 Cells , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , Down-Regulation/drug effects , Apoptosis/drug effects , Antineoplastic Agents, Hormonal/pharmacology , Estradiol/pharmacology , Estradiol/analogs & derivatives
10.
Hepatol Commun ; 8(9)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39167427

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is a deadly cancer with a high global mortality rate, and the downregulation of GATA binding protein 4 (GATA4) has been implicated in HCC progression. In this study, we investigated the role of GATA4 in shaping the immune landscape of HCC. METHODS: HCC tumor samples were classified into "low" or "normal/high" based on GATA4 RNA expression relative to adjacent non-tumor liver tissues. The immune landscapes of GATA4-low and GATA4-normal/high tumors were analyzed using cytometry by time-of-flight, bulk/spatial transcriptomic analyses and validated by multiplex immunofluorescence. RESULTS: GATA4-low tumors displayed enrichment in exhausted programmed cell death protein 1+ T cells, immunosuppressive regulatory T cells, myeloid-derived suppressor cells, and macrophages, highlighting the impact of GATA4 downregulation on immunosuppression. Spatial and bulk transcriptomic analyses revealed a negative correlation between GATA4 and C-C Motif Chemokine Ligand 20 (CCL20) expression in HCC. Overexpressing GATA4 confirmed CCL20 as a downstream target, contributing to an immunosuppressive tumor microenvironment, as evidenced by increased regulatory T cells and myeloid-derived suppressor cells in CCL20-high tumors. Lastly, the reduced expression of GATA4 and higher expression of CCL20 were associated with poorer overall survival in patients with HCC, implicating their roles in tumor progression. CONCLUSIONS: Our study reveals that GATA4 downregulation contributes to an immunosuppressive microenvironment, driven by CCL20-mediated enrichment of regulatory T cells and myeloid-derived suppressor cells in HCC. These findings underscore the critical role of GATA4 reduction in promoting immunosuppression and HCC progression.


Subject(s)
Carcinoma, Hepatocellular , Chemokine CCL20 , Down-Regulation , GATA4 Transcription Factor , Liver Neoplasms , Tumor Microenvironment , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/mortality , Humans , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Liver Neoplasms/mortality , Liver Neoplasms/pathology , GATA4 Transcription Factor/genetics , Chemokine CCL20/genetics , Tumor Microenvironment/immunology , Gene Expression Regulation, Neoplastic , Immune Tolerance , Myeloid-Derived Suppressor Cells/immunology , Male , T-Lymphocytes, Regulatory/immunology
11.
Clinics (Sao Paulo) ; 79: 100400, 2024.
Article in English | MEDLINE | ID: mdl-39089097

ABSTRACT

BACKGROUND: Aortic Dissection (AD) is a vascular disease with a high mortality rate and limited treatment strategies. The current research analyzed the function and regulatory mechanism of lncRNA HCG18 in AD. METHODS: HCG18, miR-103a-3p, and HMGA2 levels in the aortic tissue of AD patients were examined by RT-qPCR. After transfection with relevant plasmids, the proliferation of rat aortic Vascular Smoothing Muscle Cells (VSMCs) was detected by CCK-8 and colony formation assay, Bcl-2 and Bax was measured by Western blot, and apoptosis was checked by flow cytometry. Then, the targeting relationship between miR-103a-3p and HCG18 or HMGA2 was verified by bioinformation website analysis and dual luciferase reporter assay. Finally, the effect of HCG18 was verified in an AD rat model induced by ß-aminopropionitrile. RESULTS: HCG18 and HMGA2 were upregulated and miR-103a-3p was downregulated in the aortic tissues of AD patients. Downregulating HCG18 or upregulating miR-103a-3p enhanced the proliferation of VSMCs and limited cell apoptosis. HCG18 promoted HMGA2 expression by competing with miR-103a-3p and restoring HMGA2 could impair the effect of HCG18 downregulation or miR-103a-3p upregulation in mediating the proliferation and apoptosis of VSMCs. In addition, down-regulation of HCG18 could improve the pathological injury of the aorta in AD rats. CONCLUSION: HCG18 reduces proliferation and induces apoptosis of VSMCs through the miR-103a-3p/HMGA2 axis, thus aggravating AD.


Subject(s)
Aortic Dissection , Apoptosis , Cell Proliferation , MicroRNAs , RNA, Long Noncoding , MicroRNAs/genetics , MicroRNAs/metabolism , Apoptosis/genetics , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Proliferation/genetics , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Aortic Dissection/genetics , Aortic Dissection/metabolism , Humans , HMGA2 Protein/genetics , HMGA2 Protein/metabolism , Male , Rats , Muscle, Smooth, Vascular/metabolism , Down-Regulation , Rats, Sprague-Dawley , Up-Regulation , Middle Aged , Myocytes, Smooth Muscle/metabolism , Disease Models, Animal
12.
Cell Mol Biol (Noisy-le-grand) ; 70(7): 212-217, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39097871

ABSTRACT

Due to the widespread use of methamphetamine (METH) among reproductive-aged women, the effects of intrauterine exposure to METH need to be investigated, as previous studies on this topic have been limited. The goal of this study is to examine the influence of two regulatory genes (miRNA-151-3p and CACNA1C) on the intrauterine life of mice exposed to METH. Pregnant mice received doses of 2 and 5 mg/kg of METH and saline from day 10 of pregnancy until the end. Their offspring were then evaluated for miRNA-151-3p and CACNA1C gene expression levels using real-time PCR. The findings indicated that exposure to METH reduced the expression levels of both miRNA-151-3p and CACNA1C genes in offspring compared to the control group (p≤0.001). In conclusion, intrauterine exposure to METH leads to a decrease in expression levels of both miRNA-151-3p and CACNA1C genes, potentially disrupting regulatory pathways involving these genes and having an impact on male reproductive health.


Subject(s)
Calcium Channels, L-Type , Down-Regulation , Methamphetamine , MicroRNAs , Prenatal Exposure Delayed Effects , Testis , Animals , Methamphetamine/toxicity , MicroRNAs/genetics , MicroRNAs/metabolism , Female , Male , Pregnancy , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/chemically induced , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Down-Regulation/drug effects , Down-Regulation/genetics , Testis/drug effects , Testis/metabolism , Rats , Mice
13.
J Cell Mol Med ; 28(15): e18577, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39099000

ABSTRACT

Lung cancer remains the leading cause of cancer-related deaths, with cigarette smoking being the most critical factor, linked to nearly 90% of lung cancer cases. NNK, a highly carcinogenic nitrosamine found in tobacco, is implicated in the lung cancer-causing effects of cigarette smoke. Although NNK is known to mutate or activate certain oncogenes, its potential interaction with p27 in modulating these carcinogenic effects is currently unexplored. Recent studies have identified specific downregulation of p27 in human squamous cell carcinoma, in contrast to adenocarcinoma. Additionally, exposure to NNK significantly suppresses p27 expression in human bronchial epithelial cells. Subsequent studies indicates that the downregulation of p27 is pivotal in NNK-induced cell transformation. Mechanistic investigations have shown that reduced p27 expression leads to increased level of ITCH, which facilitates the degradation of Jun B protein. This degradation in turn, augments miR-494 expression and its direct regulation of JAK1 mRNA stability and protein expression, ultimately activating STAT3 and driving cell transformation. In summary, our findings reveal that: (1) the downregulation of p27 increases Jun B expression by upregulating Jun B E3 ligase ITCH, which then boosts miR-494 transcription; (2) Elevated miR-494 directly binds to 3'-UTR of JAK1 mRNA, enhancing its stability and protein expression; and (3) The JAK1/STAT3 pathway is a downstream effector of p27, mediating the oncogenic effect of NNK in lung cancer. These findings provide significant insight into understanding the participation of mechanisms underlying p27 inhibition of NNK induced lung squamous cell carcinogenic effect.


Subject(s)
Bronchi , Carcinoma, Squamous Cell , Cell Transformation, Neoplastic , Cyclin-Dependent Kinase Inhibitor p27 , Epithelial Cells , Lung Neoplasms , Nitrosamines , Humans , Nitrosamines/toxicity , Bronchi/metabolism , Bronchi/pathology , Bronchi/drug effects , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Carcinoma, Squamous Cell/chemically induced , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/drug effects , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cyclin-Dependent Kinase Inhibitor p27/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Gene Expression Regulation, Neoplastic/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Down-Regulation/drug effects , Carcinogens/toxicity
14.
Clin Exp Pharmacol Physiol ; 51(9): e13913, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39103233

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by chronic inflammation, lung tissue fibrotic changes and impaired lung function. Pulmonary fibrosis 's pathological process is thought to be influenced by macrophage-associated phenotypes. IPF treatment requires specific targets that target macrophage polarization. Cytokine-like 1(CYTL1) is a secreted protein with multiple biological functions first discovered in CD34+ haematopoietic cells. However, its possible effects on IPF progression remain unclear. This study investigated the role of CYTL1 in IPF progression in a bleomycin-induced lung injury and fibrosis model. In bleomycin-induced mice, CYTL1 is highly expressed. Moreover, CYTL1 ablation alleviates lung injury and fibrosis in vivo. Further, downregulating CYTL1 reduces macrophage M2 polarization. Mechanically, CYTL1 regulates transforming growth factor ß (TGF-ß)/connective tissue growth factor (CCN2) axis and inhibition of TGF-ß pathway alleviates bleomycin-induced lung injury and fibrosis. In conclusion, highly expressed CYTL1 inhibits macrophage M2 polarization by regulating TGF-ß/CCN2 expression, alleviating bleomycin-induced lung injury and fibrosis. CYTL1 could, therefore, serve as a promising IPF target.


Subject(s)
Bleomycin , Connective Tissue Growth Factor , Down-Regulation , Macrophages , Pulmonary Fibrosis , Transforming Growth Factor beta , Animals , Bleomycin/toxicity , Mice , Down-Regulation/drug effects , Transforming Growth Factor beta/metabolism , Macrophages/metabolism , Macrophages/drug effects , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Connective Tissue Growth Factor/metabolism , Connective Tissue Growth Factor/genetics , Mice, Inbred C57BL , Male , Cell Polarity/drug effects , Signal Transduction/drug effects , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology
15.
Turk J Gastroenterol ; 35(6): 465-474, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39128081

ABSTRACT

BACKGROUND/AIMS:  Incidence of colorectal cancer is rapidly increasing worldwide. Extracellular superoxide dismutase (EcSOD; SOD3) is an antioxidant enzyme. However, SOD3 roles in colorectal cancer progression remain uncertain. MATERIALS AND METHODS:  Superoxide dismutase 3 expression was evaluated, and we analyzed clinical relevance of SOD3 expression in colorectal cancer. Subsequently, SOD3 roles in colorectal cancer progression were detected by gain of function experiments. Changes in subcutaneous tumor and liver nodule size after SOD3 overexpression were examined in nude mice. The expression of proliferation marker Ki67 was assessed by immunohistochemical staining. RESULTS:  Supperoxide dismutase 3 was downregulated in colorectal cancer (P <.01). Downregulation of SOD3 was correlated with unfavorable outcomes (P < .05). Superoxide dismutase 3 upregulation limited the proliferative (P <.05), migrative (P <.01) and invasive actions of colorectal cancer cells (P <.01) by suppressing epithelial-mesenchymal transition. Moreover, SOD3 overexpression reduced Ki67 expression (P <.01) and blocked tumor growth (P <01) and liver metastasis (P <.001) in mouse tumor model. CONCLUSION:  Superoxide dismutase 3 upregulation attenuates tumor growth and liver metastasis in colorectal cancer, suggesting that SOD3 has potential diagnostic and prognostic values regarding colorectal cancer treatment.


Subject(s)
Cell Movement , Cell Proliferation , Colorectal Neoplasms , Epithelial-Mesenchymal Transition , Mice, Nude , Superoxide Dismutase , Superoxide Dismutase/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Humans , Animals , Mice , Male , Female , Up-Regulation , Down-Regulation , Liver Neoplasms/pathology , Ki-67 Antigen/metabolism , Cell Line, Tumor , Disease Progression , Middle Aged , Mice, Inbred BALB C
16.
Med Oncol ; 41(9): 220, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115587

ABSTRACT

Breast cancer (BC) is the leading commonly diagnosed cancer in the world, with complex mechanisms underlying its development. There is an urgent need to enlighten key genes as potential therapeutic targets crucial to advancing BC treatment. This study sought to investigate the influence of doxorubicin (DOX) on identified key genes consistent across numerous BC datasets obtained through bioinformatic analysis. To date, a meta-analysis of publicly available coding datasets for expression profiling by array from the Gene Expression Omnibus (GEO) has been carried out. Differentially Expressed Genes (DEGs) identified using GEO2R revealed a total of 23 common DEGs, including nine upregulated genes and 14 downregulated genes among the datasets of three platforms (GPL570, GPL6244, and GPL17586), and the commonly upregulated DEGs, showed significant enrichment in the cell cycle in KEGG analysis. The top nine genes, NUSAP1, CENPF, TPX2, PRC1, ANLN, BUB1B, AURKA, CCNB2, and CDK-1, with higher degree values and MCODE scores in the cytoscape program, were regarded as hub genes. The hub genes were activated in disease states commonly across all the subclasses of BC and correlated with the unfavorable overall survival of BC patients, as verified by the GEPIA and UALCAN databases. qRT-PCR confirmed that DOX treatment resulted in reduced expression of these genes in BC cell lines, which reinforces the evidence that DOX remains an effective drug for BC and suggests that developing modified formulations of doxorubicin to reduce toxicity and resistance, could enhance its efficacy as an effective therapeutic option for BC.


Subject(s)
Breast Neoplasms , Doxorubicin , Gene Expression Regulation, Neoplastic , Humans , Doxorubicin/pharmacology , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic/drug effects , Down-Regulation/drug effects , Down-Regulation/genetics , Antibiotics, Antineoplastic/pharmacology , Gene Expression Profiling , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line, Tumor , Computational Biology/methods
17.
Redox Rep ; 29(1): 2387465, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39102510

ABSTRACT

BACKGROUD: Bronchopulmonary dysplasia (BPD) is one of the most important complications plaguing neonates and can lead to a variety of sequelae. the ability of the HIF-1α/VEGF signaling pathway to promote angiogenesis has an important role in neonatal lung development. METHOD: Newborn rats were exposed to 85% oxygen. The effects of hyperoxia exposure on Pleomorphic Adenoma Gene like-2 (PLAGL2) and the HIF-1α/VEGF pathway in rats lung tissue were assessed through immunofluorescence and Western Blot analysis. In cell experiments, PLAGL2 was upregulated, and the effects of hyperoxia and PLAGL2 on cell viability were evaluated using scratch assays, CCK-8 assays, and EDU staining. The role of upregulated PLAGL2 in the HIF-1α/VEGF pathway was determined by Western Blot and RT-PCR. Apoptosis and ferroptosis effects were determined through flow cytometry and viability assays. RESULTS: Compared with the control group, the expression levels of PLAGL2, HIF-1α, VEGF, and SPC in lung tissues after 3, 7, and 14 days of hyperoxia exposure were all decreased. Furthermore, hyperoxia also inhibited the proliferation and motility of type II alveolar epithelial cells (AECII) and induced apoptosis in AECII. Upregulation of PLAGL2 restored the proliferation and motility of AECII and suppressed cell apoptosis and ferroptosis, while the HIF-1α/VEGF signaling pathway was also revived. CONCLUSIONS: We confirmed the positive role of PLAGL2 and HIF-1α/VEGF signaling pathway in promoting BPD in hyperoxia conditions, and provided a promising therapeutic targets.


Subject(s)
Alveolar Epithelial Cells , Animals, Newborn , Apoptosis , Ferroptosis , Hyperoxia , Hypoxia-Inducible Factor 1, alpha Subunit , Signal Transduction , Vascular Endothelial Growth Factor A , Animals , Rats , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Alveolar Epithelial Cells/metabolism , Ferroptosis/physiology , Hyperoxia/metabolism , Rats, Sprague-Dawley , Transcription Factors/metabolism , Transcription Factors/genetics , Down-Regulation , Humans , Cell Proliferation
18.
Drug Dev Res ; 85(5): e22246, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39135358

ABSTRACT

Tilorone dihydrochloride (tilorone) is an orally active interferon inducer with anticancer effects. The present study aimed to evaluate the anticancer effects of tilorone in breast cancer. MTT assay was done to measure the proliferation of MCF-7 and MDA-MB-231 breast cancer cells after treatment with tilorone. Mammary carcinogenesis was induced by subcutaneous injection (35 mg/kg, 0.5 mL) of dimethylbenz[a]anthracene (DMBA) in mammary pads of Sprague Dawley (SD) rats. Tumors were allowed to grow for 16 weeks till their sizes reached to 550-700 mm3, and then treated with 10 and 20 mg/kg of tilorone and standard drug doxorubicin (4 mg/kg) twice a week for 3 weeks. Normal and disease-control animals received normal saline. Tumor volumes and body weights were measured. Tumors were isolated to measure the levels of interferon-ß (IFN-ß), vascular endothelial growth factor-A (VEGF-A), P53 and inflammatory markers by enzyme-linked immunosorbent assay (ELISA). Serum biochemistry, lipid peroxidation (LPO) and antioxidant enzymes were measured by standard methods. Histopathology and immunohistochemistry (IHC) of P53 was done in tumor sections. Tilorone reduced the proliferation of MCF-7 and MDA-MB-231 cells with IC50 concentrations at 34.08 µM and 14.27 µM, respectively. Tilorone treatment showed reduced tumor volume, and increased survival with no significant changes in the body weights. Tilorone treatment also decreased levels of inflammatory markers and VEGF-A and increased IFN-ß and P53 levels. Further, treatment with tilorone also decreased LPO and increased antioxidants levels. Histopathology of tumor sections showed normalizing morphology of treated animals. IHC of tumor sections showed increased levels of P53. In conclusion, tilorone has potential anticancer effects against breast cancer.


Subject(s)
Cytokines , Oxidative Stress , Rats, Sprague-Dawley , Tilorone , Animals , Female , Oxidative Stress/drug effects , Humans , Cytokines/metabolism , Tilorone/pharmacology , Rats , MCF-7 Cells , Down-Regulation/drug effects , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/pathology , Mammary Neoplasms, Experimental/chemically induced , Mammary Neoplasms, Experimental/metabolism , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Vascular Endothelial Growth Factor A/metabolism , Interferon-beta , 9,10-Dimethyl-1,2-benzanthracene/toxicity , Doxorubicin
19.
World J Gastroenterol ; 30(26): 3229-3246, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39086630

ABSTRACT

BACKGROUND: Monopolar spindle-binding protein 3B (MOB3B) functions as a signal transducer and altered MOB3B expression is associated with the development of human cancers. AIM: To investigate the role of MOB3B in colorectal cancer (CRC). METHODS: This study collected 102 CRC tissue samples for immunohistochemical detection of MOB3B expression for association with CRC prognosis. After overexpression and knockdown of MOB3B expression were induced in CRC cell lines, changes in cell viability, migration, invasion, and gene expression were assayed. Tumor cell autophagy was detected using transmission electron microscopy, while nude mouse xenograft experiments were performed to confirm the in-vitro results. RESULTS: MOB3B expression was reduced in CRC vs normal tissues and loss of MOB3B expression was associated with poor CRC prognosis. Overexpression of MOB3B protein in vitro attenuated the cell viability as well as the migration and invasion capacities of CRC cells, whereas knockdown of MOB3B expression had the opposite effects in CRC cells. At the molecular level, microtubule-associated protein light chain 3 II/I expression was elevated, whereas the expression of matrix metalloproteinase (MMP)2, MMP9, sequestosome 1, and phosphorylated mechanistic target of rapamycin kinase (mTOR) was downregulated in MOB3B-overexpressing RKO cells. In contrast, the opposite results were observed in tumor cells with MOB3B knockdown. The nude mouse data confirmed these in-vitro findings, i.e., MOB3B expression suppressed CRC cell xenograft growth, whereas knockdown of MOB3B expression promoted the growth of CRC cell xenografts. CONCLUSION: Loss of MOB3B expression promotes CRC development and malignant behaviors, suggesting a potential tumor suppressive role of MOB3B in CRC by inhibition of mTOR/autophagy signaling.


Subject(s)
Autophagy , Cell Movement , Colorectal Neoplasms , Neoplasm Invasiveness , Signal Transduction , TOR Serine-Threonine Kinases , Aged , Animals , Female , Humans , Male , Mice , Middle Aged , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Line, Tumor , Cell Survival , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Down-Regulation , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Mice, Inbred BALB C , Mice, Nude , Prognosis , TOR Serine-Threonine Kinases/metabolism
20.
J Transl Med ; 22(1): 737, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103915

ABSTRACT

BACKGROUND: Cancer stem-like cells (CSCs) play an important role in initiation and progression of aggressive cancers, including esophageal cancer. Natural killer (NK) cells are key effector lymphocytes of innate immunity that directly attack a wide variety of cancer cells. NK cell-based therapy may provide a new treatment option for targeting CSCs. In this study, we aimed to investigate the sensitivity of human esophageal CSCs to NK cell-mediated cytotoxicity. METHODS: CSCs were enriched from human esophageal squamous cell carcinoma cell lines via sphere formation culture. Human NK cells were selectively expanded from the peripheral blood of healthy donors. qRT-PCR, flow cytometry and ELISA assays were performed to examine RNA expression and protein levels, respectively. CFSE-labeled target cells were co-cultured with human activated NK cells to detect the cytotoxicity of NK cells by flow cytometry. RESULTS: We observed that esophageal CSCs were more resistant to NK cell-mediated cytotoxicity compared with adherent counterparts. Consistently, esophageal CSCs showed down-regulated expression of ULBP-1, a ligand for NK cells stimulatory receptor NKG2D. Knockdown of ULBP-1 resulted in significant inhibition of NK cell cytotoxicity against esophageal CSCs, whereas ULBP-1 overexpression led to the opposite effect. Finally, the pro-differentiation agent all-trans retinoic acid was found to enhance the sensitivity of esophageal CSCs to NK cell cytotoxicity. CONCLUSIONS: This study reveals that esophageal CSCs are more resistant to NK cells through down-regulation of ULBP-1 and provides a promising approach to promote the activity of NK cells targeting esophageal CSCs.


Subject(s)
Cytotoxicity, Immunologic , Down-Regulation , Esophageal Neoplasms , Killer Cells, Natural , Neoplastic Stem Cells , Humans , Killer Cells, Natural/immunology , Esophageal Neoplasms/pathology , Esophageal Neoplasms/immunology , Esophageal Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Down-Regulation/drug effects , Cell Line, Tumor , Cytotoxicity, Immunologic/drug effects , GPI-Linked Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Gene Expression Regulation, Neoplastic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL