Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 594
Filter
1.
BMJ Ment Health ; 27(1)2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39182921

ABSTRACT

BACKGROUND: The mental health benefits of cannabidiol (CBD) are promising but can be inconsistent, in part due to challenges in defining an individual's effective dosage. In schizophrenia, alterations in anandamide (AEA) concentrations, an endocannabinoid (eCB) agonist of the eCB system, reflect positively on treatment with CBD. Here, we expanded this assessment to include eCBs alongside AEA congeners, comparing phytocannabinoids and dosage in a clinical setting. METHODS: Liquid chromatography-tandem mass spectrometry quantified changes in serum levels of AEA, 2-arachidonoylglycerol (2-AG), alongside AEA-related compounds oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), which were attained from two independent, parallel-designed, clinical trials investigating single, oral CBD (600 or 800 mg), delta-9-tetrahydrocannabinol (Δ9-THC, 10 or 20 mg) and combination administration (CBD|800 mg+Δ9-THC|20 mg) in healthy volunteers (HVs, n=75). Concentrations were measured at baseline (t=0), 65 and 160 min post administration. RESULTS: CBD-led increases in AEA (1.6-fold), OEA and PEA (1.4-fold) were observed following a single 800 mg (pcorr<0.05) but not 600 mg dosage. Declining AEA was observed with Δ9-THC at 10 mg (-1.3-fold) and 20 mg (-1.4-fold) but restored to baseline levels by 160 min. CBD+Δ9-THC yielded the highest increases in AEA (2.1-fold), OEA (1.9-fold) and PEA (1.8-fold) without reaching a maximal response. CONCLUSION: CBD-administered effects towards AEA, OEA and PEA are consistent with phase II trials reporting clinical improvement for acute schizophrenia (CBD≥800 mg). Including Δ9-THC appears to enhance the CBD-induced response towards AEA and its congeners. Our results warrant further investigations into the potential of these lipid-derived mediators as metabolic measures for CBD dose prescription and co-cannabinoid administration.


Subject(s)
Arachidonic Acids , Cannabidiol , Dose-Response Relationship, Drug , Dronabinol , Endocannabinoids , Ethanolamines , Healthy Volunteers , Polyunsaturated Alkamides , Humans , Endocannabinoids/blood , Arachidonic Acids/blood , Arachidonic Acids/administration & dosage , Cannabidiol/administration & dosage , Cannabidiol/blood , Adult , Male , Polyunsaturated Alkamides/blood , Polyunsaturated Alkamides/administration & dosage , Ethanolamines/administration & dosage , Ethanolamines/blood , Dronabinol/blood , Dronabinol/administration & dosage , Dronabinol/pharmacokinetics , Female , Young Adult , Administration, Oral , Middle Aged , Amides , Palmitic Acids
2.
Clin Toxicol (Phila) ; 62(8): 539-541, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39078080

ABSTRACT

INTRODUCTION: Protonitazene is an opioid belonging to the 2-benzylbenzimidazole structural class. We describe two cases of opioid toxicity involving the reported inhalation of a delta-9-tetrahydrocannabinol vape product in which protonitazene was detected. CASE REPORTS: Case 1 was a young male found unconscious after the reported use of a delta-9-tetrahydrocannabinol vape. He suffered two subsequent apnoeic episodes requiring bag-valve-mask ventilation before eventual recovery. Only protonitazene was detected in blood at a concentration of 0.74 µg/L. Case 2 was a young male who died shortly after being found unresponsive. The postmortem femoral blood concentrations of protonitazene and delta-9-tetrahydrocannabinol were 0.33 µg/L and 2 µg/L, respectively. Analysis of a pod vaping device found in the decedent's hand and a separate e-liquid bottle labelled as delta-9-tetrahydrocannabinol showed a mixture of protonitazene and delta-9-tetrahydrocannabinol. DISCUSSION: The opioid effects of protonitazene are mediated through ß-arrestin2 and mu opioid receptor signalling pathways. Benzimidazole opioids are lipophilic and, when mixed with a suitable solvent, can be used in a vape device. It is anticipated that naloxone would have provided effective reversal of toxicity in our cases. CONCLUSIONS: Novel routes of opioid administration, like vaping, may appear relatively innocuous in comparison to intravenous administration, but opioids may still be absorbed at high concentrations, resulting in severe opioid toxicity or death.


Subject(s)
Dronabinol , Humans , Male , Dronabinol/blood , Adult , Analgesics, Opioid/poisoning , Analgesics, Opioid/blood , Vaping/adverse effects , Australia , Fatal Outcome , Young Adult , Benzimidazoles/poisoning , Indazoles/poisoning , Indazoles/blood , Valine/analogs & derivatives
3.
Molecules ; 29(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39065018

ABSTRACT

Recently, hexahydrocannabinol (HHC) was posed under strict control in Europe due to the increasing HHC-containing material seizures. The lack of analytical methods in clinical laboratories to detect HHC and its metabolites in biological matrices may result in related intoxication underreporting. We developed and validated a comprehensive GC-MS/MS method to quantify 9(R)-HHC, 9(S)-HHC, 9αOH-HHC, 9ßOH-HHC, 8(R)OH-9(R)-HHC, 8(S)OH-9(S)HHC, 11OH-9(R)HHC, 11OH-9(S)HHC, 11nor-carboxy-9(R)-HHC, and 11nor-carboxy-9(S)-HHC in whole blood, urine, and oral fluid. A novel QuEChERS extraction protocol was optimized selecting the best extraction conditions suitable for all the three matrices. Urine and blood were incubated with ß-glucuronidase at 60 °C for 2 h. QuEChERS extraction was developed assessing different ratios of Na2SO4:NaCl (4:1, 2:1, 1:1, w/w) to be added to 200 µL of any matrix added with acetonitrile. The chromatographic separation was achieved on a 7890B GC with an HP-5ms column, (30 m, 0.25 mm × 0.25 µm) in 12.50 min. The analytes were detected with a triple-quadrupole mass spectrometer in the MRM mode. The method was fully validated following OSAC guidelines. The method showed good validation parameters in all the matrices. The method was applied to ten real samples of whole blood (n = 4), urine (n = 3), and oral fluid (n = 3). 9(R)-HHC was the prevalent epimer in all the samples (9(R)/9(S) = 2.26). As reported, hydroxylated metabolites are proposed as urinary biomarkers, while carboxylated metabolites are hematic biomarkers. Furthermore, 8(R)OH-9(R)HHC was confirmed as the most abundant metabolite in all urine samples.


Subject(s)
Dronabinol , Gas Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , Humans , Gas Chromatography-Mass Spectrometry/methods , Tandem Mass Spectrometry/methods , Dronabinol/urine , Dronabinol/blood , Dronabinol/analogs & derivatives , Saliva/chemistry , Saliva/metabolism , Reproducibility of Results
4.
J Anal Toxicol ; 48(7): 499-506, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-38836589

ABSTRACT

In recent years, potential therapeutic applications of several different cannabinoids, such as Δ9-tetrahydrocannabinol (Δ9-THC), its isomer Δ8-THC and Δ9-tetrahydrocannabivarin (Δ9-THCV), have been investigated. Nevertheless, to establish dose-effect relationship and to gain knowledge of their pharmacokinetics and metabolism, sensitive and specific analytical assays are needed to measure these compounds in patients. For this reason, we developed and validated an online extraction high-performance liquid/liquid chromatography-tandem mass spectrometry (LC/LC-MS-MS) method for the simultaneous quantification of 13 cannabinoids and metabolites including the Δ8 and Δ9 isomers of THC, THCV and those of their major metabolites in human plasma. Plasma was fortified with cannabinoids at varying concentrations within the working range of the respective compound and 200 µL was extracted using a simple one-step protein precipitation procedure. The extracts were analyzed using online trapping LC/LC-atmospheric pressure chemical ionization-MS-MS running in the positive multiple reaction monitoring mode. The lower limit of quantification ranged from 0.5 to 2.5 ng/mL, and the upper limit of quantification was 400 ng/mL for all analytes. Inter-day analytical accuracy and imprecision ranged from 82.9% to 109% and 4.3% to 20.3% (coefficient of variance), respectively. Of 534 plasma samples following controlled oral administration of Δ8-THCV, 236 were positive for Δ8-THCV (median; interquartile ranges: 3.5 ng/mL; 1.8-11.9 ng/mL), 383 for the major metabolite (-)-11-nor-9-carboxy-Δ8-tetrahydrocannabivarin (Δ8-THCV-COOH) (95.4 ng/mL; 20.7-328 ng/mL), 260 for (-)-11-nor-9-carboxy-Δ9-tetrahydrocannabivarin (Δ9-THCV-COOH) (5.8 ng/mL; 2.5-16.1 ng/mL), 157 for (-)-11-hydroxy-Δ8-tetrahydrocannabivarin (11-OH-Δ8-THCV) (1.7 ng/mL; 1.0-3.7 ng/mL), 49 for Δ8-THC-COOH (1.7 ng/mL; 1.4-2.3 ng/mL) and 42 for Δ9-THCV (1.3 ng/mL; 0.8-1.6 ng/mL). We developed and validated the first LC/LC-MS-MS assay for the specific quantification of Δ8-THC, Δ9-THC and THCV isomers and their respective metabolites in human plasma. Δ8-THCV-COOH, 11-hydroxy-Δ8-THCV and Δ9-THCV-COOH were the major Δ8-THCV metabolites in human plasma after oral administration of 98.6% pure Δ8-THCV.


Subject(s)
Dronabinol , Tandem Mass Spectrometry , Humans , Dronabinol/blood , Dronabinol/analogs & derivatives , Chromatography, Liquid , Isomerism , Reproducibility of Results , Chromatography, High Pressure Liquid , Limit of Detection , Cannabinoids/blood , Cannabinoids/pharmacokinetics , Liquid Chromatography-Mass Spectrometry
5.
J Anal Toxicol ; 48(6): 439-446, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-38648393

ABSTRACT

With wider availability of synthetic and semi-synthetic cannabinoids in the consumer space, there is a growing impact on public health and safety. Forensic toxicology laboratories should keep these compounds in mind as they attempt to remain effective in screening for potential sources of human performance impairment. Enzyme-linked immunosorbent assay (ELISA) is a commonly utilized tool in forensic toxicology, as its efficiency and sensitivity make it useful for rapid and easy screening for a large number of drugs. This screening technique has lower specificity, which allows for broad cross-reactivity among structurally similar compounds. In this study, the Cannabinoids Direct ELISA kit from Immunalysis was utilized to assess the cross-reactivities of 24 cannabinoids and metabolites in whole blood. The assay was calibrated with 5 ng/mL of 11-nor-9-carboxy-Δ9-tetrahydrocannabinol and the analytes of interest were evaluated at concentrations ranging from 5 to 500 ng/mL. Most parent compounds demonstrated cross-reactivity ≥20 ng/mL, with increasing alkyl side-chain length relative to Δ9-tetrahydrocannabinol resulting in decreased cross-reactivity. Of the 24 analytes, only the carboxylic acid metabolites, 11-nor-9-carboxy-Δ8-tetrahydrocannabinol, 11-nor-9(R)-carboxy-hexahydrocannabinol and 11-nor-9(S)-carboxy-hexahydrocannabinol, were cross-reactive at levels ≤10 ng/mL. Interestingly, 11-nor-9(R)-carboxy-hexahydrocannabinol demonstrated cross-reactivity at 5 ng/mL, where its stereoisomer 11-nor-9(S)-carboxy-hexahydrocannabinol, did not. As more information emerges about the prevalence of these analytes in blood specimens, it is important to understand and characterize their impact on current testing paradigms.


Subject(s)
Cannabinoids , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Forensic Toxicology , Substance Abuse Detection , Cannabinoids/blood , Humans , Substance Abuse Detection/methods , Forensic Toxicology/methods , Dronabinol/blood , Dronabinol/analogs & derivatives
6.
Forensic Toxicol ; 42(2): 191-201, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38592642

ABSTRACT

PURPOSE: Cannabidiol (CBD) products are widely used for pain relief, sleep improvement, management of seizures etc. Although the concentrations of Δ9-tetrahydrocannabinol (Δ9-THC) in these products are low (≤0.3% w/w), it is important to investigate if its presence and/or that of its metabolite 11-nor-carboxy-Δ9-THC, is traceable in plasma and urine samples of individuals who take CBD oil products. METHODS: A sensitive GC/MS method for the determination of Δ9-THC, 11-nor-carboxy-Δ9-THC and CBD in plasma and urine samples was developed and validated. The sample preparation procedure included protein precipitation for plasma samples and hydrolysis for urine samples, solid-phase extraction and finally derivatization with N,O-bis(trimethylsilyl)trifluoroacetamide) with 1% trimethylchlorosilane. RESULTS: For all analytes, the LOD and LOQ were 0.06 and 0.20 ng/mL, respectively. The calibration curves were linear (R2 ≥ 0.992), and absolute recoveries were ≥91.7%. Accuracy and precision were within the accepted range. From the analysis of biologic samples of 10 human participants who were taking CBD oil, it was realized that Δ9-THC was not detected in urine, while 11-nor-carboxy-Δ9-THC (0.69-23.06 ng/mL) and CBD (0.29-96.78 ng/mL) were found in all urine samples. Regarding plasma samples, Δ9-THC (0.21-0.62 ng/mL) was detected in 10, 11-nor-carboxy-Δ9-THC (0.20-2.44 ng/mL) in 35, while CBD (0.20-1.58 ng/mL) in 25 out of 38 samples, respectively. CONCLUSION: The results showed that Δ9-THC is likely to be found in plasma although at low concentrations. In addition, the detection of 11-nor-carboxy-Δ9-THC in both urine and plasma samples raises questions and concerns for the proper interpretation of toxicological results, especially considering Greece's zero tolerance law applied in DUID and workplace cases.


Subject(s)
Cannabidiol , Dronabinol , Gas Chromatography-Mass Spectrometry , Limit of Detection , Humans , Cannabidiol/urine , Cannabidiol/blood , Gas Chromatography-Mass Spectrometry/methods , Dronabinol/analogs & derivatives , Dronabinol/urine , Dronabinol/blood , Solid Phase Extraction , Male , Adult
7.
J Anal Toxicol ; 48(5): 350-358, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38687640

ABSTRACT

Hexahydrocannabinol (HHC), 6,6,9-trimethyl-3-pentyl-6a,7,8,9,10,10a-hexahydrobenzo[c]chromen-1-ol, is a semi-synthetic cannabinoid that has presented challenges to analytical laboratories due to its emergence and spread in the drug market. The lack of information on human pharmacokinetics hinders the development and application of presumptive and confirmatory tests for reliably detecting HHC consumption. To address this knowledge gap, we report the analytical results obtained from systematic forensic toxicological analysis of body-fluid samples collected from three individuals suspected of drug-impaired driving after HHC consumption. Urine and plasma samples were analyzed using non-targeted liquid chromatography-high-resolution tandem mass spectrometry. The results provided evidence that HHC undergoes biotransformation reactions similar to other well-characterized cannabinoids, such as ∆9-tetrahydrocannabinol or cannabidiol. Notably, HHC itself was only detectable in plasma samples, not in urine samples. The observed Phase I reactions involved oxidation of C11 and the pentyl side chain, leading to corresponding hydroxylated and carboxylic acid species. Additionally, extensive glucuronidation of HHC and its Phase I metabolites was evident.


Subject(s)
Substance Abuse Detection , Tandem Mass Spectrometry , Humans , Chromatography, Liquid , Substance Abuse Detection/methods , Cannabinoids/blood , Cannabinoids/metabolism , Cannabinoids/urine , Cannabinol , Forensic Toxicology/methods , Dronabinol/urine , Dronabinol/blood
8.
Traffic Inj Prev ; 25(5): 667-672, 2024.
Article in English | MEDLINE | ID: mdl-38648016

ABSTRACT

OBJECTIVE: The concentration of drugs in a driver's system can change between an impaired driving arrest or crash and the collection of a biological specimen for drug testing. Accordingly, delays in specimen collection can result in the loss of critical information that has the potential to affect impaired driving prosecution. The objectives of the study were: (1) to identify factors that influence the time between impaired-driving violations and specimen collections (time-to-collection) among crash-involved drivers, and (2) to consider how such delays affect measured concentrations of drugs, particularly with respect to common drug per se limits. METHOD: Study data included blood toxicology results and crash-related information from 8,923 drivers who were involved in crashes and arrested for impaired driving in Wisconsin between 2019 and 2021. Analyses examined how crash timing and severity influenced time-to-collection and the effects of delays in specimen collection on blood alcohol concentrations (BACs) and blood delta-9-tetrahydrocannabinol (THC) concentrations. RESULTS: The mean time-to-collection for the entire sample was 1.80 h. Crash severity had a significant effect on time-to-collection with crashes involving a fatality having the longest duration (M = 2.35 h) followed by injury crashes (M = 2.06 h) and noninjury crashes (M = 1.69 h). Time of day also affected time-to-collection; late night and early morning hours were associated with shorter durations. Both BAC (r = -0.11) and blood THC concentrations (r = -0.16) were significantly negatively correlated with time-to-collection. CONCLUSIONS: Crash severity and the time of day at which a crash occurs can result in delays in the collection of blood specimens after impaired driving arrests. Because drugs often continue to be metabolized and eliminated between arrest and biological specimen collection, measured concentrations may not represent the concentrations of drugs that were present at the time of driving. This has the potential to affect drug-impaired driving prosecution, particularly in jurisdictions whose laws specify per se impairment thresholds.


Subject(s)
Accidents, Traffic , Blood Alcohol Content , Driving Under the Influence , Humans , Driving Under the Influence/legislation & jurisprudence , Time Factors , Adult , Male , Female , Middle Aged , Substance Abuse Detection/methods , Dronabinol/blood , Blood Specimen Collection , Wisconsin , Young Adult , Automobile Driving/legislation & jurisprudence
9.
J Anal Toxicol ; 48(4): 235-241, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38581662

ABSTRACT

Hexahydrocannabinol (HHC) was first reported in the EU in May 2022. HHC has three chiral carbon atoms, but only (6aR,9R,10aR)-HHC (9R-HHC) and (6aR,9S,10aR)-HHC (9S-HHC) have been encountered in HHC products. The aim of this study was to develop and validate a method for the quantitative analysis of 9R-HHC, 9S-HHC, 11-OH-9R-HHC, 9R-HHC-COOH, 9S-HHC-COOH and 8-OH-9R-HHC. In addition, an objective was to investigate the immunochemical cross-reactivity. Blood samples from driving under the influence of drugs (DUID) cases screened positive for cannabis using enzyme-linked immunoadsorbent assay (ELISA) and confirmed negative for tetrahydrocannabinol (THC), 11-hydroxy-THC and THC-COOH were reanalyzed with a newly validated HHC method to investigate the presence of HHC and metabolites. The LC-MS-MS method was validated for matrix effects, lower limit of quantification (LLOQ), calibration model, precision, bias and autosampler stability. Cross-reactivity on an ELISA method was investigated separately for 9R-HHC-COOH and 9S-HHC-COOH at a concentration range between 5 and 200 ng/mL. The cross-reactivity was found to be 120% for 9R-HHC-COOH and 48% for 9S-HHC-COOH. In the LC-MS-MS method, 9R-HHC-COOH, 9S-HHC-COOH and 11-OH-9R-HHC showed matrix effects <25% at both concentrations, while 8-OH-9R-HHC, 9R-HHC and 9S-HHC matrix effects exceeded 25% at both concentrations but showed good precision (<10% for both inter and intra day) and low bias (<6%) in the further validation. The LLOQ was investigated and established at 0.2 ng/mL for all analytes except the carboxylated metabolites that had an LLOQ of 2.0 ng/mL. The upper LOQ was 20 and 200 ng/mL, respectively. Reanalysis of cases (n = 145) confirmed HHC and metabolites in 32 cases (22%). It was determined that the major metabolite in blood after administration of HHC was 9R-HHC-COOH followed by 11-OH-9R-HHC and that presumptive positive cases are caught by the routine ELISA screening for cannabis.


Subject(s)
Dronabinol , Substance Abuse Detection , Tandem Mass Spectrometry , Humans , Dronabinol/blood , Dronabinol/analogs & derivatives , Substance Abuse Detection/methods , Driving Under the Influence , Enzyme-Linked Immunosorbent Assay , Reproducibility of Results , Limit of Detection , Chromatography, Liquid
10.
Eur Neuropsychopharmacol ; 82: 35-43, 2024 May.
Article in English | MEDLINE | ID: mdl-38490083

ABSTRACT

As cannabinoid-based medications gain popularity in the treatment of refractory medical conditions, it is crucial to examine the neurocognitive effects of commonly prescribed products to ensure associated safety profiles. The present study aims to investigate the acute effects of a standard 1 mL sublingual dose of CannEpil®, a medicinal cannabis oil containing 100 mg cannabidiol (CBD) and 5 mg Δ9-tetrahydrocannabinol (THC) on neurocognition, attention, and mood. A randomised, double-blind, placebo-controlled, within-subjects design assessed 31 healthy participants (16 female, 15 male), aged between 21 and 58 years, over a two-week experimental protocol. Neurocognitive performance outcomes were assessed using the Cambridge Neuropsychological Test Automated Battery, with the Profile of Mood States questionnaire, and the Bond-Lader Visual Analogue Scale used to assess subjective state and mood. CannEpil increased Total Errors in Spatial Span and Correct Latency (median) in Pattern Recognition Memory, while also increasing Efficiency Score (lower score indicates greater efficiency) relative to placebo (all p < .05). Subjective Contentedness (p < .01) and Amicability (p < .05) were also increased at around 2.5 h post dosing, relative to placebo. Drowsiness or sedative effect was reported by 23 % of participants between three to six hours post CannEpil administration. Plasma concentrations of CBD, THC, and their metabolites were not significantly correlated with any observed alterations in neurocognition, subjective state, or adverse event occurrence. An acute dose of CannEpil impairs select aspects of visuospatial working memory and delayed pattern recognition, while largely preserving mood states among healthy individuals. Intermittent reports of drowsiness and sedation underscore the inter-individual variability of medicinal cannabis effects on subjective state. (ANZCTR; ACTRN12619000932167; https://www.anzctr.org.au).


Subject(s)
Affect , Attention , Cannabidiol , Cognition , Cross-Over Studies , Dronabinol , Humans , Male , Double-Blind Method , Female , Adult , Dronabinol/administration & dosage , Dronabinol/pharmacology , Dronabinol/blood , Cannabidiol/pharmacology , Cannabidiol/administration & dosage , Affect/drug effects , Young Adult , Middle Aged , Attention/drug effects , Cognition/drug effects , Medical Marijuana/administration & dosage , Medical Marijuana/pharmacology , Neuropsychological Tests
11.
Addiction ; 118(8): 1507-1516, 2023 08.
Article in English | MEDLINE | ID: mdl-36898848

ABSTRACT

DESIGN: This was a prospective observational study. BACKGROUND AND AIMS: The characteristics of cannabis-involved motor vehicle collisions are poorly understood. This study of injured drivers identifies demographic and collision characteristics associated with high tetrahydrocannabinol (THC) concentrations. SETTING: The study was conducted in 15 Canadian trauma centres between January 2018 and December 2021. CASES: The cases (n = 6956) comprised injured drivers who required blood testing as part of routine trauma care. MEASUREMENTS: We quantified whole blood THC and blood alcohol concentration (BAC) and recorded driver sex, age and postal code, time of crash, crash type and injury severity. We defined three driver groups: high THC (THC ≥ 5 ng/ml and BAC = 0), high alcohol (BAC ≥ 0.08% and THC = 0) and THC/BAC-negative (THC = 0 = BAC). We used logistic regression techniques to identify factors associated with group membership. FINDINGS: Most injured drivers (70.2%) were THC/BAC-negative; 1274 (18.3%) had THC > 0, including 186 (2.7%) in the high THC group; 1161 (16.7%) had BAC > 0, including 606 (8.7%) in the high BAC group. Males and drivers aged less than 45 years had higher adjusted odds of being in the high THC group (versus the THC/BAC-negative group). Importantly, 4.6% of drivers aged less than 19 years had THC ≥ 5 ng/ml, and drivers aged less than 19 years had higher unadjusted odds of being in the high THC group than drivers aged 45-54 years. Males, drivers aged 19-44 years, rural drivers, seriously injured drivers and drivers injured in single-vehicle, night-time or weekend collisions had higher adjusted odds ratios (aORs) for being in the high alcohol group (versus THC/BAC-negative). Drivers aged less than 35 or more than 65 years and drivers involved in multi-vehicle, daytime or weekday collisions had higher adjusted odds for being in the high THC group (versus the high BAC group). CONCLUSIONS: In Canada, risk factors for cannabis-related motor vehicle collisions appear to differ from those for alcohol-related motor vehicle collisions. The collision factors associated with alcohol (single-vehicle, night-time, weekend, rural, serious injury) are not associated with cannabis-related collisions. Demographic factors (young drivers, male drivers) are associated with both alcohol and cannabis-related collisions, but are more strongly associated with cannabis-related collisions.


Subject(s)
Accidents, Traffic , Alcohol Drinking , Dronabinol , Marijuana Smoking , Wounds and Injuries , Adult , Aged , Female , Humans , Male , Middle Aged , Accidents, Traffic/statistics & numerical data , Age Factors , Alcohol Drinking/blood , Dronabinol/blood , Marijuana Smoking/blood , Risk Assessment , Risk Factors , Sex Factors , Wounds and Injuries/epidemiology
12.
N Engl J Med ; 386(2): 148-156, 2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35020985

ABSTRACT

BACKGROUND: The effect of cannabis legalization in Canada (in October 2018) on the prevalence of injured drivers testing positive for tetrahydrocannabinol (THC) is unclear. METHODS: We studied drivers treated after a motor vehicle collision in four British Columbia trauma centers, with data from January 2013 through March 2020. We included moderately injured drivers (those whose condition warranted blood tests as part of clinical assessment) for whom excess blood remained after clinical testing was complete. Blood was analyzed at the provincial toxicology center. The primary outcomes were a THC level greater than 0, a THC level of at least 2 ng per milliliter (Canadian legal limit), and a THC level of at least 5 ng per milliliter. The secondary outcomes were a THC level of at least 2.5 ng per milliliter plus a blood alcohol level of at least 0.05%; a blood alcohol level greater than 0; and a blood alcohol level of at least 0.08%. We calculated the prevalence of all outcomes before and after legalization. We obtained adjusted prevalence ratios using log-binomial regression to model the association between substance prevalence and legalization after adjustment for relevant covariates. RESULTS: During the study period, 4339 drivers (3550 before legalization and 789 after legalization) met the inclusion criteria. Before legalization, a THC level greater than 0 was detected in 9.2% of drivers, a THC level of at least 2 ng per milliliter in 3.8%, and a THC level of at least 5 ng per milliliter in 1.1%. After legalization, the values were 17.9%, 8.6%, and 3.5%, respectively. After legalization, there was an increased prevalence of drivers with a THC level greater than 0 (adjusted prevalence ratio, 1.33; 95% confidence interval [CI], 1.05 to 1.68), a THC level of at least 2 ng per milliliter (adjusted prevalence ratio, 2.29; 95% CI, 1.52 to 3.45), and a THC level of at least 5 ng per milliliter (adjusted prevalence ratio, 2.05; 95% CI, 1.00 to 4.18). The largest increases in a THC level of at least 2 ng per milliliter were among drivers 50 years of age or older (adjusted prevalence ratio, 5.18; 95% CI, 2.49 to 10.78) and among male drivers (adjusted prevalence ratio, 2.44; 95% CI, 1.60 to 3.74). There were no significant changes in the prevalence of drivers testing positive for alcohol. CONCLUSIONS: After cannabis legalization, the prevalence of moderately injured drivers with a THC level of at least 2 ng per milliliter in participating British Columbia trauma centers more than doubled. The increase was largest among older drivers and male drivers. (Funded by the Canadian Institutes of Health Research.).


Subject(s)
Accidents, Traffic , Cannabis , Dronabinol/blood , Ethanol/blood , Adult , Age Distribution , Alcohol Drinking/adverse effects , Alcohol Drinking/epidemiology , British Columbia , Dronabinol/adverse effects , Female , Humans , Legislation, Drug , Male , Marijuana Use/epidemiology , Middle Aged
13.
Addict Biol ; 27(1): e13092, 2022 01.
Article in English | MEDLINE | ID: mdl-34467598

ABSTRACT

Using a federally compatible, naturalistic at-home administration procedure, the present study examined the acute effects of three cannabis flower chemovars with different tetrahydrocannabinol (THC) to cannabidiol (CBD) ratios, in order to test whether chemovars with a higher CBD content produce different effects. Participants were randomly assigned to ad libitum administration of one of three chemovars (THC-dominant: 24% THC, 1% CBD; THC+CBD: 9% THC, 10% CBD; CBD-dominant: 1% THC, 23% CBD); 159 regular cannabis users (male = 94, female = 65) were assessed in a mobile pharmacology lab before, immediately after, and 1 h after ad libitum administration of their assigned chemovar. Plasma cannabinoids as well as positive (e.g., high, elation) and negative (e.g., paranoia and anxiety) subjective effects were assessed at each time points. Participants who used the CBD-dominant and THC + CBD chemovars had significantly less THC and more CBD in plasma samples compared to participants who used the THC-dominant chemovar. Further, the THC + CBD chemovar was associated with similar levels of positive subjective effects, but significantly less paranoia and anxiety, as compared to the THC-dominant chemovar. This is one of the first studies to examine the differential effects of various THC to CBD ratios using chemovars that are widely available in state-regulated markets. Individuals using a THC + CBD chemovar had significantly lower plasma THC concentrations and reported less paranoia and anxiety while also reporting similar positive mood effects as compared to individuals using THC only, which is intriguing from a harm reduction perspective. Further research is needed to clarify the harm reduction potential of CBD in cannabis products.


Subject(s)
Cannabidiol/administration & dosage , Cannabis/chemistry , Dronabinol/administration & dosage , Flowers/chemistry , Adult , Cannabidiol/adverse effects , Cannabidiol/blood , Dronabinol/adverse effects , Dronabinol/blood , Female , Harm Reduction , Humans , Male , Middle Aged
14.
Am J Epidemiol ; 190(12): 2582-2591, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34157068

ABSTRACT

The government of Washington state legalized recreational cannabis consumption in December 2012. We used data on all drivers involved in fatal crashes in Washington in the years 2008-2019 (n = 8,282) to estimate prevalence in fatal crashes of drivers with ∆9-tetrahydrocannabinol (THC; the main psychoactive compound in cannabis) in their blood before and after legalization. However, nearly half of the drivers were not tested for drugs; we therefore used multiple imputation to estimate THC presence and concentration among them. We used logistic regression followed by marginal standardization to estimate the adjusted prevalence of THC-positive drivers after legalization relative to what would have been predicted without legalization. In the combined observed and imputed data, the proportion of drivers positive for THC was 9.3% before and 19.1% after legalization (adjusted prevalence ratio: 2.3, 95% confidence interval: 1.3, 4.1). The proportion of drivers with high THC concentrations increased substantially (adjusted prevalence ratio: 4.7, 95% confidence interval: 1.5, 15.1). Some of the increased prevalence of THC-positive drivers might have reflected cannabis use unassociated with driving; however, the increased prevalence of drivers with high THC concentrations suggests an increase in the prevalence of driving shortly after using cannabis. Other jurisdictions should compile quantitative data on drug test results of drivers to enable surveillance and evaluation.


Subject(s)
Accidents, Traffic/mortality , Automobile Driving/statistics & numerical data , Cannabis , Dronabinol/blood , Adult , Alcohol Drinking/blood , Female , Humans , Logistic Models , Male , Middle Aged , Seasons , Washington
15.
J Psychopharmacol ; 35(7): 786-803, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34049452

ABSTRACT

BACKGROUND: Cannabis legalization is expanding, but there are no established methods for detecting cannabis impairment. AIM: Characterize the acute impairing effects of oral and vaporized cannabis using various performance tests. METHODS: Participants (N = 20, 10 men/10 women) who were infrequent cannabis users ingested cannabis brownies (0, 10, and 25 mg Δ-9-tetrahydrocannabinol, THC) and inhaled vaporized cannabis (0, 5, and 20 mg THC) in six double-blind outpatient sessions. Cognitive/psychomotor impairment was assessed with a battery of computerized tasks sensitive to cannabis effects, a novel test (the DRiving Under the Influence of Drugs, DRUID®), and field sobriety tests. Blood THC concentrations and subjective drug effects were evaluated. RESULTS: Low oral/vaporized doses did not impair cognitive/psychomotor performance relative to placebo but produced positive subjective effects. High oral/vaporized doses impaired cognitive/psychomotor performance and increased positive and negative subjective effects. The DRUID® was the most sensitive test to cannabis impairment, as it detected significant differences between placebo and active doses within both routes of administration. Women displayed more impairment on the DRUID® than men at the high vaporized dose only. Field sobriety tests showed little sensitivity to cannabis-induced impairment. Blood THC concentrations were far lower after cannabis ingestion versus inhalation. After inhalation, blood THC concentrations typically returned to baseline well before pharmacodynamic effects subsided. CONCLUSIONS: Standard approaches for identifying impairment due to cannabis exposure (i.e. blood THC and field sobriety tests) have severe limitations. There is a need to identify novel biomarkers of cannabis exposure and/or behavioral tests like the DRUID® that can reliably and accurately detect cannabis impairment at the roadside and in the workplace.


Subject(s)
Cannabinoid Receptor Agonists , Cognitive Dysfunction/chemically induced , Dronabinol , Psychomotor Disorders/chemically induced , Administration, Inhalation , Adult , Cannabinoid Receptor Agonists/administration & dosage , Cannabinoid Receptor Agonists/adverse effects , Cannabinoid Receptor Agonists/blood , Double-Blind Method , Dronabinol/administration & dosage , Dronabinol/adverse effects , Dronabinol/blood , Female , Food , Humans , Male
16.
Forensic Sci Int ; 322: 110744, 2021 May.
Article in English | MEDLINE | ID: mdl-33721827

ABSTRACT

A method for the quantitative analysis of delta-9-tetrahydrocannabinol (THC, the main active ingredient of cannabis) in whole blood using solid phase extraction and LC/MS/MS has been developed. A bottom-up approach with method validation data was used to evaluate and estimate the measurement uncertainty (MU) of the analytical method. The sources of uncertainty were identified using a cause and effect diagram. The contribution of each uncertainty component was estimated and were combined to derive the overall uncertainty of the analytical method. The combined uncertainty was estimated to be 0.131 µg/L (<7%). At a 99.7% confidence level, the expanded uncertainty was 0.393 µg/L for a THC concentration of 2 µg/L in a whole blood sample. The calculations not only enable the laboratory to quantify the uncertainty associated with a quantitative result, but can also be used to identify the sources of uncertainty and determine if the analytical method can be improved. An open access Measurement Uncertainty Calculator (MUCalc) software has been developed using the method described in this paper.


Subject(s)
Dronabinol/blood , Models, Statistical , Chromatography, Liquid , Forensic Toxicology , Hallucinogens/blood , Humans , Mass Spectrometry , Solid Phase Extraction , Substance Abuse Detection , Uncertainty
17.
Traffic Inj Prev ; 22(2): 102-107, 2021.
Article in English | MEDLINE | ID: mdl-33544004

ABSTRACT

OBJECTIVE: Many jurisdictions use per se limits to define cannabis-impaired driving. Previous studies, however, suggest that THC concentrations in biological matrices do not reliably reflect cannabis dose and are poorly correlated with magnitude of driving impairment. Here, we first review a range of concerns associated with per se limits for THC. We then use data from a recent clinical trial to test the validity of a range of extant blood and oral fluid THC per se limits in predicting driving impairment during a simulated driving task. METHODS: Simulated driving performance was assessed in 14 infrequent cannabis users at two timepoints (30 min and 3.5 h) under three different conditions, namely controlled vaporization of 125 mg (i) THC-dominant (11% THC; <1% CBD), (ii) THC/CBD equivalent (11% THC; 11% CBD), and (iii) placebo (<1% THC & CBD) cannabis. Plasma and oral fluid samples were collected before each driving assessment. We examined whether per se limits of 1.4 and 7 ng/mL THC in plasma (meant to approximate 1 and 5 ng/mL whole blood) and 2 and 5 ng/mL THC in oral fluid reliably predicted impairment (defined as an increase in standard deviation of lateral position (SDLP) of >2 cm relative to placebo). RESULTS: For all participants, plasma and oral fluid THC concentrations were over the per se limits used 30 min after vaporizing THC-dominant or THC/CBD equivalent cannabis. However, 46% of participants failed to meet SDLP criteria for driving impairment. At 3.5 h post-vaporization, 57% of participants showed impairment, despite having low concentrations of THC in both blood (median = 1.0 ng/mL) and oral fluid (median = 1.0 ng/mL). We highlight two individual cases illustrating how (i) impairment can be minimal in the presence of a positive THC result, and (ii) impairment can be profound in the presence of a negative THC result. CONCLUSIONS: There appears to be a poor and inconsistent relationship between magnitude of impairment and THC concentrations in biological samples, meaning that per se limits cannot reliably discriminate between impaired from unimpaired drivers. There is a pressing need to develop improved methods of detecting cannabis intoxication and impairment.


Subject(s)
Cannabis/adverse effects , Dronabinol/blood , Marijuana Smoking/adverse effects , Psychomotor Performance/drug effects , Accidents, Traffic/prevention & control , Adult , Automobile Driving/statistics & numerical data , Breath Tests , Clinical Trials as Topic , Humans , Male , Marijuana Smoking/blood , Substance Abuse Detection/methods , Substance-Related Disorders/diagnosis
18.
Pharmacol Biochem Behav ; 202: 173116, 2021 03.
Article in English | MEDLINE | ID: mdl-33493547

ABSTRACT

Advances in drug vapor exposure systems have enabled evaluation of Δ-9-tetrahydrocannabinol (THC) vapor effects in laboratory animals. The purpose of this study was to 1) establish a range of parameters of THC vapor exposure in rats sufficient to produce a behavioral dose-effect curve in a battery of tasks sensitive to THC; and 2) to investigate sex differences in the effects of THC vapor exposure and THC injection (intraperitoneal, IP) on these behaviors in two strains of outbred rats. Male and female Sprague Dawley and Wistar rats (N = 22, 5-6/sex per group) received THC via passive vapor exposure (200 mg/mL; 5 conditions) and IP injection (1-20 mg/kg) in a within subject design. The effects of vaped and injected THC on appetite was determined using progressive ratio responding for food pellets. THC effects on nociception, measured using the tail withdrawal assay, and body temperature were also assessed during a 5-h test period for evaluation of time course of effects. Plasma THC concentrations were assessed after THC vapor and 10 mg/kg IP THC. THC vapor produced exposure-related increases and decreases in motivation to obtain food under the progressive ratio schedule. IP THC (3-20 mg/kg) reduced breakpoints. Vaped and injected THC produced exposure and dose-dependent antinociception and hypothermia. Sex and strain differences in THC effects were also observed. Plasma THC concentrations were higher after 10 mg/kg IP THC (152 ng/mL) compared to the highest vapor exposure condition tested (38 ng/mL), but magnitude of behavioral effects were comparable. THC vapor exposure produced reliable, dose orderly effects on food-maintained behavior, nociception, and body temperature that are comparable to effects of IP THC, although there were differences in the time course of behavioral outcomes.


Subject(s)
Analgesics/administration & dosage , Appetite/drug effects , Body Temperature/drug effects , Dronabinol/administration & dosage , Hypothermia/chemically induced , Nociception/drug effects , Administration, Inhalation , Analgesics/blood , Analgesics/chemistry , Animals , Behavior, Animal/drug effects , Dose-Response Relationship, Drug , Dronabinol/blood , Dronabinol/chemistry , Female , Injections, Intraperitoneal , Male , Rats , Rats, Sprague-Dawley , Rats, Wistar , Sex Factors , Volatilization
19.
J Sep Sci ; 44(8): 1621-1632, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33387419

ABSTRACT

This manuscript describes the development of an innovative method to determine cannabinoids (cannabidiol and tetrahydrocannabinol) in human plasma samples by pipette tip micro-solid phase extraction and liquid chromatography-mass spectrometry/mass spectromtery. An octyl-functionalized hybrid silica monolith, which had been synthesized and characterized, was used as a selective stationary phase. The octyl-functionalized hybrid silica monoliths presented high permeability and adequate mechanical strength. The micro-solid phase extraction variables (sample pH, draw-eject cycles, solvent for phase clean-up, and desorption conditions) were investigated to improve not only the selectivity but also the sorption capacity. The method was linear at concentrations ranging from the lower limit of quantification (10.00 ng/mL) to the upper limit of quantification (150.0 ng/mL). The lack of fit and homoscedasticity tests, as well as the determination coefficients (r2 greater than 0.995), certified that linearity was adequate. The precision assays presented coefficient of variation values lower than 15%, and the accuracy tests provided relative error values ranging from 3.2 to 14%. Neither significant carry-over nor matrix effects were detected. Therefore, the pipette tip micro-solid phase extraction/liquid chromatography-mass spectrometry/mass spectrometry method has demonstrated to be adequate to determine cannabidiol and tetrahydrocannabinol simultaneously in plasma samples for therapeutic drug monitoring of patients undergoing treatment with cannabinoids.


Subject(s)
Cannabidiol/blood , Dronabinol/blood , Silicon Dioxide/chemistry , Solid Phase Microextraction , Chromatography, High Pressure Liquid , Humans , Particle Size , Surface Properties , Tandem Mass Spectrometry
20.
Drug Test Anal ; 13(3): 614-627, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33095968

ABSTRACT

Cannabidiol (CBD) and Δ9 -tetrahydrocannabinol (THC) are the two best known and most extensively studied phytocannabinoids within Cannabis sativa. An increasing number of preclinical studies and clinical trials have been conducted with one or both compounds, often probing their therapeutic effects in conditions such as paediatric epilepsy, anxiety disorders or chronic pain. Accurate monitoring of THC and CBD and their metabolites is essential for tracking treatment adherence and pharmacokinetics. However, fully validated methods for the comprehensive analysis of major Phase I CBD metabolites are yet to be developed due to a historical lack of commercially available reference material. In the present study, we developed, optimised and validated a method for the simultaneous quantification of CBD, THC and their major Phase I metabolites 6-hydroxy-CBD (6-OH-CBD), 7-hydroxy-CBD (7-OH-CBD), 7-carboxy-CBD (7-COOH-CBD), 11-hydroxy-tetrahydrocannabinol (11-OH-THC) and 11-carboxy-tetrahydrocannabinol (11-COOH-THC) as per Food and Drug Administration (FDA) guidelines for bioanalytical method validation. The method is accurate, reproducible, sensitive and can be carried out in high-throughput 96-well formats, ideal for larger scale clinical trials. Deuterated internal standards for each analyte were crucial to account for variable matrix effects between plasma lots. The application of the method to plasma samples, taken from people who had been administered oral CBD as part of an open-label trial of CBD effects in anxiety disorders, demonstrated its immediate utility in ongoing and upcoming clinical trials. The method will prove useful for future studies involving CBD and/or THC and can likely accommodate the inclusion of additional metabolites as analytical reference materials become commercially available.


Subject(s)
Cannabidiol/analysis , Chromatography, Liquid/methods , Dronabinol/analysis , Tandem Mass Spectrometry/methods , Administration, Oral , Adolescent , Adult , Cannabidiol/blood , Cannabidiol/metabolism , Child , Dronabinol/blood , Dronabinol/metabolism , Humans , Reproducibility of Results , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL