Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 18.306
1.
Mol Biol Rep ; 51(1): 721, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38829450

BACKGROUND: Cancer and multidrug resistance are regarded as concerns related to poor health outcomes. It was found that the monolayer of 2D cancer cell cultures lacks many important features compared to Multicellular Tumor Spheroids (MCTS) or 3D cell cultures which instead have the ability to mimic more closely the in vivo tumor microenvironment. This study aimed to produce 3D cell cultures from different cancer cell lines and to examine the cytotoxic activity of anticancer medications on both 2D and 3D systems, as well as to detect alterations in the expression of certain genes levels. METHOD: 3D cell culture was produced using 3D microtissue molds. The cytotoxic activities of colchicine, cisplatin, doxorubicin, and paclitaxel were tested on 2D and 3D cell culture systems obtained from different cell lines (A549, H1299, MCF-7, and DU-145). IC50 values were determined by MTT assay. In addition, gene expression levels of PIK3CA, AKT1, and PTEN were evaluated by qPCR. RESULTS: Similar cytotoxic activities were observed on both 3D and 2D cell cultures, however, higher concentrations of anticancer medications were needed for the 3D system. For instance, paclitaxel showed an IC50 of 6.234 µM and of 13.87 µM on 2D and 3D H1299 cell cultures, respectively. Gene expression of PIK3CA in H1299 cells also showed a higher fold change in 3D cell culture compared to 2D system upon treatment with doxorubicin. CONCLUSION: When compared to 2D cell cultures, the behavior of cells in the 3D system showed to be more resistant to anticancer treatments. Due to their shape, growth pattern, hypoxic core features, interaction between cells, biomarkers synthesis, and resistance to treatment penetration, the MCTS have the advantage of better simulating the in vivo tumor conditions. As a result, it is reasonable to conclude that 3D cell cultures may be a more promising model than the traditional 2D system, offering a better understanding of the in vivo molecular changes in response to different potential treatments and multidrug resistance development.


Antineoplastic Agents , Cell Culture Techniques , Spheroids, Cellular , Humans , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Spheroids, Cellular/drug effects , Cell Culture Techniques/methods , Doxorubicin/pharmacology , Paclitaxel/pharmacology , Cisplatin/pharmacology , Tumor Microenvironment/drug effects , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Drug Resistance, Neoplasm/drug effects , Cell Culture Techniques, Three Dimensional/methods , MCF-7 Cells , Gene Expression Regulation, Neoplastic/drug effects , Cell Survival/drug effects
2.
AAPS PharmSciTech ; 25(5): 125, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38834759

DOX liposomes have better therapeutic effects and lower toxic side effects. The targeting ability of liposomes is one of the key factors affecting the therapeutic effect of DOX liposomes. This study developed two types of targeted liposomes. Sialic acid (SA)-modified liposomes were designed to target the highly expressed Siglec-1 receptor on tumor-associated macrophages surface. Phosphatidylserine (PS)-modified liposomes were designed to promote phagocytosis by monocyte-derived macrophages through PS apoptotic signaling. In order to assess and compare the therapeutic potential of different targeted pathways in the context of anti-tumor treatment, we compared four phosphatidylserine membrane materials (DOPS, DSPS, DPPS and DMPS) and found that liposomes prepared using DOPS as material could significantly improve the uptake ability of RAW264.7 cells for DOX liposomes. On this basis, normal DOX liposomes (CL-DOX) and SA-modified DOX liposomes (SAL-DOX), PS-modified DOX liposomes (PS-CL-DOX), SA and PS co-modified DOX liposomes (PS-SAL-DOX) were prepared. The anti-tumor cells function of each liposome on S180 and RAW264.7 in vitro was investigated, and it was found that SA on the surface of liposomes can increase the inhibitory effect. In vivo efficacy results exhibited that SAL-DOX and PS-CL-DOX were superior to other groups in terms of ability to inhibit tumor growth and tumor inhibition index, among which SAL-DOX had the best anti-tumor effect. Moreover, SAL-DOX group mice had high expression of IFN-γ as well as IL-12 factors, which could significantly inhibit mice tumor growth, improve the immune microenvironment of the tumor site, and have excellent targeted delivery potential.


Doxorubicin , Liposomes , N-Acetylneuraminic Acid , Phosphatidylserines , Tumor-Associated Macrophages , Animals , Mice , N-Acetylneuraminic Acid/chemistry , RAW 264.7 Cells , Phosphatidylserines/metabolism , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Phagocytosis/drug effects , Drug Delivery Systems/methods , Apoptosis/drug effects
3.
Cell Death Dis ; 15(6): 386, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824143

Doxorubicin's antitumor effectiveness may be constrained with ineffective tumor penetration, systemic adverse effects, as well as drug resistance. The co-loading of immune checkpoint inhibitors and doxorubicin into liposomes can produce synergistic benefits and address problems, including quick drug clearance, toxicity, and low drug penetration efficiency. In our previous study, we modified a nanobody targeting CTLA-4 onto liposomes (LPS-Nb36) to be an extremely potent CTLA-4 signal blocker which improve the CD8+ T-cell activity against tumors under physiological conditions. In this study, we designed a drug delivery system (LPS-RGD-Nb36-DOX) based on LPS-Nb36 that realized the doxorubicin and anti-CTLA-4 Nb co-loaded and RGD modification, and was applied to antitumor therapy. We tested whether LPS-RGD-Nb36-DOX could targets the tumor by in vivo animal photography, and more importantly, promote cytotoxic T cells proliferation, pro-inflammatory cytokine production, and cytotoxicity. Our findings demonstrated that the combination of activated CD8+ T cells with doxorubicin/anti-CTLA-4 Nb co-loaded liposomes can effectively eradicate tumor cells both in vivo and in vitro. This combination therapy is anticipated to have synergistic antitumor effects. More importantly, it has the potential to reduce the dose of chemotherapeutic drugs and improve safety.


CTLA-4 Antigen , Doxorubicin , Drug Delivery Systems , Liposomes , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Doxorubicin/therapeutic use , Animals , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/metabolism , Mice , Drug Delivery Systems/methods , Humans , Cell Line, Tumor , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Female , Mice, Inbred BALB C , Mice, Inbred C57BL
4.
Nat Commun ; 15(1): 4698, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38844770

Given the marginal penetration of most drugs across the blood-brain barrier, the efficacy of various agents remains limited for glioblastoma (GBM). Here we employ low-intensity pulsed ultrasound (LIPU) and intravenously administered microbubbles (MB) to open the blood-brain barrier and increase the concentration of liposomal doxorubicin and PD-1 blocking antibodies (aPD-1). We report results on a cohort of 4 GBM patients and preclinical models treated with this approach. LIPU/MB increases the concentration of doxorubicin by 2-fold and 3.9-fold in the human and murine brains two days after sonication, respectively. Similarly, LIPU/MB-mediated blood-brain barrier disruption leads to a 6-fold and a 2-fold increase in aPD-1 concentrations in murine brains and peritumoral brain regions from GBM patients treated with pembrolizumab, respectively. Doxorubicin and aPD-1 delivered with LIPU/MB upregulate major histocompatibility complex (MHC) class I and II in tumor cells. Increased brain concentrations of doxorubicin achieved by LIPU/MB elicit IFN-γ and MHC class I expression in microglia and macrophages. Doxorubicin and aPD-1 delivered with LIPU/MB results in the long-term survival of most glioma-bearing mice, which rely on myeloid cells and lymphocytes for their efficacy. Overall, this translational study supports the utility of LIPU/MB to potentiate the antitumoral activities of doxorubicin and aPD-1 for GBM.


Blood-Brain Barrier , Brain Neoplasms , Doxorubicin , Microbubbles , Programmed Cell Death 1 Receptor , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Doxorubicin/therapeutic use , Doxorubicin/analogs & derivatives , Animals , Humans , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Mice , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Cell Line, Tumor , Glioma/drug therapy , Glioma/immunology , Glioma/pathology , Brain/metabolism , Brain/drug effects , Female , Drug Delivery Systems , Ultrasonic Waves , Glioblastoma/drug therapy , Glioblastoma/immunology , Glioblastoma/pathology , Male , Microglia/drug effects , Microglia/metabolism , Mice, Inbred C57BL , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/pharmacology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/administration & dosage , Polyethylene Glycols
5.
Oncoimmunology ; 13(1): 2362454, 2024.
Article En | MEDLINE | ID: mdl-38846084

Rituximab (RTX) plus chemotherapy (R-CHOP) applied as a first-line therapy for lymphoma leads to a relapse in approximately 40% of the patients. Therefore, novel approaches to treat aggressive lymphomas are being intensively investigated. Several RTX-resistant (RR) cell lines have been established as surrogate models to study resistance to R-CHOP. Our study reveals that RR cells are characterized by a major downregulation of CD37, a molecule currently explored as a target for immunotherapy. Using CD20 knockout (KO) cell lines, we demonstrate that CD20 and CD37 form a complex, and hypothesize that the presence of CD20 stabilizes CD37 in the cell membrane. Consequently, we observe a diminished cytotoxicity of anti-CD37 monoclonal antibody (mAb) in complement-dependent cytotoxicity in both RR and CD20 KO cells that can be partially restored upon lysosome inhibition. On the other hand, the internalization rate of anti-CD37 mAb in CD20 KO cells is increased when compared to controls, suggesting unhampered efficacy of antibody drug conjugates (ADCs). Importantly, even a major downregulation in CD37 levels does not hamper the efficacy of CD37-directed chimeric antigen receptor (CAR) T cells. In summary, we present here a novel mechanism of CD37 regulation with further implications for the use of anti-CD37 immunotherapies.


Antigens, CD20 , Immunotherapy , Lymphoma, B-Cell , Rituximab , Tetraspanins , Humans , Antigens, CD20/immunology , Antigens, CD20/metabolism , Antigens, CD20/genetics , Rituximab/pharmacology , Rituximab/therapeutic use , Tetraspanins/genetics , Tetraspanins/metabolism , Cell Line, Tumor , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/therapy , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/drug therapy , Immunotherapy/methods , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Cyclophosphamide/pharmacology , Cyclophosphamide/therapeutic use , Vincristine/pharmacology , Vincristine/therapeutic use , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Gene Expression Regulation, Neoplastic
6.
Int J Nanomedicine ; 19: 5059-5070, 2024.
Article En | MEDLINE | ID: mdl-38836007

Purpose: The purpose of this study is to address the need for efficient drug delivery with high drug encapsulation efficiency and sustained drug release. We aim to create nanoparticle-loaded microgels for potential applications in treatment development. Methods: We adopted the process of ionic gelation to generate microgels from sodium alginate and carboxymethyl cellulose. These microgels were loaded with doxorubicin-conjugated amine-functionalized zinc ferrite nanoparticles (AZnFe-NPs). The systems were characterized using various techniques. Toxicity was evaluated in MCF-7 cells. In vitro release studies were conducted at different pH levels at 37 oC, with the drug release kinetics being analyzed using various models. Results: The drug encapsulation efficiency of the created carriers was as high as 70%. The nanoparticle-loaded microgels exhibited pH-responsive behavior and sustained drug release. Drug release from them was mediated via a non-Fickian type of diffusion. Conclusion: Given their high drug encapsulation efficiency, sustained drug release and pH-responsiveness, our nanoparticle-loaded microgels show promise as smart carriers for future treatment applications. Further development and research can significantly benefit the field of drug delivery and treatment development.


Delayed-Action Preparations , Doxorubicin , Drug Carriers , Drug Liberation , Ferric Compounds , Microgels , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Humans , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , MCF-7 Cells , Ferric Compounds/chemistry , Hydrogen-Ion Concentration , Microgels/chemistry , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Alginates/chemistry , Amines/chemistry , Carboxymethylcellulose Sodium/chemistry , Nanoparticles/chemistry , Zinc/chemistry , Zinc Compounds/chemistry , Cell Survival/drug effects
7.
Int J Nanomedicine ; 19: 4893-4906, 2024.
Article En | MEDLINE | ID: mdl-38828202

Introduction: The tumor microenvironment (TME) has attracted considerable attention as a potential therapeutic target for cancer. High levels of reactive oxygen species (ROS) in the TME may act as a stimulus for drug release. In this study, we have developed ROS-responsive hyaluronic acid-bilirubin nanoparticles (HABN) loaded with doxorubicin (DOX@HABN) for the specific delivery and release of DOX in tumor tissue. The hyaluronic acid shell of the nanoparticles acts as an active targeting ligand that can specifically bind to CD44-overexpressing tumors. The bilirubin core has intrinsic anti-cancer activity and ROS-responsive solubility change properties. Methods & Results: DOX@HABN showed the HA shell-mediated targeting ability, ROS-responsive disruption leading to ROS-mediated drug release, and synergistic anti-cancer activity against ROS-overproducing CD44-overexpressing HeLa cells. Additionally, intravenously administered HABN-Cy5.5 showed remarkable tumor-targeting ability in HeLa tumor-bearing mice with limited distribution in major organs. Finally, intravenous injection of DOX@HABN into HeLa tumor-bearing mice showed synergistic anti-tumor efficacy without noticeable side effects. Conclusion: These findings suggest that DOX@HABN has significant potential as a cancer-targeting and TME ROS-responsive nanomedicine for targeted cancer treatment.


Bilirubin , Doxorubicin , Hyaluronan Receptors , Hyaluronic Acid , Nanomedicine , Nanoparticles , Reactive Oxygen Species , Tumor Microenvironment , Hyaluronic Acid/chemistry , Tumor Microenvironment/drug effects , Animals , Reactive Oxygen Species/metabolism , Humans , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Doxorubicin/administration & dosage , Nanoparticles/chemistry , Mice , HeLa Cells , Hyaluronan Receptors/metabolism , Bilirubin/chemistry , Bilirubin/pharmacology , Bilirubin/pharmacokinetics , Drug Liberation , Mice, Inbred BALB C , Mice, Nude , Xenograft Model Antitumor Assays , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/administration & dosage , Neoplasms/drug therapy , Neoplasms/metabolism
8.
Biomed Mater ; 19(4)2024 May 10.
Article En | MEDLINE | ID: mdl-38697132

During the process of malignant tumor treatment, photodynamic therapy (PDT) exerts poor efficacy due to the hypoxic environment of the tumor cells, and long-time chemotherapy reduces the sensitivity of tumor cells to chemotherapy drugs due to the presence of drug-resistant proteins on the cell membranes for drug outward transportation. Therefore, we reported a nano platform based on mesoporous silica coated with polydopamine (MSN@PDA) loading PDT enhancer MnO2, photosensitizer indocyanine green (ICG) and chemotherapeutic drug doxorubicin (DOX) (designated as DMPIM) to achieve a sequential release of different drugs to enhance treatment of malignant tumors. MSN was first synthesized by a template method, then DOX was loaded into the mesoporous channels of MSN, and locked by the PDA coating. Next, ICG was modified by π-π stacking on PDA, and finally, MnO2layer was accumulated on the surface of DOX@MSN@PDA- ICG@MnO2, achieving orthogonal loading and sequential release of different drugs. DMPIM first generated oxygen (O2) through the reaction between MnO2and H2O2after entering tumor cells, alleviating the hypoxic environment of tumors and enhancing the PDT effect of sequentially released ICG. Afterwards, ICG reacted with O2in tumor tissue to produce reactive oxygen species, promoting lysosomal escape of drugs and inactivation of p-glycoprotein (p-gp) on tumor cell membranes. DOX loaded in the MSN channels exhibited a delay of approximately 8 h after ICG release to exert the enhanced chemotherapy effect. The drug delivery system achieved effective sequential release and multimodal combination therapy, which achieved ideal therapeutic effects on malignant tumors. This work offers a route to a sequential drug release for advancing the treatment of malignant tumors.


Doxorubicin , Drug Liberation , Indocyanine Green , Indoles , Manganese Compounds , Oxides , Photochemotherapy , Photosensitizing Agents , Polymers , Photochemotherapy/methods , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Indocyanine Green/chemistry , Indoles/chemistry , Animals , Manganese Compounds/chemistry , Humans , Polymers/chemistry , Cell Line, Tumor , Oxides/chemistry , Photosensitizing Agents/chemistry , Silicon Dioxide/chemistry , Mice , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , Drug Delivery Systems , Nanoparticles/chemistry , Drug Carriers/chemistry , Porosity
9.
Mol Biol Rep ; 51(1): 603, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698270

BACKGROUND: Drug combination studies help to improve new treatment approaches for colon cancer. Tumor spheroids (3D) are better models than traditional 2-dimensional cultures (2D) to evaluate cellular responses to chemotherapy drugs. The cultivation of cancer cells in 2D and 3D cultures affects the apoptotic process, which is a major factor influencing the response of cancer cells to chemotherapeutic drugs. In this study, the antiproliferative effects of 5-fluorouracil (5-FU) and doxorubicin (DOX) were investigated separately and in combination using 2D and 3D cell culture models on two different colon cancer cell lines, HT-29 (apoptosis-resistant cells) and Caco-2 2 (apoptosis-susceptible cells). METHODS: The effect of the drugs on the proliferation of both colon cancer cells was determined by performing an MTT assay in 2D culture. The apoptotic effect of 5-FU and DOX, both as single agents and in combination, was assessed in 2D and 3D cultures through quantitative real-time polymerase chain reaction analysis. The expression of apoptotic genes, such as caspases, p53, Bax, and Bcl-2, was quantified. RESULTS: It was found that the mRNA expression of proapoptotic genes was significantly upregulated, whereas the mRNA expression of the antiapoptotic Bcl-2 gene was significantly downregulated in both colon cancer models treated with 5-FU, DOX, and 5-FU + DOX. CONCLUSION: The results indicated that the 5-FU + DOX combination therapy induces apoptosis and renders 5-FU and DOX more effective at lower concentrations compared to their alone use. This study reveals promising results in reducing the potential side effects of treatment by enabling the use of lower drug doses.


Apoptosis , Cell Proliferation , Colorectal Neoplasms , Doxorubicin , Fluorouracil , Spheroids, Cellular , Humans , Fluorouracil/pharmacology , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , Doxorubicin/pharmacology , Apoptosis/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , HT29 Cells , Cell Proliferation/drug effects , Caco-2 Cells , Gene Expression Regulation, Neoplastic/drug effects , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Line, Tumor , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics
10.
Int J Nanomedicine ; 19: 3827-3846, 2024.
Article En | MEDLINE | ID: mdl-38708180

Background: New treatment modalities for hepatocellular carcinoma (HCC) are desperately critically needed, given the lack of specificity, severe side effects, and drug resistance with single chemotherapy. Engineered bacteria can target and accumulate in tumor tissues, induce an immune response, and act as drug delivery vehicles. However, conventional bacterial therapy has limitations, such as drug loading capacity and difficult cargo release, resulting in inadequate therapeutic outcomes. Synthetic biotechnology can enhance the precision and efficacy of bacteria-based delivery systems. This enables the selective release of therapeutic payloads in vivo. Methods: In this study, we constructed a non-pathogenic Escherichia coli (E. coli) with a synchronized lysis circuit as both a drug/gene delivery vehicle and an in-situ (hepatitis B surface antigen) Ag (ASEc) producer. Polyethylene glycol (CHO-PEG2000-CHO)-poly(ethyleneimine) (PEI25k)-citraconic anhydride (CA)-doxorubicin (DOX) nanoparticles loaded with plasmid encoded human sulfatase 1 (hsulf-1) enzyme (PNPs) were anchored on the surface of ASEc (ASEc@PNPs). The composites were synthesized and characterized. The in vitro and in vivo anti-tumor effect of ASEc@PNPs was tested in HepG2 cell lines and a mouse subcutaneous tumor model. Results: The results demonstrated that upon intravenous injection into tumor-bearing mice, ASEc can actively target and colonise tumor sites. The lytic genes to achieve blast and concentrated release of Ag significantly increased cytokine secretion and the intratumoral infiltration of CD4/CD8+T cells, initiated a specific immune response. Simultaneously, the PNPs system releases hsulf-1 and DOX into the tumor cell resulting in rapid tumor regression and metastasis prevention. Conclusion: The novel drug delivery system significantly suppressed HCC in vivo with reduced side effects, indicating a potential strategy for clinical HCC therapy.


Carcinoma, Hepatocellular , Doxorubicin , Escherichia coli , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/therapy , Liver Neoplasms/drug therapy , Liver Neoplasms/therapy , Humans , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Hep G2 Cells , Mice , Escherichia coli/drug effects , Hepatitis B Surface Antigens , Sulfotransferases/genetics , Nanoparticles/chemistry , Mice, Inbred BALB C , Drug Delivery Systems/methods , Xenograft Model Antitumor Assays
11.
Bull Exp Biol Med ; 176(5): 697-702, 2024 Mar.
Article En | MEDLINE | ID: mdl-38724814

One of the key problems of glioblastoma treatment is the low effectiveness of chemotherapeutic drugs. Incorporation of doxorubicin into PLGA nanoparticles allows increasing the antitumor effect of the cytostatics against experimental rat glioblastoma 101.8. Animal survival, tumor volume, and oncogene expression in tumor cells were compared after early (days 2, 5, and 8 after tumor implantation) and late (days 8, 11, and 14) start of the therapy. At late start, a significant increase in the expression of oncogenes Gdnf, Pdgfra, and Melk and genes determining the development of multidrug resistance Abcb1b and Mgmt was revealed. At early start of therapy, only the expression of oncogenes Gdnf, Pdgfra, and Melk was enhanced. Early start of treatment prolonged the survival time and increased tumor growth inhibition by 141.4 and 95.7%, respectively, in comparison with the untreated group; these differences were not observed in the group with late start of therapy. The results indicate that the time of initiation of therapy is a critical parameter affecting the antitumor efficacy of DOX-PLGA.


Doxorubicin , Glioblastoma , Nanoparticles , Animals , Glioblastoma/drug therapy , Glioblastoma/pathology , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Rats , Nanoparticles/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/therapeutic use , Male , Cell Line, Tumor , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Polyglycolic Acid/chemistry , Gene Expression Regulation, Neoplastic/drug effects
12.
Bull Exp Biol Med ; 176(5): 687-696, 2024 Mar.
Article En | MEDLINE | ID: mdl-38733479

The effect of a new pyridoxine derivative B6NO on doxorubicin cytotoxicity and Nrf2-dependent cellular processes in vitro was studied. Antioxidant B6NO enhances the cytotoxic effect of doxorubicin on tumor cells, which is associated with G2/M cell division arrest and an increase in activity of proapoptotic enzyme caspase-3. The antioxidant promotes intracellular accumulation and nuclear translocation of Nrf2 transcription factor in non-tumor and tumor cells. In non-tumor cells, B6NO increases the expression of antioxidant system proteins and reduces ROS generation in the presence of doxorubicin. In tumor cells, no activation of Nrf2-dependent processes occurs under the action of the antioxidant. Our findings demonstrate the prospect of further studies of pyridoxine derivatives as antioxidants to reduce adverse reactions during chemotherapy.


Antioxidants , Apoptosis , Caspase 3 , Doxorubicin , NF-E2-Related Factor 2 , Pyridoxine , Reactive Oxygen Species , Doxorubicin/pharmacology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Humans , Pyridoxine/pharmacology , Pyridoxine/analogs & derivatives , Caspase 3/metabolism , Caspase 3/genetics , Antioxidants/pharmacology , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Cell Line, Tumor , G2 Phase Cell Cycle Checkpoints/drug effects
13.
FASEB J ; 38(10): e23655, 2024 May 31.
Article En | MEDLINE | ID: mdl-38767449

The disruption of mitochondria homeostasis can impair the contractile function of cardiomyocytes, leading to cardiac dysfunction and an increased risk of heart failure. This study introduces a pioneering therapeutic strategy employing mitochondria derived from human umbilical cord mesenchymal stem cells (hu-MSC) (MSC-Mito) for heart failure treatment. Initially, we isolated MSC-Mito, confirming their functionality. Subsequently, we monitored the process of single mitochondria transplantation into recipient cells and observed a time-dependent uptake of mitochondria in vivo. Evidence of human-specific mitochondrial DNA (mtDNA) in murine cardiomyocytes was observed after MSC-Mito transplantation. Employing a doxorubicin (DOX)-induced heart failure model, we demonstrated that MSC-Mito transplantation could safeguard cardiac function and avert cardiomyocyte apoptosis, indicating metabolic compatibility between hu-MSC-derived mitochondria and recipient mitochondria. Finally, through RNA sequencing and validation experiments, we discovered that MSC-Mito transplantation potentially exerted cardioprotection by reinstating ATP production and curtailing AMPKα-mTOR-mediated excessive autophagy.


AMP-Activated Protein Kinases , Apoptosis , Autophagy , Mesenchymal Stem Cells , Mitochondria , Myocytes, Cardiac , TOR Serine-Threonine Kinases , Myocytes, Cardiac/metabolism , Animals , TOR Serine-Threonine Kinases/metabolism , AMP-Activated Protein Kinases/metabolism , Mice , Humans , Mesenchymal Stem Cells/metabolism , Mitochondria/metabolism , Male , Doxorubicin/pharmacology , Mice, Inbred C57BL , Heart Failure/metabolism
14.
ACS Appl Bio Mater ; 7(5): 3337-3345, 2024 May 20.
Article En | MEDLINE | ID: mdl-38700956

A stimuli-responsive drug delivery nanocarrier with a core-shell structure combining photothermal therapy and chemotherapy for killing cancer cells was constructed in this study. The multifunctional nanocarrier ReS2@mSiO2-RhB entails an ReS2 hierarchical nanosphere coated with a fluorescent mesoporous silica shell. The three-dimensional hierarchical ReS2 nanostructure is capable of effectively absorbing near-infrared (NIR) light and converting it into heat. These ReS2 nanospheres were generated by a hydrothermal synthesis process leading to the self-assembly of few-layered ReS2 nanosheets. The mesoporous silica shell was further coated on the surface of the ReS2 nanospheres through a surfactant-templating sol-gel approach to provide accessible mesopores for drug uploading. A fluorescent dye (Rhodamine B) was covalently attached to silica precursors and incorporated during synthesis in the mesoporous silica walls toward conferring imaging capability to the nanocarrier. Doxorubicin (DOX), a known cancer drug, was used in a proof-of-concept study to assess the material's ability to function as a drug delivery carrier. While the silica pores are not capped, the drug molecule loading and release take advantage of the pH-governed electrostatic interactions between the drug and silica wall. The ReS2@mSiO2-RhB enabled a drug loading content as high as 19.83 mg/g doxorubicin. The ReS2@mSiO2-RhB-DOX nanocarrier's cumulative drug release rate at pH values that simulate physiological conditions showed significant pH responsiveness, reaching 59.8% at pH 6.8 and 98.5% and pH 5.5. The in vitro testing using HeLa cervical cancer cells proved that ReS2@mSiO2-RhB-DOX has a strong cancer eradication ability upon irradiation with an NIR laser owing to the combined drug delivery and photothermal effect. The results highlight the potential of ReS2@mSiO2-RhB nanoparticles for combined cancer therapy in the future.


Doxorubicin , Drug Liberation , Drug Screening Assays, Antitumor , Materials Testing , Nanoparticles , Particle Size , Photothermal Therapy , Rhenium , Silicon Dioxide , Silicon Dioxide/chemistry , Humans , Doxorubicin/pharmacology , Doxorubicin/chemistry , Hydrogen-Ion Concentration , Nanoparticles/chemistry , Rhenium/chemistry , Rhenium/pharmacology , Disulfides/chemistry , Porosity , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Cell Survival/drug effects , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Carriers/chemistry , HeLa Cells
15.
Oncotarget ; 15: 328-344, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758815

GZ17-6.02 has undergone phase I evaluation in patients with solid tumors (NCT03775525). The RP2D is 375 mg PO BID, with an uveal melanoma patient exhibiting a 15% reduction in tumor mass for 5 months at this dose. Studies in this manuscript have defined the biology of GZ17-6.02 in PDX isolates of uveal melanoma cells. GZ17-6.02 killed uveal melanoma cells through multiple convergent signals including enhanced ATM-AMPK-mTORC1 activity, inactivation of YAP/TAZ and inactivation of eIF2α. GZ17-6.02 significantly enhanced the expression of BAP1, predictive to reduce metastasis, and reduced the levels of ERBB family RTKs, predicted to reduce growth. GZ17-6.02 interacted with doxorubicin or ERBB family inhibitors to significantly enhance tumor cell killing which was associated with greater levels of autophagosome formation and autophagic flux. Knock down of Beclin1, ATG5 or eIF2α were more protective than knock down of ATM, AMPKα, CD95 or FADD, however, over-expression of FLIP-s provided greater protection compared to knock down of CD95 or FADD. Expression of activated forms of mTOR and STAT3 significantly reduced tumor cell killing. GZ17-6.02 reduced the expression of PD-L1 in uveal melanoma cells to a similar extent as observed in cutaneous melanoma cells whereas it was less effective at enhancing the levels of MHCA. The components of GZ17-6.02 were detected in tumors using a syngeneic tumor model. Our data support future testing GZ17-6.02 in uveal melanoma as a single agent, in combination with ERBB family inhibitors, in combination with cytotoxic drugs, or with an anti-PD1 immunotherapy.


Melanoma , Uveal Neoplasms , Xenograft Model Antitumor Assays , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/pathology , Melanoma/genetics , Uveal Neoplasms/drug therapy , Uveal Neoplasms/metabolism , Uveal Neoplasms/pathology , Uveal Neoplasms/genetics , Humans , Animals , Mice , Cell Line, Tumor , Signal Transduction/drug effects , Autophagy/drug effects , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics
16.
ACS Nano ; 18(20): 12716-12736, 2024 May 21.
Article En | MEDLINE | ID: mdl-38718220

Mesoporous silica nanoparticles (MSNs) represent a promising avenue for targeted brain tumor therapy. However, the blood-brain barrier (BBB) often presents a formidable obstacle to efficient drug delivery. This study introduces a ligand-free PEGylated MSN variant (RMSN25-PEG-TA) with a 25 nm size and a slight positive charge, which exhibits superior BBB penetration. Utilizing two-photon imaging, RMSN25-PEG-TA particles remained in circulation for over 24 h, indicating significant traversal beyond the cerebrovascular realm. Importantly, DOX@RMSN25-PEG-TA, our MSN loaded with doxorubicin (DOX), harnessed the enhanced permeability and retention (EPR) effect to achieve a 6-fold increase in brain accumulation compared to free DOX. In vivo evaluations confirmed the potent inhibition of orthotopic glioma growth by DOX@RMSN25-PEG-TA, extending survival rates in spontaneous brain tumor models by over 28% and offering an improved biosafety profile. Advanced LC-MS/MS investigations unveiled a distinctive protein corona surrounding RMSN25-PEG-TA, suggesting proteins such as apolipoprotein E and albumin could play pivotal roles in enabling its BBB penetration. Our results underscore the potential of ligand-free MSNs in treating brain tumors, which supports the development of future drug-nanoparticle design paradigms.


Blood-Brain Barrier , Doxorubicin , Drug Delivery Systems , Nanoparticles , Silicon Dioxide , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Silicon Dioxide/chemistry , Doxorubicin/pharmacology , Doxorubicin/chemistry , Nanoparticles/chemistry , Animals , Porosity , Mice , Humans , Polyethylene Glycols/chemistry , Drug Carriers/chemistry , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Particle Size , Cell Line, Tumor , Glioma/drug therapy , Glioma/metabolism , Glioma/pathology , Ligands , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/administration & dosage
17.
ACS Appl Mater Interfaces ; 16(19): 25101-25112, 2024 May 15.
Article En | MEDLINE | ID: mdl-38691046

The evolution of nano-drug delivery systems addresses the limitations of conventional cancer treatments with stimulus-responsive nanomaterial-based delivery systems presenting temporal and spatial advantages. Among various nanomaterials, boron nitride nanoparticles (BNNs) demonstrate significant potential in drug delivery and cancer treatment, providing a high drug loading capacity, multifunctionality, and low toxicity. However, the challenge lies in augmenting nanomaterial accumulation exclusively within tumors while preserving healthy tissues. To address this, we introduce a novel approach involving cancer cell membrane-functionalized BNNs (CM-BIDdT) for the codelivery of doxorubicin (Dox) and indocyanine green to treat homologous tumor. The cancer cell membrane biomimetic CM-BIDdT nanoparticles possess highly efficient homologous targeting capabilities toward tumor cells. The surface modification with acylated TAT peptides (dTAT) further enhances the nanoparticle intracellular accumulation. Consequently, CM-BIDdT nanoparticles, responsive to the acidic tumor microenvironment, hydrolyze amide bonds, activate the transmembrane penetrating function, and achieve precise targeting with substantial accumulation at the tumor site. Additionally, the photothermal effect of CM-BIDdT under laser irradiation not only kills cells through thermal ablation but also destroys the membrane on the surface of the nanoparticles, facilitating Dox release. Therefore, the fabricated CM-BIDdT nanoparticles orchestrate chemo-photothermal combination therapy and effectively inhibit tumor growth with minimal adverse effects, holding promise as a new modality for synergistic cancer treatment.


Boron Compounds , Doxorubicin , Indocyanine Green , Nanoparticles , Doxorubicin/chemistry , Doxorubicin/pharmacology , Indocyanine Green/chemistry , Indocyanine Green/pharmacology , Boron Compounds/chemistry , Boron Compounds/pharmacology , Animals , Humans , Mice , Nanoparticles/chemistry , Cell Line, Tumor , Photothermal Therapy , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/therapy , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , tat Gene Products, Human Immunodeficiency Virus/chemistry , Mice, Inbred BALB C , Drug Carriers/chemistry , Drug Delivery Systems
18.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2222-2229, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38812237

This study aims to investigate the effect and mechanism of Stellera chamaejasme extract(SCL) on multidrug resistance(MDR) in breast cancer. Human triple-negative breast cancer cell line MDA-MB-231 and its adriamycin-resistant cell line MDA-MB-231/ADR were used in the experiment. Cell viability was detected by methyl thiazolyl tetrazolium(MTT) assay, and cell apoptosis was detected by DAPI staining and Annexin-V/Pi double staining. Western blot(WB) was used to detect the expression levels of Keap1, Nrf2, HO-1, Bcl-2, Bax, caspase-9, and caspase-3. Immunofluorescence staining was used to observe the distribution of Nrf2 in the cell, and flow cytometry was used to detect the level of reactive oxygen species(ROS) in the cell. The results showed that the resis-tance factor of SCL was 0.69, and that of adriamycin and paclitaxel was 8.40 and 16.36, respectively. DAPI staining showed that SCL could cause nuclear shrinkage and fragmentation of breast cancer cells. Annexin-V/Pi double staining showed that the average apoptosis rate of the drug-resistant cells was 32.64% and 50.29%, respectively under medium and high doses of SCL. WB results showed that SCL could significantly reduce the expression levels of anti-apoptotic proteins Bcl-2, caspase-9, and caspase-3 and significantly increase the expression level of pro-apoptotic protein Bax. Further studies showed that SCL could significantly promote the expression of Keap1, significantly inhibit the expression of Nrf2 and HO-1, and significantly reduce the expression level of Nrf2 in the nucleus. Correspondingly, flow cytometry showed that the intracellular ROS level was significantly increased. In conclusion, SCL can significantly inhibit the proliferation of MDA-MB-231 multidrug-resistant cells of triple-negative breast cancer and cause cell apoptosis, and the mechanism is related to inhibiting Keap1/Nrf2 signaling pathway, leading to ROS accumulation in drug-resistant cells and increasing the expression of apoptosis-related proteins.


Apoptosis , Drug Resistance, Neoplasm , NF-E2-Related Factor 2 , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Apoptosis/drug effects , Female , Drug Resistance, Multiple/drug effects , Thymelaeaceae/chemistry , Drugs, Chinese Herbal/pharmacology , Reactive Oxygen Species/metabolism , Doxorubicin/pharmacology , Cell Survival/drug effects , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Cell Proliferation/drug effects , MDA-MB-231 Cells
19.
Int J Mol Sci ; 25(10)2024 May 08.
Article En | MEDLINE | ID: mdl-38791158

Triple-negative breast cancer (TNBC) remains the most lethal subtype of breast cancer, characterized by poor response rates to current chemotherapies and a lack of additional effective treatment options. While approximately 30% of patients respond well to anthracycline- and taxane-based standard-of-care chemotherapy regimens, the majority of patients experience limited improvements in clinical outcomes, highlighting the critical need for strategies to enhance the effectiveness of anthracycline/taxane-based chemotherapy in TNBC. In this study, we report on the potential of a DNA-PK inhibitor, peposertib, to improve the effectiveness of topoisomerase II (TOPO II) inhibitors, particularly anthracyclines, in TNBC. Our in vitro studies demonstrate the synergistic antiproliferative activity of peposertib in combination with doxorubicin, epirubicin and etoposide in multiple TNBC cell lines. Downstream analysis revealed the induction of ATM-dependent compensatory signaling and p53 pathway activation under combination treatment. These in vitro findings were substantiated by pronounced anti-tumor effects observed in mice bearing subcutaneously implanted tumors. We established a well-tolerated preclinical treatment regimen combining peposertib with pegylated liposomal doxorubicin (PLD) and demonstrated strong anti-tumor efficacy in cell-line-derived and patient-derived TNBC xenograft models in vivo. Taken together, our findings provide evidence that co-treatment with peposertib has the potential to enhance the efficacy of anthracycline/TOPO II-based chemotherapies, and it provides a promising strategy to improve treatment outcomes for TNBC patients.


Doxorubicin , Drug Synergism , Topoisomerase II Inhibitors , Triple Negative Breast Neoplasms , Xenograft Model Antitumor Assays , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Humans , Animals , Female , Mice , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/therapeutic use , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Doxorubicin/analogs & derivatives , DNA-Activated Protein Kinase/antagonists & inhibitors , DNA-Activated Protein Kinase/metabolism , Sulfones/pharmacology , Cell Proliferation/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Polyethylene Glycols/pharmacology , Etoposide/pharmacology , Etoposide/therapeutic use , DNA Topoisomerases, Type II/metabolism , Epirubicin/pharmacology
20.
Int J Mol Sci ; 25(10)2024 May 20.
Article En | MEDLINE | ID: mdl-38791591

Multidrug resistance (MDR) is frequently induced after long-term exposure to reduce the therapeutic effect of chemotherapeutic drugs, which is always associated with the overexpression of efflux proteins, such as P-glycoprotein (P-gp). Nano-delivery technology can be used as an efficient strategy to overcome tumor MDR. In this study, mesoporous silica nanoparticles (MSNs) were synthesized and linked with a disulfide bond and then coated with lipid bilayers. The functionalized shell/core delivery systems (HT-LMSNs-SS@DOX) were developed by loading drugs inside the pores of MSNs and conjugating with D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) and hyaluronic acid (HA) on the outer lipid surface. HT-LMSNs-SS and other carriers were characterized and assessed in terms of various characteristics. HT-LMSNs-SS@DOX exhibited a dual pH/reduction responsive drug release. The results also showed that modified LMSNs had good dispersity, biocompatibility, and drug-loading capacity. In vitro experiment results demonstrated that HT-LMSNs-SS were internalized by cells and mainly by clathrin-mediated endocytosis, with higher uptake efficiency than other carriers. Furthermore, HT-LMSNs-SS@DOX could effectively inhibit the expression of P-gp, increase the apoptosis ratios of MCF-7/ADR cells, and arrest cell cycle at the G0/G1 phase, with enhanced ability to induce excessive reactive oxygen species (ROS) production in cells. In tumor-bearing model mice, HT-LMSNs-SS@DOX similarly exhibited the highest inhibition activity against tumor growth, with good biosafety, among all of the treatment groups. Therefore, the nano-delivery systems developed herein achieve enhanced efficacy towards resistant tumors through targeted delivery and redox-responsive drug release, with broad application prospects.


Doxorubicin , Drug Resistance, Neoplasm , Lipid Bilayers , Nanoparticles , Oxidation-Reduction , Silicon Dioxide , Silicon Dioxide/chemistry , Humans , Animals , Drug Resistance, Neoplasm/drug effects , Nanoparticles/chemistry , Mice , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Lipid Bilayers/chemistry , Drug Carriers/chemistry , Drug Liberation , Drug Delivery Systems , Apoptosis/drug effects , Porosity , Female , MCF-7 Cells , Xenograft Model Antitumor Assays , Cell Line, Tumor , Hyaluronic Acid/chemistry , Drug Resistance, Multiple/drug effects , Mice, Nude
...